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Abstract

Linear mixed effects models (LMEMs) are rapidly advancing as a candidate to
replace ANOVA as a standard for inferential analyses in psycholinguistics and as-
sociated fields. However, because of the relative novelty of this approach, there
are few clear standards regarding its correct use, as well as much uncertainty about
whether it truly offers an advantage over traditional approaches. In this paper, we
argue that many of the traditional standards in accounting for observational de-
pendencies in the design also apply to the correct use of LMEMs. We argue that
valid statistical inferences using LMEMs require maximal random-effects struc-
tures wherever possible—that is, including condition-specific random effects by
subjects/items for every fixed effect of theoretical interest that is measured in more
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than one condition within subjects/items. We present both theoretical analysis
and extensive Monte Carlo simulations in support of this argument. Failure to
use maximal random-effects structures (e.g., the common practice of including
only by-subject and by-item intercepts in a model’s random effects specification)
can lead to catastrophically inflated Type-I error rates. In contrast, using maximal
random effect structures with LMEMs makes them the most flexible and widely-
applicable approach available to date.

Keywords: linear mixed-effects models, generalization, statistics, Monte Carlo
simulation

The notion of independent evidence plays no less important a role in the as-
sessment of scientific hypotheses than it does in everyday reasoning. Consider a
pet-food manufacturer determining which of two new gourmet cat-food recipes
to bring to market. The manufacturer has every interest in choosing the recipe
that the average cat will eat the most of. Thus every day for a month (twenty-eight
days) their expert, Dr. Nyan, feeds one recipe to a cat in the morning and the other
recipe to a cat in the evening, counterbalancing which recipe is fed when and care-
fully measuring how much was eaten at each meal. At the end of the month Dr.
Nyan calculates that recipes 1 and 2 were consumed to the tune of 92.9±5.6 and
107.2±6.1 (means ± S Ds) grams per meal respectively. How confident can we be
that recipe 2 is the better choice to bring to market? Without further information
you might hazard the guess “somewhat confident”, considering that one of the
first statistical hypothesis tests typically taught, the unpaired t-test, gives p = 0.09
against the null hypothesis that choice of recipe does not matter. But now we tell
you that only seven cats participated in this test, one for each day of the week.
How does this change your confidence in the superiority of recipe 2?

Let us first take a moment to consider precisely what it is about this new in-
formation that might drive us to change our analysis. The unpaired t-test is based
on the assumption that all observations are conditionally independent of one an-
other given the true underlying means of the two populations—here, the average
amount a cat would consume of each recipe in a single meal. Since no two cats
are likely to have identical dietary proclivities, multiple measurements from the
same cat would violate this assumption. The correct characterization becomes
that all observations are conditionally independent of one another given (a) the
true palatibility effect of recipe 1 versus recipe 2, together with (b) the dietary
proclivities of each cat. This weaker conditional independence is a double-edged
sword. On the one hand, it means that we have tested effectively fewer individu-
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als than our 56 raw data points suggest, and this should weaken our confidence in
generalizing the superiority of recipe 2 to the entire cat population. On the other
hand, the fact that we have made multiple measurements for each cat holds out the
prospect of factoring out each cat’s idiosyncratic dietary proclivities as part of the
analysis, and thereby improving the signal-to-noise ratio for inferences regarding
each recipe’s overall appeal. How we specify these idiosyncrasies can dramat-
ically affect our inferences. For example, we know that some cats have higher
metabolisms and will tend to eat more at every meal than other cats. But we also
know that each creature has its own palate, and even if the recipes were of similar
overall quality, a given cat might happen to like one recipe more than the other.
Indeed, accounting for idiosyncratic recipe preferences for each cat might lead to
even weaker evidence for the superiority of recipe 2.

Situations such as these, where individual observations cluster together via as-
sociation with a smaller set of entities, are ubiquitous in the language sciences—
though of course the clusters are typically human participants and different types
of linguistic items, rather than cats and cat-food recipes. Similar clustered-observation
situations arise in other sciences, such as agriculture (plots in a field) and sociol-
ogy (students in classrooms in schools in school-districts); hence accounting for
the random effects of these entities has been an important part of the workhorse
statistical analysis technique, the analysis of variance, under the name mixed-
model ANOVA, since the first half of the twentieth century (Fisher, 1925; Scheffe,
1959). In experimental psychology, the prevailing standard for a long time has
been to assume that individual participants may have idiosyncratic sensitivities to
any experimental condition that may have an overall effect, so detecting a “fixed
effect” of some manipulation must be done under the assumption of corresponding
participant random effects for that manipulation as well. In our pet-food example,
if there is a true effect of recipe—that is, if on average a new, previously unstudied
cat will on average eat more of recipe 2 than of recipe 1—it should be detectable
above and beyond the noise introduced by cat-specific recipe preferences. Tech-
nically speaking, the fixed effect is tested against an error term that captures the
variability of the effect across individuals.

