
A Minimum Cost Path Search Algorithm
Through Tile Obstacles

Zhaoyun Xing
Sun Microsystems Laboratories

901 San Antonio Road
Palo Alto, CA 94303

jason.xing@sun.com

 Russell Kao
Sun Microsystems Laboratories

901 San Antonio Road
Palo Alto, CA 94303

russell.kao@sun.com

ABSTRACT
In this paper, based on tile connection graph, we propose an
efficient minimum cost path search algorithm through tile
obstacles. This search algorithm is faster than previous graph
based algorithm and unlike previous tile based algorithms, this
algorithm finds the minimum cost path.

Keywords
Shortest path search, VLSI routing.

1. INTRODUCTION
In this paper, we look at the problem of minimum cost path
searching through rectilinear obstacles. Inside a rectangular
area, there are several rectilinear objects, called obstacles. The
space not occupied by obstacles is called clear space. For any
given two points inside the clear space, the minimum cost path
search problem is to find the minimum cost path inside the clear
space that connects them. This problem has many engineering
applications such as in VLSI routing.

Figure 1. Maze search.

Figure 2. Non-uniform grid graph based search

There are several ways to solve this problem. The first

searching method, as shown in Figure 1 is to embed the problem
into a finer uniform grid space and use a maze searching to find
the solution [7]. Because the grid graph could be very large in
VLSI routing applications, this searching is very time consuming.
Due to this reason, almost all the later works were aimed to
reduce the searching graph. In [1], Cong et al proposed a reduced
graph based on non-uniform grid. As shown in Figure 2, The
boundaries of obstacles form the grid lines. An implicit searching
method is used to explore the searching space. Though, compared
with the searching graph used by maze search, the search graph is
smaller, if there are large number of obstacles in the searching
space, the search graph still can be very large. In [9], Wu et al
built a smaller graph for the search. But the graph can not
guarantee a solution even there is one. Furthermore, it is time
consuming to build the graph. In [10], an implicit searching
method is used for the searching through a graph, called
connection graph. This graph is similar to the one used in [9]. But
some expensive preprocessing is still needed. In [3][4][6][8],
clear space is fractured into tiles. In the search, a tile graph is
built. Each tile is a node and there is an edge between two tiles if
they are neighbors. An estimate cost is given to an edge. The
search is based on such a graph. The advantage of this approach is
that such graph is smaller. The drawback is that the costs given to
the edges are not accurate.

Figure 1 through Figure 4 shows the graph sizes of each searching
approach. In Figure 2, the maze search grid graph is constructed.
It has 437 nodes and 832 edges. The non-uniform graph in Figure
2 has 100 nodes and 180 edges. The connection graph in Figure 3
has 76 nodes and 132 edges. In Figure 4, there are 13 tiles and its
corresponding graph has only 13 nodes and 16 edges. Those

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISPD’01, April 1-4, 2001, Sonoma, California, USA
Copyright 2001 ACM 1-58113-347-2/01/0004…$5.00.

192

examples show that the searching through tiles can be very
efficient.

Figure 3. Connection graph

Figure 4. Partitioned obstacle tiles and space tiles.
In this paper, we propose an efficient minimum cost path search
algorithm based on the small tile graph. Unlike previous tile
based search algorithms that use cost estimation, our algorithm

uses the technique of the minimum cost propagation. This
algorithm will guarantee the minimum cost path after the search
terminates.

2. PROBLEM FORMULATION
Assume on a rectangular design area, there are a list of rectilinear
obstacles. As in Figure 5, The clear space has been fractured into
nonoverlapping tiles (rectangles). Assume S and T are two tiles in
the clear space and tiles A and B are obstacle tiles. We like to find
a path from any point of S to any point on T such that the cost is
the minimum. The dashed line path p in the center provides a
path connecting S and T. The path p goes through 4 tiles.

Figure 5 . VLSI routing through tiles.

