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ABSTRACT 
In this paper, based on tile connection graph, we propose an 
efficient minimum cost path search algorithm through tile 
obstacles. This search algorithm is faster than previous graph 
based algorithm and unlike previous tile based algorithms, this 
algorithm finds the minimum cost path.   

Keywords 
Shortest path search, VLSI routing. 

1. INTRODUCTION 
In this paper, we look at the problem of minimum cost path 
searching through rectilinear obstacles.  Inside a rectangular 
area, there are several rectilinear objects, called obstacles. The 
space not occupied by obstacles is called clear space. For any 
given two points inside the clear space, the minimum cost path 
search problem is to find the minimum cost path inside the clear 
space that connects them. This problem has many engineering 
applications such as in VLSI routing.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Maze search. 
 
 

 
 
 
 
 
 
 
 

 
Figure 2. Non-uniform grid graph based search 

 
There are several ways to solve this problem. The first 

searching method, as shown in Figure 1 is to embed the problem 
into a finer uniform grid space and use a maze searching to find 
the solution [7]. Because the grid graph could be very large in 
VLSI routing applications, this searching is very time consuming. 
Due to this reason, almost all the later works were aimed to 
reduce the searching graph. In [1], Cong et al proposed a reduced 
graph based on non-uniform grid. As shown in Figure 2, The 
boundaries of obstacles form the grid lines. An implicit searching 
method is used to explore the searching space. Though, compared 
with the searching graph used by maze search, the search graph is 
smaller, if there are large number of obstacles in the searching 
space, the search graph still can be very large. In [9], Wu et al 
built a smaller graph for the search. But the graph can not 
guarantee a solution even there is one. Furthermore, it is time 
consuming to build the graph. In [10], an implicit searching 
method is used for the searching through a graph, called 
connection graph. This graph is similar to the one used in [9]. But 
some expensive preprocessing is still needed. In [3][4][6][8], 
clear space is fractured into tiles. In the search, a tile graph is 
built. Each tile is a node and there is an edge between two tiles if 
they are neighbors. An estimate cost is given to an edge. The 
search is based on such a graph. The advantage of this approach is 
that such graph is smaller. The drawback is that the costs given to 
the edges are not accurate.  

 
Figure 1 through Figure 4 shows the graph sizes of each searching 
approach. In Figure 2, the maze search grid graph is constructed. 
It has 437 nodes and 832 edges. The non-uniform graph in Figure 
2 has 100 nodes and 180 edges. The connection graph in Figure 3 
has 76 nodes and 132 edges. In Figure 4, there are 13 tiles and its 
corresponding graph has only 13 nodes and 16 edges. Those 
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examples show that the searching through tiles can be very 
efficient. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Connection graph 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Partitioned obstacle tiles and space tiles. 
In this paper, we propose an efficient minimum cost path search 
algorithm based on the small tile graph.  Unlike previous tile 
based search algorithms that use cost estimation, our algorithm 

uses the technique of the minimum cost propagation. This 
algorithm will guarantee the minimum cost path after the search 
terminates.  

 
2. PROBLEM FORMULATION 
Assume on a rectangular design area, there are a list of rectilinear 
obstacles. As in Figure 5, The clear space has been fractured into 
nonoverlapping tiles (rectangles). Assume S and T are two tiles in 
the clear space and tiles A and B are obstacle tiles. We like to find 
a path from any point of S to any point on T such that the cost is 
the minimum. The dashed line path p in the center provides a 
path connecting S and T. The path p goes through 4 tiles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 . VLSI routing through tiles. 
 

Observe that to hop from one tile to the other, the path must pass 
through a line segment that lies on the boundaries of both tiles. 
We refer to this edge as the boundary segment. A path from 
source tile to target tile goes through a list of segments. Path 
p goes through 5 segments that are highlighted with thicker 

lines. Every two consecutive segments are on the boundary of the 
same tile. Inside each tile, assume the connection cost for any 
given two points ),( 11 yx and ),( 22 yx  is defined as 

|||| 2121 yyxxc −+−= βα , 0, 0,≥ ≥α β α is the 

unit horizontal cost, and β is the unit vertical cost. Assume the 
cost on the boundary of source tile S is 0. Thus the cost on 
segment 1l  is 0. Since segments 1l  and 2l  share the same tile, 

the cost function on 1l  is to be propagated to segment 2l .  Note 

that the cost of a given point on 2l  is not constant and varies with 
its x coordinate. After we propagate the cost in this fashion 

through the rest of 5 segments, we can get the cost function on 5l , 
the boundary segment of destination tile T.  By finding the 
minimum of cost function, we get the least cost from S to T 
through the same sequence of tiles path p passes. The problem 
we have to solve is how to propagate the cost function from one 
segment to the other. 
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3. COST PROPOGATION FROM ONE 
SEGMENT TO THE OTHER 
In this section, we will study the minimum cost propagation 
pattern from one line segment to the other line segment. There are 
two cases. In the first case two line segments are perpendicular 
and in the second case they are parallel. 
  