Standard practices for data-analysis in psycholinguistics fundamentally changed,
however, after Clark (1973). In a nutshell, Clark (1973) argued that linguistic ma-
terials, just like experimental participants, have idiosyncrasies that need to be ac-
counted for. Because in a typical psycholinguistic experiment, there are multiple
observations for the same item (e.g., a given word or sentence), these idiosyn-
crasies break the conditional independence assumptions underlying mixed-model
ANOVA which treats experimental participant as the only random effect. Clark
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proposed the min-F′ statistic as a conservative approximation to an F-ratio whose
distributional assumptions are satisfied even under what in contemporary parlance
is called crossed random effects of participant and item (Baayen et al., 2008).
Clark’s paper helped drive the field toward a standard demanding evidence that ex-
perimental results generalized beyond the specific linguistic materials it used—in
other words, the so-called by-subjects F1 mixed-model ANOVA was not enough.
There was even a time where reporting of the min-F′ statistic was made a standard
for publication in the Journal of Memory and Language. However, acknowledg-
ing the widespread belief that min-F′ is unduly conservative (but see Forster &
Dickinson, 1976), significance of min-F′ was never made a requirement for ac-
ceptance of a publication. Instead, the ‘normal’ convention continued to be that
a result is considered likely to generalize if it passes p < 0.05 significance in
both by-subjects (F1) and by-items (F2) ANOVAs. In the literature this criterion
is called F1 × F2 (e.g., Forster & Dickinson, 1976), which in this paper we use
to denote the larger (less significant) of the two p values derived from F1 and F2

analyses.

Linear Mixed-Effects Models (LMEMs)
Since Clark (1973), the biggest change in data analysis practices has been the

introduction of methods for simultaneously modeling crossed participant and item
effects in a single analysis, in what is variously called “hierarchical regression”,
“multi-level regression”, or simply “mixed-effects models” (Baayen et al., 2008;
Gelman & Hill, 2007; Goldstein, 1995; Locker et al., 2007; Pinheiro & Bates,
2000; Quené & van den Bergh, 2008; Snijders & Bosker, 1999).1 In this paper we
refer to models of this class as mixed-effects models; when fixed effects, random
effects, and trial-level noise contribute linearly to the dependent variable, it is a
linear mixed-effects model (LMEM).

In addition to their ability to handle crossed random effects, mixed-effects
models enjoy a number of in-principle advantages over ANOVA, as others have
noted:

• they do not assume balanced datasets; hence, they handle missing data and

1We should emphasize here that despite the “mixed-effects models” nomenclature, traditional
ANOVAs used in psycholinguistics have always used “mixed effects”; what is new is the explicit,
simultaneous estimation of both fixed-effects and random-effects components of such a model.
This permits correct treatment of imbalanced data and, as so clearly indicated by the title of Baayen
et al. (2008), allows extension to crossing of two or more types of random effects with a set of fixed
effects in a single analysis.
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naturalistic datasets (e.g., language corpora) more gracefully and flexibly
than ANOVAs;

• they require specification of a complete generative process hypothesized to
underlie observed data, and the model components can be explicitly esti-
mated and inspected;

• they allow for improved inferences about random effects themselves, which
can be useful for purposes such as individual-differences studies;

• Generalized LMEMs can faithfully model non-normally distributed and even
categorical data;

• Because imbalance is not problematic, a wide variety of categorical and
continuous predictors, both those of critical theoretical interest and controls,
can be included together in a single analysis.

Over recent years, LMEMs have thus enjoyed widespread adoption and pos-
sess considerable momentum as a candidate to replace ANOVA as a standard in
language research. What remains less widespread, however, is consensus regard-
ing what standards should apply to mixed-effects analysis. In this paper, we focus
on one issue in particular: when the goal of an analysis is to make reliable in-
ferences about one or more “fixed effects”, what random-effects structure should
one use? Based on theoretical analysis and Monte Carlo simulation, we argue the
following:

1. Implicit choices regarding random-effect structures existed for traditional
mixed-model ANOVAs just as they exist today for LMEMs;