Observe that to hop from one tile to the other, the path must pass
through a line segment that lies on the boundaries of both tiles.
We refer to this edge as the boundary segment. A path from
source tile to target tile goes through a list of segments. Path
p goes through 5 segments that are highlighted with thicker

lines. Every two consecutive segments are on the boundary of the
same tile. Inside each tile, assume the connection cost for any
given two points),(11 yx and),(22 yx is defined as

|||| 2121 yyxxc −+−= βα , 0, 0,≥ ≥α β α is the

unit horizontal cost, and β is the unit vertical cost. Assume the
cost on the boundary of source tile S is 0. Thus the cost on
segment 1l is 0. Since segments 1l and 2l share the same tile,

the cost function on 1l is to be propagated to segment 2l . Note

that the cost of a given point on 2l is not constant and varies with
its x coordinate. After we propagate the cost in this fashion

through the rest of 5 segments, we can get the cost function on 5l ,
the boundary segment of destination tile T. By finding the
minimum of cost function, we get the least cost from S to T
through the same sequence of tiles path p passes. The problem
we have to solve is how to propagate the cost function from one
segment to the other.

2l
S

T

A

B
1l

5l

p

A

D

G

J

M

B C

E F

H I

L K

A

B C

D

E F

G

J

H I

M

K L

193

3. COST PROPOGATION FROM ONE
SEGMENT TO THE OTHER
In this section, we will study the minimum cost propagation
pattern from one line segment to the other line segment. There are
two cases. In the first case two line segments are perpendicular
and in the second case they are parallel.

3.1 COST PROPAGATION FROM TWO
PERPENDICULAR LINE SEGMENT
As shown in Figure 6, assume hl and vl are two perpendicular

line segments. hl runs horizontally and vl runs vertically.

Analytically assume {(,), [,]}hl x h x a b= ∈ and

{(,), [,]}vl v y y c d= ∈ . Assume ()f x is a continuous

piecewise linear function defined on interval [,]a b and assume
it has n knot points

0 1 1(, ()),0 1,i i nx f x i n a x x x b−≤ ≤ − = ≤ ≤ ≤ =L .

This function can be used to represent the cost on hl . Though it

is sufficient to consider the case hl and vl are on the boundaries

of some tile, we consider a general case. We only assume hl and

vl are inside the same tile. Thus the cost between two points

(,) hx h l∈ and (,) vv y l∈ is given by

| | | |c v x y hα β= − + − . We like to find the least cost

function (), [,]g y y c d∈ on vl propagated from hl . We will

show that ()g y is a piecewise linear function. For any given

point (,)v y on vl , the minimum cost function ()g y can
expressed as follows

[,]

[,]

() min{ () | | | |}

| | min{ () | |}

| |

x a b

x a b

g y f x v x y h

y h f x v x

y h m

∈

∈

= + − + −

= − + + −

= − +

α β

β α

β

where
[,]

min{ () | |}
x a b

m f x v x
∈

= + −α . Since m is a

constant, ()g y is a piecewise linear function. We first show

how to compute m . Function () () | |p x f x v x= + −α is
piecewise linear. It has knot points
(, () | |),0 1i i ix f x v x i n+ − ≤ ≤ −α . If a v b≤ ≤ and

v is not one of ,0 1ix i n≤ ≤ − then ()p x has an additional

knot point (, ())v f v . Note that on any interval, a linear
function always achieves its minimum at the end point of the
interval. Thus a piecewise linear function achieves its minimum
on its knot points. Therefore by finding the minimum y value of

all knot points of ()p x , we can get m . If [,]h c d∉ ,

()g y is linear and it has only two knot points

(, | |)c c h m− +β and (| |)d d h m− +, β . If

c h d< < , then ()g y has an additional knot point (,)h m .

Apparently ()g y is continuous on interval [,]c d .

Figure 6. Least cost function propagation between two

perpendicular line segments

3.2 MINIMUM COST FUNCTION
PROPAGATION BETWEEN TWO
OPPOSITE SIDES

As shown in
Figure 7, assume pl and ql are two parallel line segments

and both run horizontally. Analytically assume
{(,), [,]}pl x p x a b= ∈ and {(,), [,]}ql x q x c d= ∈ .