3.1 COST PROPAGATION FROM TWO 
PERPENDICULAR LINE SEGMENT 
As shown in Figure 6, assume hl  and vl  are two perpendicular 

line segments. hl  runs horizontally and vl  runs vertically. 

Analytically assume {( , ), [ , ]}hl x h x a b= ∈  and 

{( , ), [ , ]}vl v y y c d= ∈ . Assume ( )f x is a continuous 

piecewise linear function defined on interval [ , ]a b  and assume 
it has n  knot points 

0 1 1( , ( )),0 1,i i nx f x i n a x x x b−≤ ≤ − = ≤ ≤ ≤ =L . 

This function can be used to represent the cost on hl . Though it 

is sufficient to consider the case hl  and vl  are on the boundaries 

of some tile, we consider a general case. We only assume hl  and 

vl  are inside the same tile. Thus the cost between two points 

( , ) hx h l∈ and ( , ) vv y l∈  is given by 

| | | |c v x y hα β= − + − . We like to find the least cost 

function ( ), [ , ]g y y c d∈  on vl  propagated from hl . We will 

show that ( )g y  is a piecewise linear function. For any given 

point ( , )v y  on vl , the minimum cost function ( )g y  can 
expressed as follows 

[ , ]

[ , ]

( ) min{ ( ) | | | |}

| | min{ ( ) | |}

| |

x a b

x a b

g y f x v x y h

y h f x v x

y h m

∈

∈

= + − + −

= − + + −

= − +

α β

β α

β

 

where 
[ , ]

min{ ( ) | |}
x a b

m f x v x
∈

= + −α . Since m is a 

constant, ( )g y  is a piecewise linear function. We first show 

how to compute m . Function ( ) ( ) | |p x f x v x= + −α  is 
piecewise linear. It has knot points 
( , ( ) | |),0 1i i ix f x v x i n+ − ≤ ≤ −α . If a v b≤ ≤  and 

v is not one of ,0 1ix i n≤ ≤ −  then ( )p x  has an additional 

knot point ( , ( ))v f v .  Note that on any interval, a linear 
function always achieves its minimum at the end point of the 
interval. Thus a piecewise linear function achieves its minimum 
on its knot points. Therefore by finding the minimum y  value of 

all knot points of ( )p x , we can get m .  If [ , ]h c d∉ , 

( )g y  is linear and it has only two knot points 

( , | | )c c h m− +β  and ( | | )d d h m− +, β . If 

c h d< < , then ( )g y  has an additional knot point ( , )h m . 

Apparently ( )g y  is continuous on interval [ , ]c d .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Least cost function propagation between two 

perpendicular line segments 
 

 
3.2 MINIMUM COST FUNCTION 
PROPAGATION BETWEEN TWO 
OPPOSITE SIDES 

As shown in  
Figure 7, assume pl  and ql  are two parallel line segments 

and both run horizontally. Analytically assume 
{( , ), [ , ]}pl x p x a b= ∈  and {( , ), [ , ]}ql x q x c d= ∈ . 

Assume ( )f x is a piecewise linear function defined on interval 

[ , ]a b  and assume it has n  knot points 

0 1 1( , ( )),0 1,i i nx f x i n a x x x b−≤ ≤ − = ≤ ≤ ≤ =L . 

This function can be used to represent the routing cost on pl . 

Though it is sufficient to consider the case pl  and ql  are on the 

boundaries of some tile, we consider a general case. We only 
assume pl  and ql  are in the same tile. Thus the cost between two 

points ( , )p px p l∈ and ( , )q qx q l∈  is given by 

| | | |p qc x x p qα β= − + − . We like to find the least cost 

( ), [ , ]g x x c d∈  on ql  propagated from pl . For any given 
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point ( , )x q  on vl , the minimum cost function ( )g x  can 
expressed as follows 

[ , ]
( ) min{ ( ) | |} | |

a b
g x f x p q

∈
= + − + −

λ
λ α λ β  

Term | |p q−β  is a constant. Function 

[ , ]
min{ ( ) | |}

a b
f x

∈
+ −

λ
λ α λ  is a continuous function and can 

be computed by a process we will refer to as linear minimum 
convolution. How to efficiently compute the linear minimum 
convolution is given in the next section. We will show that 

( )g x  is a continuous piecewise linear function defined on 

interval [ , ]c d .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 .  Least cost function propagation between two 

parallel line segments. 
 