2. With mixed-model ANOVAs, the standard has been to use “maximal” random-
effect structures;

3. Insofar as we as a field think this standard was appropriate in the past, it is
appropriate today and LMEMs should, whenever possible, also use “maxi-
mal” random-effect structures;

4. Failure to include maximal random-effect structures in LMEMs (when ran-
dom effects are present in the underlying populations) inflates Type I error
rates;

5. LMEMs with random intercepts only have catastrophically high Type I error
rates, regardless of how p-values are computed from them (see also Roland,
2009; Jaeger, 2011; and Schielzeth & Forstmeier, 2009);
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6. Forward stepwise “model fitting” approaches for determining random ef-
fects also show unacceptably high Type I error rates in many cases;

7. Contrary to some warnings in the literature (Pinheiro & Bates, 2000), likelihood-
ratio tests for fixed effects in LMEMs show minimal Type I error inflation
for psycholinguistic datasets (see Baayen et al., 2008, Footnote 1, for a sim-
ilar suggestion);

8. The F1 × F2 criterion leads to increased Type I error rates (i) the more the
effects vary across subjects and items in the underlying populations and (ii)
the larger the sample sizes are (see also Clark, 1973; Forster & Dickinson,
1976);

9. Min-F′ is conservative in between-items designs when the item variance
is low, and is conservative overall for within-items designs, especially so
when the treatment-by-subject and/or treatment-by-item variances are low
(see also Forster & Dickinson, 1976); in contrast, maximal LMEMs show
no such conservativity.

Specifying random effects: You already know how
The Journal of Feline Gastronomy has just received a submission reporting

that the feline palate prefers tuna to liver, and as journal editor you must de-
cide whether to send it out for review. The authors report a highly significant
effect of recipe type (p < .0001), stating that they used “a mixed effects model
with random effects for cats and recipes”. Are you in a position to evaluate the
generality of the findings? Given that LMEMs can implement nearly any of the
standard parametric tests—from a one-sample test to a multi-factor mixed-model
ANOVA—the answer can only be no. Indeed, whether LMEMs produce valid
inferences depends critically on how they are used. What you need to know in
addition is the random effects structure of the model, because this is what the as-
sessment of the treatment effects is based on. In other words, you need to know
which treatment effects are assumed to vary across which sampled units, and how
they are assumed to vary. As we will see, whether one is specifying a random
effects structure for LMEMs or choosing an analysis from among the traditional
options, the same considerations come into play. So, if you are scrupulous about
choosing the “right” statistical technique, then you should be equally scrupulous
about using the “right” random effects structure in LMEMs.

In fact, knowing how to choose the right test already puts you in a position
to specify the correct random effects structure for LMEMs. In this section, we
attempt to distill the implicit standards already in place by walking through a
hypothetical example and discussing the various models that could be applied,
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their underlying assumptions, and how these assumptions relate to more tradi-
tional analyses. In our hypothetical experiment, subjects perform a lexical deci-
sion to a string of letters. Each subject is exposed to two types of words, forming
condition A and condition B of the experiment. The words in one condition differ
from those in the other condition on some intrinsic dimension (e.g., frequency, im-
ageability, etc.), comprising a word-type manipulation that is within-subjects and
between-items. The question is whether reaction times are systematically differ-
ent between condition A and condition B. For expository purposes, we use a “toy”
dataset with hypothetical data from four subjects and four items, yielding two ob-
servations per treatment condition per participant. The observed data are plotted
alongside predictions from the various models we will be considering in the pan-
els of Figure 1. Because we are using simulated data, all of the parameters of
the population are known, as well as the “true” subject-specific and item-specific
effects for the sampled data. In practice, researchers do not know these values
and can only estimate them from the data; however, using known values for hypo-
thetical data can aid in understanding how clustering in the population maps onto
clustering in the sample.

The general pattern for the observed data points suggests that items of type B
(I3 and I4) are responded to faster than items of type A (I1 and I2). This suggests a
simple (but clearly inappropriate) model for these data that relates response Ysi for
subject s and item i to a baseline level β0, a treatment effect β1, and observation-
level error esi:

Ysi = β0 + β1Xi + esi (1)

where Xi is a predictor variable taking on the value of 0 or 1 depending on whether
item i is of type A or B respectively.2 In the population, participants respond to
items of type B 40 ms faster than items of type A. Under this first model, we as-
sume that each of the 16 observations provides the same evidence for or against
the treatment effect regardless of whether or not any other observations have al-
ready been taken into account. Performing a (clearly inappropriate) unpaired t-test