Assume ()f x is a piecewise linear function defined on interval

[,]a b and assume it has n knot points

0 1 1(, ()),0 1,i i nx f x i n a x x x b−≤ ≤ − = ≤ ≤ ≤ =L .

This function can be used to represent the routing cost on pl .

Though it is sufficient to consider the case pl and ql are on the

boundaries of some tile, we consider a general case. We only
assume pl and ql are in the same tile. Thus the cost between two

points (,)p px p l∈ and (,)q qx q l∈ is given by

| | | |p qc x x p qα β= − + − . We like to find the least cost

(), [,]g x x c d∈ on ql propagated from pl . For any given

y

T

(,)x h

(,)v y

hl

vl

h

d

c

v b xa

194

point (,)x q on vl , the minimum cost function ()g x can
expressed as follows

[,]
() min{ () | |} | |

a b
g x f x p q

∈
= + − + −

λ
λ α λ β

Term | |p q−β is a constant. Function

[,]
min{ () | |}

a b
f x

∈
+ −

λ
λ α λ is a continuous function and can

be computed by a process we will refer to as linear minimum
convolution. How to efficiently compute the linear minimum
convolution is given in the next section. We will show that

()g x is a continuous piecewise linear function defined on

interval [,]c d .

Figure 7 . Least cost function propagation between two

parallel line segments.

4. LINEAR MINIMUM CONVOLUTION
In this section, we will define the linear minimum convolution,
present an intuitive graphical view of the computation, and derive
an efficient algorithm that takes a number of steps linear in terms
of the number of knot points of the piecewise linear function.

The linear minimum convolution (LMC) of α and ()f x , and

is written as (*)()f xα . It is given by expression

*)() min(() | |), (,)
a b

f x f x x
≤ ≤

= + − ∈ −∞ ∞
λ

(α λ α λ

To simplify the notation, we abbreviate linear minimum
convolution as LMC. Suppose ()f x is defined over the interval

[,]a b . Thus, the domain of ()f x is composed of an infinite
number of points. Each of those points contributes an LMC
Kernel. The result is the minimum of an infinite number of LMC
kernels. This is shown in Figure 8. Here, the piecewise linear
function ()f x is shown with thicker lines, LMC kernels are

formed with vertices on the curve (, ())x f x , and the minimum
contour of the LMC is shown as the dashed line

It’s interesting to note the resemblance between the LMC and the
conventional convolution from linear systems theory [2].

 () () ()Y t x h t d
∞

−∞

= −∫ λ λ λ

The LMC Kernel is analogous to the impulse response, ()h t .

The decomposition of ()x t into an infinite number of impulses

is analogous to our decomposition of ()f x into an infinite
number of points. However instead of summing (integrating) the
shifted and scaled impulse responses, we take the minimum of
shifted and raised/lowered LMC kernels.

Figure 8 . The linear minimum convolution of a piecewise
linear function.

In Figure 8, the piecewise linear function ()f x is shown with
thicker lines, wedges are formed with vertices on the curve
(, ())x f x , and the contour of the LMC is shown as the dashed
line.

LMC of a simple line segment can be trivially computed. LMC of
the concatenation of two line segments is the minimum function
of their LMCs.

4.1 LMC of a piecewise linear function
In this section, we consider the problem of finding the linear
minimum convolution of a continuous piecewise linear function.

T

(,)px p

(,)qx q

pl

ql
q

p

x

y

a b c d
x

b a

()f x

195

The LMC of a piecewise linear function can be found by finding
the minimum of the LMCs of all its linear segments. Assume
function ()f x is piecewise linear defined as

0 1 1

(, ()),0 1,i i

n n

x f x i n
a x x x x b−

≤ ≤ −
= ≤ ≤ ≤ ≤ =L

The brute force approach of finding the LMC of ()f x is

to compute *)()if x(α first. Then function (*)()f xα
can be computed by finding the minimum of all functions

*)()if x(α . The fastest algorithm for finding the
minimum function of two piecewise linear functions is
linear in n , the number of segments. Therefore, the brute
force algorithm to compute LMC of ()f x is quadratic in
the number of segments.