4. LINEAR MINIMUM CONVOLUTION 
In this section, we will define the linear minimum convolution, 
present an intuitive graphical view of the computation, and derive 
an efficient algorithm that takes a number of steps linear in terms 
of the number of knot points of the piecewise linear function.  
 
The linear minimum convolution (LMC) of α  and ( )f x , and 

is written as ( * )( )f xα . It is given by expression   
 

* )( ) min( ( ) | |), ( , )
a b

f x f x x
≤ ≤

= + − ∈ −∞ ∞
λ

(α λ α λ
  

To simplify the notation, we abbreviate linear minimum 
convolution as LMC. Suppose ( )f x  is defined over the interval 

[ , ]a b .  Thus, the domain of ( )f x  is composed of an infinite 
number of points. Each of those points contributes an LMC 
Kernel. The result is the minimum of an infinite number of LMC 
kernels.  This is shown in Figure 8. Here, the piecewise linear 
function ( )f x  is shown with thicker lines, LMC kernels are 

formed with vertices on the curve ( , ( ))x f x , and the minimum 
contour of the LMC is shown as the dashed line  

 
It’s interesting to note the resemblance between the LMC and the 
conventional convolution from linear systems theory [2]. 

 ( ) ( ) ( )Y t x h t d
∞

−∞

= −∫ λ λ λ  

The LMC Kernel is analogous to the impulse response, ( )h t .  

The decomposition of ( )x t  into an infinite number of impulses 

is analogous to our decomposition of ( )f x  into an infinite 
number of points.  However instead of summing (integrating) the 
shifted and scaled impulse responses, we take the minimum of 
shifted and raised/lowered LMC kernels.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 8 . The linear minimum convolution of a piecewise 
linear function. 

In Figure 8, the piecewise linear function ( )f x  is shown with 
thicker lines, wedges are formed with vertices on the curve 
( , ( ))x f x , and the contour of the LMC is shown as the dashed 
line. 
 
LMC of a simple line segment can be trivially computed. LMC of 
the concatenation of two line segments is the minimum function 
of their LMCs.  
 

4.1 LMC of a piecewise linear function 
In this section, we consider the problem of finding the linear 
minimum convolution of a continuous piecewise linear function. 
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The LMC of a piecewise linear function can be found by finding 
the minimum of the LMCs of all its linear segments. Assume 
function ( )f x is piecewise linear defined as  

0 1 1

( , ( )),0 1,i i

n n

x f x i n
a x x x x b−

≤ ≤ −
= ≤ ≤ ≤ ≤ =L

 

The brute force approach of finding the LMC of ( )f x  is 

to compute * )( )if x(α  first. Then function ( * )( )f xα  
can be computed by finding the minimum of all functions 

* )( )if x(α . The fastest algorithm for finding the 
minimum function of two piecewise linear functions is 
linear in n , the number of segments. Therefore, the brute 
force algorithm to compute LMC of ( )f x  is quadratic in 
the number of segments. 
 
In this section, we propose a linear algorithm to compute the 
LMC of ( )f x . For every linear segment ( )if x , 

function ( * )( )f xα  has two infinite lines, a backward leg and a 

forward leg. The LMC of ( )f x  can be found by clipping 

( )f x  using the all the legs and saving the lower line segments. 
Our algorithm has two sweeps, a forward sweep and backward 
sweep. We first give a definition. At any given point ia  not 

including b , a forward leg starting from ( , ( ))i ia f a  is called 

clipping if the slope of ( )if x is greater than α . Likewise, a 

backward leg starting from ( , ( ))i ia f a is clipping if the slope 

of 1( )if x− is negative and less than −α .  

  
Assume we have sorted the segments. In the forward sweep, 
starting from a , first check whether forward segment is is 

clipping. If so then find the next linear segment ( )jf x that 

intersects that leg. All points , ,...,ka k i j= will be ignored 
because they will not generate any linear segments lower than 
current leg. The process resumes from point 1ja + , continuing 

until b . The backward sweep is the opposite of the forward 
sweep. Starting from b , clipping the modified piecewise linear 
function using all clipping backward legs.  
 

For line segment with a sloe that is positive and less than α , the 
forward leg at the left end point is not and f or line segment with a 
sloe that is positive and greater thanα , the forward leg at the left 
end point is clipping. We know that the LMC of ( )f x consists 

only of parts of line segments of ( )f x , forward legs, and 
backward legs. The clipping process chops out the parts of 
segments that are not part of the LMC. To prove our algorithm is 
correct, in the next lemma, we show that after a clipping forward 

leg intersects ( )f x , the remaining line segment is no longer 
clipping.  
 