2In this example, we use a “contrast coding” scheme (0 or 1) for the predictor variable. Al-
ternatively, the models in this section could be expressed in the style more common to traditional
ANOVA pedagogy, where fixed and random effects represent deviations from a grand mean. This
model can be fit by using “deviation coding” for the predictor variable (-.5 and .5 instead of 0 and
1). For higher-order designs, contrast coding and deviation coding schemes will lead to differ-
ent interpretations for lower-order effects (simple effects for contrast coding and main effects for
deviation coding).
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Figure 1: Example RT data (open symbols) and model predictions (filled symbols) for a hypotheti-
cal lexical decision experiment with two within-subject/between-item conditions, A (triangles) and
B (circles), including four subjects (S1-S4) and four items (I1-I4). Panel (a) illustrates a model
with no random effects, considering only the baseline average RT (response to word type A) and
treatment effect; panel (b) adds random subject intercepts to the model; panel (c) adds by-subject
random slopes; and panel (d) illustrates the additional inclusion of by-item random intercepts.
Panel (d) represents the maximal random-effects structure justified for this design; any remaining
discrepancies between observed data and model estimates are due to trial-level measurement error
(esi).

on these data would implicitly assume this generative model.
Model (1) is not a mixed-effects model because we have not defined any

sources of clustering in our data; all observations are conditionally independent
given a choice of intercept, treatment effect, and noise level. But experience tells
us that different subjects are likely to have different overall response latencies,
breaking conditional independence between trials for a given subject. We can
expand our model to account for this by including a new offset term S 0s, the devi-
ation from β0 for subject s. The expanded model is now

Ysi = β0 + S 0s + β1Xi + esi. (2)

These offsets increase the model’s expressivity by allowing predictions for each
subject to shift upward or downward by a fixed amount (Figure 1b). Our use of
Latin letters for this term is a reminder that S 0s is a special type of effect which is
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different from the βs—indeed, we now have a “mixed-effects” model: parameters
β0 and β1 are fixed effects (effects that are assumed to be constant from one ex-
periment to another), while the specific composition of subject levels for a given
experiment is assumed to be a random subset of the levels in the underlying popu-
lations (another instantiation of the same experiment would have a different com-
position of subjects, and therefore different realizations of the S 0s effects). The
S 0s effects are therefore random effects. Our primary goal is to produce a model
which will generalize to the population from which these subjects are randomly
drawn, rather than describing the specific S 0s values for this sample. Therefore,
instead of estimating the individual S 0s effects, the model-fitting algorithm esti-
mates the population distribution from which the S 0s effects were drawn. This
requires assumptions about this distribution; commonly, these assumptions are
that it is normal, with a mean of 0 and a variance of τ00

2; here τ00
2 is a random

effect parameter, and is denoted by a Greek symbol because, like the βs, it refers
to the population and not to the sample.

Fitting Model (2) is analogous to analyzing the raw, unaggregated response
data using a repeated-measures ANOVA with SSsubjects subtracted from the resid-
ual SSerror term. Although Model (2) is clearly preferable to Model (1), it does not
capture all the possible by-subject dependencies in the sample; experience also
tells us that subjects often vary not only in their overall response latencies but
also in the nature of their response to word type. In the present hypothetical case,
Subject 3 shows a total effect of 134 ms, which is 94 ms larger than the average
effect in the population of 40 ms. We have multiple observations per combina-
tion of subject and word type, so this variability in the population will also create
clustering in the sample. The S0s do not capture this variability; they are random
intercepts that allow subjects to vary around β0. What we need in addition are
random slopes to allow subjects to vary with respect to β1, our treatment effect.
We introduce random slope term S 1s, which yields

Ysi = β0 + S 0s + (β1 + S 1s)Xi + esi. (3)

This is now a mixed-effects model with by-subject random intercepts and slopes.
Note that the inclusion of the by-subject random slope causes the predictions for
condition B to shift by a fixed amount for each subject (Figure 1c), improving
predictions for words of type B. The slope offset S 1s captures how much Subject
s’s effect deviates from the population treatment effect β1. Again, we do not want
to our analysis to commit to particular S 1s effects, and so, rather than estimating
these values directly, we estimate τ11

2, the by-subject variance in treatment ef-
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fect. But note that now we have two random effects for each subject s, and these
two effects can be correlated. For example, subjects who do not read carefully
might not only respond faster than the typical subject (and have a negative S0s),
but might also show less sensitivity to the word type manipulation (and have a
more positive S1s). Indeed, such a negative correlation is suggested in our hypo-
thetical data (Figure 1): S1 and S3 are slow responders who show clear treatment
effects, whereas S2 and S4 are fast responders who are hardly susceptible to the
word type manipulation. We therefore cannot treat these effects as coming from
independent univariate distributions, but instead need to estimate the bivariate dis-
tribution from which the S 0s effects and S 1s effects are drawn. The latter can be
described by three parameters: τ00