In this section, we propose a linear algorithm to compute the
LMC of ()f x . For every linear segment ()if x ,

function (*)()f xα has two infinite lines, a backward leg and a

forward leg. The LMC of ()f x can be found by clipping

()f x using the all the legs and saving the lower line segments.
Our algorithm has two sweeps, a forward sweep and backward
sweep. We first give a definition. At any given point ia not

including b , a forward leg starting from (, ())i ia f a is called

clipping if the slope of ()if x is greater than α . Likewise, a

backward leg starting from (, ())i ia f a is clipping if the slope

of 1()if x− is negative and less than −α .

Assume we have sorted the segments. In the forward sweep,
starting from a , first check whether forward segment is is

clipping. If so then find the next linear segment ()jf x that

intersects that leg. All points , ,...,ka k i j= will be ignored
because they will not generate any linear segments lower than
current leg. The process resumes from point 1ja + , continuing

until b . The backward sweep is the opposite of the forward
sweep. Starting from b , clipping the modified piecewise linear
function using all clipping backward legs.

For line segment with a sloe that is positive and less than α , the
forward leg at the left end point is not and f or line segment with a
sloe that is positive and greater thanα , the forward leg at the left
end point is clipping. We know that the LMC of ()f x consists

only of parts of line segments of ()f x , forward legs, and
backward legs. The clipping process chops out the parts of
segments that are not part of the LMC. To prove our algorithm is
correct, in the next lemma, we show that after a clipping forward

leg intersects ()f x , the remaining line segment is no longer
clipping.

 Figure 9. Forward leg clipping

After a clipping forward leg l intersects with a linear line

segment ()if x , its remaining segment is not clipping. The same
is true for backward leg. Based on this fact, we propose a linear
running time algorithm to find the LMC of the piecewise linear
function ()f x .
Algorithm 1 is the linear minimum convolution algorithm.
Algorithm 2 is the forward leg sweep algorithm. The backward leg
sweep algorithm is similar to the forward leg sweep algorithm; its
listing is omitted.

Algorithm 1 (Linear Minimum Convolution Algorithm)

Input: α , a positive number and 0 1 1{ , , , }nL l l l −= L , a
sorted list of line segments that represents the continuous
piecewise linear function ()f x .

Output: L , the list of line segments that represents
(*)()f xα , a continuous piecewise linear function.
1. Perform the forward leg sweep over L
2. Perform the backward leg sweep over L
3. The resulting L contains the segments of the piecewise

linear function (*)()f xα .

Algorithm 2 (Forward Leg Sweep Algorithm)

1. Set index pointer 0p = .

2. Scan L from segment pl to the end of L to find the first

segment whose slope is greater than α. Let jl stand for that

segment. If no such segment is found, return.
3. Define a forward leg: () () ()j jg x x a f a= − +α

4. Remove segments 1, ,j jl l + L from L until encountering a

segment that intersects with ()g x . If no segment

intersecting ()g x is found, then go to step 10.

()if x

x

'l

ia 1ia + c

C

l

196

5. Let il be the segment found in step 4 that intersects with

g(x). Let (,)P pP x y stand for the intersection point and let

(,)R RR x y stand for the right end point of il .

6. Insert a new segment (), j Pg x a x x< < into L at

position j .

7. Insert into L at position j+1 a new segment, that has P as its
left end point and the right end point of il as its right end
point.