 
 
 
 
 
 
 
 
 
 
 Figure 9. Forward leg clipping 
 

After a clipping forward leg l intersects with a linear line 

segment ( )if x , its remaining segment is not clipping. The same 
is true for backward leg. Based on this fact, we propose a linear 
running time algorithm to find the LMC of the piecewise linear 
function ( )f x .  
Algorithm 1 is the linear minimum convolution algorithm. 
Algorithm 2 is the forward leg sweep algorithm. The backward leg 
sweep algorithm is similar to the forward leg sweep algorithm; its 
listing is omitted.  

 
Algorithm 1 (Linear Minimum Convolution Algorithm) 

Input: α , a positive number and 0 1 1{ , , , }nL l l l −= L , a 
sorted list of line segments that represents the continuous 
piecewise linear function ( )f x .  

Output: L , the list of line segments that represents 
( * )( )f xα , a continuous piecewise linear function. 
1. Perform the forward leg sweep over L 
2. Perform the backward leg sweep over L 
3. The resulting L contains the segments of the piecewise 

linear function ( * )( )f xα . 
 

Algorithm 2 (Forward Leg Sweep Algorithm) 

1. Set index pointer 0p = . 

2. Scan L from segment pl  to the end of L to find the first 

segment whose slope is greater than α.  Let jl stand for that 

segment. If no such segment is found, return. 
3. Define a forward leg: ( ) ( ) ( )j jg x x a f a= − +α  

4. Remove segments 1, ,j jl l + L  from L until encountering a 

segment that intersects with ( )g x . If no segment 

intersecting ( )g x  is found, then go to step 10. 

( )if x  

x  

'l  

ia  1ia +  c  

C  

l  
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5. Let il  be the segment found in step 4 that intersects with 

g(x). Let ( , )P pP x y stand for the intersection point and let 

( , )R RR x y  stand for the right end point of il .  

6. Insert a new segment ( ), j Pg x a x x< <  into L  at 

position j .  

7. Insert into L at position j+1 a new segment, that has P as its 
left end point and the right end point of il as its right end 
point. 

8. Set 2p p= +  
9. Go to step 2. 
10. Insert a new segment: ( ), jg x a x< < ∞ into L at 

position j. Return 

 
5. LEAST COST PATH SEARCHING 
ALGORITHM 
For any given line segment, the lower bound cost to a target tile 
can be easily evaluated by finding the minimum of the lower 
bounds to four sides of the tile. In this section, we propose a least 
cost path search algorithm using A* search method. Our algorithm 
works as follows. The boundary segments of source tile S are 
given 0 cost and their estimated costs to the target tile T are 
evaluated. Those segments are put into a priority queue with the 
estimated costs. Whenever there is a segment in the queue, the 
segment with the smallest cost is de-queued. First locate all the 
clear tiles that touch this segment. Then propagate the cost to all 
segments that border those clear tiles. Then evaluate the estimated 
cost for each of those segments and put them into the priority 
queue. After the queue is empty, check to see if T has any 
searched segments. If so, find the boundary segment of T with 
lowest cost and trace back to the source. Otherwise, report search 
failure. We describe the search as starting from source tile to 
target tile. However, this search can be bi-directional to reduce the 
search space.  
 
Algorithm 3. Least cost searching algorithm 
Input: source tile S and target tile T. 
Output: a sequence of line segments that represents the least cost 

path from S to T 
1. Initialization 

2. Set the cost of the boundary segments of S to 0 
3. For each boundary segment,  

4. Evaluate the estimated cost function to 
the target tile T.  

5. Find the estimated cost and assign the 
result as the cost of the segment. 

6. Push the segment to the priority queue. 
7. While queue is not empty do 

8. De-queue AB, the segment with the min cost value 

9. For each segment CD that share the same 
tile with AB do  
10. Propagate the cost from AB to CD 
11. Find the estimated cost and use it as 

the cost of CD 
12. Push CD to the queue 

13. If T has any searched segments. If so, find the boundary 
segment of T with lowest cost and trace back to the source. 
Otherwise, report search failure. 

 
6. CONCLUSION  
In this paper, based on small tile connection graph, we propose an 
efficient minimum cost path search algorithm through tile 
obstacles. This algorithm is faster than previous graph based 
algorithm. Unlike previous tile based search algorithms that use 
cost estimation, our algorithm uses the technique of the minimum 
cost propagation. This algorithm will guarantee the minimum cost 
path after the search terminates. Future works include the 
application of this algorithm to VLSI routing. 
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