2 (random intercept variance), τ11
2 (random

slope variance), and τ01
2 (the intercept/slope covariance). This distribution is as-

sumed to be bivariate normal with a mean of (0, 0).
Both Models (2) and (3) are instances of what is traditionally analyzed using

“mixed-model ANOVA” (e.g., Scheffe, 1959, chapter 8). By long-standing con-
vention in our field, however, the classic “by-subjects ANOVA” (and analogously
“by-items ANOVA” when items are treated as the random effect) is understood
to mean Model (3), the relevant F-statistic for which is F1 = MS T

MS T xS
, where MST

is the treatment mean square and MSTxS is the treatment-by-subject mean square.
This convention presumably derives from the widespread recognition that sub-
jects (and items) usually do vary idiosyncratically not only in their global mean
responses but also in their sensitivity to the experimental treatment.

Model (3) is also the model that was criticized by Clark (1973), since the
repetition of words across observations is a source of non-independence not ac-
counted for by Model (3). To complete the model, we also need to incorporate
item variability with the random effect I0i, yielding

Ysi = β0 + S 0s + I0i + (β1 + S 1s)Xi + esi. (4)

This is a mixed-effect model with by-subject random intercepts and slopes and
by-item random intercepts. Note that the inclusion of by-item random intercepts
improves the predictions from the model, with predictions for a given item shift-
ing by a consistent amount across all subjects (Figure 1d). Rather than committing
to specific I0i values, we assume that the I0i effects are drawn from a normal dis-
tribution with a mean of zero and variance ω00

2. We also assume that ω00
2 is

independent from the τ parameters defining the by-subject variance components.
This analysis has a direct analogue to min-F′, which tests MS T against a de-

nominator term consisting of the sum of MS T xS and MS I , the mean squares for
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the random treatment-by-subject interaction and the random main effect of items.
It is, however, different from the practice of performing F1 × F2 and rejecting the
null hypothesis if p < .05 for both Fs. The reason is that MST (the numerator
for both F1 and F2) reflects not only the treatment effect, but also treatment-by-
subject variability (τ11 as well as by-item variability (ω00

2). The denominator of
F1 controls for treatment-by-subject variability but not item variability; similarly,
the denominator of F2 controls for item variability but not treatment-by-subject
variability. Thus, finding that F1 is significant implies that β1 , 0 or ω2

00 , 0,
or both; likewise, finding that F2 is significant implies that β1 , 0 or τ2

11 , 0, or
both. Since ω00

2 and τ11
2 can be nonzero while β1 = 0, F1 × F2 tests will inflate

the Type I error rate (Clark, 1973). Thus, in terms of controlling Type I error
rate, the mixed-effects modeling approach and the min-F′ approach are, at least
theoretically, superior to separate by-subject and by-item tests.

At this point, we might wish to go further and consider other models. For in-
stance, we have considered a by-subject random slope; for consistency, why don’t
we also consider a model with a by-item random slope, I1i? A little reflection
reveals that a by-item random slope does not make sense for this design. Words
are nested within word types—no word can be both type A and type B—so it is
not sensible to ask whether words vary in their sensitivity to word type. No sam-
ple from this experiment could possibly give us the information needed to estimate
random slope variance and random slope/intercept covariance parameters for such
a model. A model like this is unidentifiable for the data it is applied to: there are
(infinitely) many different values we could choose for its parameters which would
describe the data equally well.3 Experiments with a within-item manipulation,
such as a priming experiment in which target words are held constant across con-
ditions but the prime word is varied, would call for by-item random slopes, but
not the current experiment.

The above point also extends to designs where one independent variable is
manipulated within- and another variable between- subjects (respectively items).
In case of between-subject manipulations, the levels of the subject variable are
nested within the levels of the experimental treatment variable (i.e. each sub-
ject belongs to one and only one of the experimental treatment groups), meaning
that subject and treatment cannot interact—a model with a by-subject random

3Technically, by-item random slopes for a between-item design can be used to capture het-
eroscedasticity across conditions, but this is typically a minor concern in comparison with the
issues focused on in this paper (see, e.g., discussion in Gelman & Hill, 2007).
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slope term would be unidentifiable. In general, within-unit treatments require
both the by-unit intercepts and slopes in the random effects specification, whereas
between-unit treatments require (and logically permit) only the by-unit random
intercepts.