8. Set 2p p= +
9. Go to step 2.
10. Insert a new segment: (), jg x a x< < ∞ into L at

position j. Return

5. LEAST COST PATH SEARCHING
ALGORITHM
For any given line segment, the lower bound cost to a target tile
can be easily evaluated by finding the minimum of the lower
bounds to four sides of the tile. In this section, we propose a least
cost path search algorithm using A* search method. Our algorithm
works as follows. The boundary segments of source tile S are
given 0 cost and their estimated costs to the target tile T are
evaluated. Those segments are put into a priority queue with the
estimated costs. Whenever there is a segment in the queue, the
segment with the smallest cost is de-queued. First locate all the
clear tiles that touch this segment. Then propagate the cost to all
segments that border those clear tiles. Then evaluate the estimated
cost for each of those segments and put them into the priority
queue. After the queue is empty, check to see if T has any
searched segments. If so, find the boundary segment of T with
lowest cost and trace back to the source. Otherwise, report search
failure. We describe the search as starting from source tile to
target tile. However, this search can be bi-directional to reduce the
search space.

Algorithm 3. Least cost searching algorithm
Input: source tile S and target tile T.
Output: a sequence of line segments that represents the least cost

path from S to T
1. Initialization

2. Set the cost of the boundary segments of S to 0
3. For each boundary segment,

4. Evaluate the estimated cost function to
the target tile T.

5. Find the estimated cost and assign the
result as the cost of the segment.

6. Push the segment to the priority queue.
7. While queue is not empty do

8. De-queue AB, the segment with the min cost value

9. For each segment CD that share the same
tile with AB do
10. Propagate the cost from AB to CD
11. Find the estimated cost and use it as

the cost of CD
12. Push CD to the queue

13. If T has any searched segments. If so, find the boundary
segment of T with lowest cost and trace back to the source.
Otherwise, report search failure.

6. CONCLUSION
In this paper, based on small tile connection graph, we propose an
efficient minimum cost path search algorithm through tile
obstacles. This algorithm is faster than previous graph based
algorithm. Unlike previous tile based search algorithms that use
cost estimation, our algorithm uses the technique of the minimum
cost propagation. This algorithm will guarantee the minimum cost
path after the search terminates. Future works include the
application of this algorithm to VLSI routing.

7. REFRENCES
[1] J. Cong, J. Fang, and K. Khoo, “An Implicit Connection

Graph Maze Routing Algorithm for ECO Routing,”
Proceedings of ICCAD 1999, San Jose, CA, p163-167.

[2] L. Chua, C. Desoer, and E Kuh, Linear and Nonlinear
Circuits, McGraw-Hill, Inc, 1987.

[3] Jeremy Dion and Louis M. Monier, “Contour: A Tile-based
Gridless Router,” Western Research Laboratory Research
Report 95/3, Palo Alto, California.

[4] Margarino, A. Romano, A. De Gloria, F. Curatelli, and P.
Antognetti, “A Tile-Expansion Router,” IEEE Transactions
on Computer-Aided Design CAD-6(4): 507-517, July, 1987.

[5] N. J. Nilsson, Principles of Artificial Intelligence.
Englewood Cliffs, New Jersey,: 1980, pp. 53-94.

[6] John K. Ousterhout, “Corner Stitching: A Data-Structuring
Technique for VLSI Layout Tools.” IEEE Transactions on
Computer-Aided Design, Vol. CAD-3, NO. 1, pp. 87-100,
January 1984.

[7] S. Sait and H. Youssef, “VLSI Physical Design Automation
– Theory and Practice,” IEEE press, 1995.

[8] Tsai, S. Chen, and W. Feng, “An H-V Alternating Router,”
IEEE Transactions on Computer-Aided Design 11(8):976-
991, August, 1992.

[9] Y. Wu, P. Widmayer, M. Schlag, and C. Wong, “Rectilinear
Shortest Paths and Minimum Spanning Trees in the Presence
of Rectilinear Obstacles,” IEEE Transactions on Computers,
Vol. C-36, NO. 3, March 1987.

[10] S. Zheng, J Lim, and S. Iyengar, “Finding Obstacle-Avoiding
Shortest Paths Using Implicit Connection Graphs,” IEEE
Transactions on Computer-Aided Design, Vol. 15, No. 1,
January 1996.

197

	Main Page
	ISPD'01
	Front Matter
	Table of Contents
	Author Index