It is important to note that identifiability is a property of the model given a
certain dataset. The model with by-item random slopes is unidentifiable for any
possible dataset because it tries to model a source of variation that could not log-
ically exist in the population. However, there are also situations where a model
is unidentifiable because there is insufficient data to estimate its parameters. For
instance, we might decide it was important to try to estimate variability corre-
sponding to the different ways that subjects might respond to a given word (a
subject-by-item random intercept). But to form a cluster in the sample, it is neces-
sary to have more than one observation for a given unit; otherwise, the clustering
effect cannot be distinguished from residual error. If we only elicit one observation
per subject/item combination, we are unable to estimate this source of variability,
and the model containing this random effect becomes unidentifiable. Had we used
a design with repeated exposures to the same items for a given subject, the same
model would be identifiable, and in fact we would need to include that term to
avoid violating the conditional independence of our observations given subject
and item effects.

This discussion indicates that Model (4) has the maximal random effects struc-
ture justified by our experimental design. A model with maximal random effects
structure optimizes generalization of the findings to new subjects and new items.
Models that lack random effects contained in the maximal model, such as Mod-
els (1)-(3), are misspecified—the model specification is not expressive enough to
include the true generative process underlying the data. This type of misspeci-
fication is bad because conditional independence between observations within a
given cluster is not achieved. This will typically underestimate the standard errors
of fixed-effects and, consequently, inflate the Type I error rates for fixed effects.

A final model that we have not considered yet is one that includes by-subject
and by-item random intercepts only (RI-only model).

Ysi = β0 + S 0s + I0i + β1Xi + esi (5)

One might be tempted to consider a model such as (5) if, for example, the treatment-
by-subject variability (τ11

2) is of little theoretical interest (Locker et al., 2007), or
if a comparison of models (4) and (5) suggests that the simpler model is warranted
(Baayen et al., 2008). However, this would be a mistake. Even if τ11

2 is not of
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Table 1: Summary of models considered and associated lmer syntax.

No. Model lmer model syntax
(1) Ysi = β0 + β1Xi + esi n/a (not a mixed-effects model)
(2) Ysi = β0 + S 0s + β1Xi + esi Y∼C+(1|Subject)

(3) Ysi = β0 + S 0s + (β1 + S 1s)Xi + esi Y∼C+(1+C|Subject)

(4) Ysi = β0 + S 0s + I0i + (β1 + S 1s)Xi + esi Y∼C+(1+C|Subject)+(1|Item)

(5) Ysi = β0 + S 0s + I0i + β1Xi + esi Y∼C+(1|Subject)+(1|Item)

theoretical interest, it is nonetheless a source of clustering in the data, and ignor-
ing it is a model misspecification that breaks conditional independence between
observations within a subject or item cluster. Unlike for the other models we have
considered up to this point, there is no precedent for this kind of RI-only anal-
ysis in the mixed-model ANOVA literature. Still, it is possible to construe it as
tantamount to a modified F′min statistic, in which MSTxS has been removed from
the denominator and replaced with MSS . But this would be clearly problematic
because the numerator MST increases as a function of not only the treatment ef-
fect, but also the treatment-by-subject variability (τ11

2). This implies that RI-only
models should have an unacceptably high Type I error rate, increasing as a func-
tion of τ11

2, the by-subject random slope parameter. Indeed, this Type I inflation
has been already noted by Roland (2009) and Schielzeth & Forstmeier (2009).
The latter found a high (up to .41) Type I error rate for RI-only models on within-
subject data (although they were not concerned, as we are, with the problem of
simultaneous generalization).

The mixed-effects models considered in this section are presented in Table 1.
We give their expression in the syntax of lmer, a widely used mixed-effects fit-
ting method for R (Bates et al., 2011). To summarize, when specifying random
effects, one must be guided by (1) the sources of clustering that exist in the target
subject and item populations, and (2) by whether this clustering in the population
will also exist in the sample. The general principle is that a by-subject (or by-
item) random intercept is needed whenever there is more than one observation per
subject (or item or subject/item combination), and a random slope is needed for
any effect where there is more than one observation for each unique combination
of subject and treatment level (or item and treatment level, or subject/item combi-
nation and treatment level). Models are unidentifiable when they include random
effects that are logically impossible or that cannot be estimated from the data in
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principle. Models are misspecified when they fail to include random effects that
create dependencies in the sample. Although this section has only dealt with a
simple single-factor design, these principles extend in a straightforward manner
to higher-order designs, which we consider further in the General Discussion.

Against a model selection approach to random effects specification
The previous section implies a strong theoretical commitment to maximal ran-

dom effect structures, i.e. models that include all random effect terms that are log-
ically possible and statistically determinable for given experimental design. This
ensures that we account for all potentially relevant dependencies regardless of
whether conclusive evidence for these dependencies can be found in one’s data.

An alternative way of specifying random effects structures is model selection.
The basic idea behind this approach is to let the data “speak for themselves” as to
whether certain random effect terms should be included in the model or not. That
is, on the same data set, one compares the fit of a model with and without certain
random effect terms (e.g. Model 4 versus Model 5 in the previous section) using
goodness of fit criteria that take into account both the accuracy and the complex-
ity of the model. Here, accuracy refers to how much variance is explained by the
model and complexity to how many predictors (or parameters) are included in the
model. The goal is to find an optimal compromise between the two: we want accu-
rate, but simple models. This “optimal” random effect structure is then used when
carrying out hypothesis tests on the fixed effects of interest. Indeed, a number of
recent publications using LMEMs are based on such an approach (see following
section). However, there are a number of theoretical and practical caveats which,
by more than just coincidence, are related to those in step-wise multiple regression
and other applications involving data-driven model optimization.

First, the order in which effects are entered into the model can have an in-
fluence on the outcome. Broadly speaking, there are two ways in which model
building and comparison can proceed, known respectively as forward selection
and backward selection methods. In forward selection, one starts with a sim-
ple model (e.g. Model 1 in the previous section) and makes it successively more
complex (by adding random intercept and slope terms) until just before it becomes
“unjustifiably complicated.” Backward selection proceeds in the opposite direc-
tion, starting with a maximally complex model (e.g. Model 4 in the previous sec-
tion) and making it successively simpler until just before it becomes “unbearably
inaccurate.” Importantly, neither of these heuristics performs an exhaustive explo-
ration of the entire range of possible models, but rather terminates at some point
along the way of making the model more (respectively less) complex. This can
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introduce bias because one can easily get stuck in a local optimum (particularly
with more complex factorial designs): the procedure terminates even though there
might be better models further down the line of the model complexity/simplicity
hierarchy.

It is also important to note that experimental designs are typically optimized
for the detection of fixed effects, not of random effects. Simplicity-based model
selection will therefore not only (correctly) reject random effects that do not ex-
ist, but also (incorrectly) reject random effects for which there is just insuffi-
cient power. This problem is exacerbated for datasets with few subjects and/or
items, since detecting random effects is harder the fewer clusters are present. One
can imagine the logical extreme of a study with only a single subject: a model-
selection approach would invariably reject all by-subject random effects and thus
merrily conclude that any fixed effect was likely to generalize over subjects; by
contrast, the maximal random-effects model would correctly refuse to answer the
ill-posed question of generalization over subjects in this case.

These arguments against model selection are perhaps less severe in the context
of large-scale investigations involving plenty of data per design cell (e.g. research
on language corpora, provided there are no sparse data problems). Nevertheless,
in terms of generalization, theoretically motivated, maximal random effect struc-
tures should be superior to empirically selected ones.

Modeling of random effects in the current psycholinguistic literature
The introduction of LMEMs and their early application to psycholinguistic

data by Baayen et al. (2008) has had a major influence on analysis techniques
used in peer-reviewed publications. At the time of writing, Google scholar reports
408 citations to Baayen, Davidson and Bates. In a informal survey of the 150
articles appearing in the Journal of Memory and Language since (from 59(4) to
64(3)), we found that 20 (13%) reported analyses using an LMEM of some kind.
However, these papers differ substantially in both the type of models used and the
information reported about them. In particular, researchers differ in whether they
include random slopes or only random intercepts in their models. Of the 20 JML
articles identified, six give no information about the random effects structure, and
a further six specify that they use random intercepts only, without theoretical or
empirical justification. A further five papers employ model selection, four forward
and only one backward. The final three papers employ a maximal random effects
structure including intercept and slope terms where appropriate.

This survey highlights two important points. First, there appears to be no stan-
dard in reporting the modeling procedure, and authors vary dramatically in the
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amount of detail they provide. Second, at least 30% of the papers using LMEMs,
and perhaps as many as 60%, do not include random slopes, i.e. they tacitly
assume that individual subjects and items are affected by the experimental manip-
ulations in exactly the same way. As discussed earlier, this is a departure even
from the standard use of ANOVA in psycholinguistics.

The present study
How do current uses of LMEMs compare to more traditional methods such

as min-F′ and F1 × F2)? The next section of this paper tests a wide variety of
commonly used analysis methods for datasets typically collected in psycholin-
guistic experiments, both in terms of whether resulting significance levels can be
trusted—i.e., whether a p-value is conservative (less than α), nominal (equal to α),
or anticonservative (greater than α)—and the power of each method in detecting
effects that are actually present in the populations.

Ideally, we would compare the different analysis techniques by applying them
to a large selection of real data sets. Unfortunately, in real experiments the true
generative process behind the data is unknown, meaning that we cannot tell whether
effects in the population exist—or how big those effects are—without relying on
one of the analysis techniques we actually want to test. Moreover, even if we
knew which effects were real, we would need far more datasets than are readily
available to reliably estimate the nominality and power of a given method.

We therefore take an alternative approach of using Monte Carlo methods to
generate data from simulated experiments. This allows us to specify the underly-
ing sampling distributions per simulation, and thus to have veridical knowledge
of the presence or absence of an effect of interest, as well as all other proper-
ties of the experiment (number of subjects, items and trials, and the amount of
variability introduced at each level). Such a Monte Carlo procedure is standard
for this type of problem (e.g., Davenport & Webster, 1973; Forster & Dickinson,
1976; Quené & van den Bergh, 2004; Santa et al., 1979; Schielzeth & Forstmeier,
2009; Wickens & Keppel, 1983), and guarantees that as the number of samples
increases, the obtained p-value distribution becomes arbitrarily close to the true
p-value distribution for datasets generated by the sampling model.

Moreover, the simulations assume a “best-case scenario” in which all the dis-
tributional assumptions of the model class (in particular normal distribution of
random effects and trial-level error, and homoscedasticity of trial-level error and
between-items random intercept variance) are satisfied. Although the approach
leaves open for future research many difficult questions regarding departures of
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realistic psycholinguistic data from these assumptions, it allows us great flexi-
bility in analyzing the behavior of each analytic method as the population and
experimental design vary. We hence proceed to the systematic investigation of
traditional ANOVA, min-F′, and several types of LMEMs as datasets vary in
many crucial respects including between- versus within-items, different numbers
of items, and different random-effect sizes and covariances.

Method

For simplicity, all datasets included a continuous response variable and had
only a single two-level treatment factor, which was always within subjects, and
either within or between items. When it was within, each “subject” was assigned
to one of two counterbalancing “presentation” lists, with half of the subjects as-
signed to each list. We assumed no list effect; that is, the particular configuration
of “items” within a list did not have any unique effect over and above the item ef-
fects for that list. We also assumed no order effects, nor any effects of practice or
fatigue. All experiments had 24 subjects, but we ran simulations with both 12 or
24 items to explore the effect of number of random-effect clusters on fixed-effects
inference.4

Within-item data sets were generated from the following sampling model:
Ysi = β0 + S 0s + I0i + (β1 + S 1s + I1i)Xsi + esi. with all variables defined as in the
tutorial section above, except that we used deviation coding for Xsi (-.5, .5) rather
than contrast coding. Random effects S 0s and S 1s were drawn from a bivariate
normal distribution with means µS = < 0, 0 > and variance-covariance matrix T

=

(
τ00

2 ρIτ00τ11

ρIτ00τ11 τ11
2

)
. Likewise, I0i and I1i were also drawn from a separate

bivariate normal distribution with µI =< 0, 0 > and variance-covariance matrix

Ω =

(
ω00

2 ρSω00ω11

ρSω00ω11 ω11
2

)
. The residual errors esi were drawn from a normal

distribution with a mean of 0 and variance σ2. For between-item designs, the I1i

effects (by-item random slopes) were simply ignored and thus did not contribute
to the response variable.

We investigated the performance of various analyses over a range of popu-
lation parameter values (Table 2). To generate each simulated dataset, we first

4Having only six items per condition, such as in the 12-item case, is not uncommon in psy-
cholinguistic research, where is often difficult to come up with larger numbers of suitably con-
trolled items.
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Table 2: Ranges for the population parameters; ∼ U(min,max) means the parameter was sampled
from a uniform distribution with range [min,max].

Parameter Description Value
β0 grand-average intercept ∼ U(−3, 3)
β1 grand-average slope 0 (H0 true) or .8 (H1 true)
τ00

2 by-subject variance of S 0s ∼ U(0, 3)
τ11

2 by-subject variance of S 1s ∼ U(0, 3)
ρS correlation between (S 0s, S 1s) pairs ∼ U(−.8, .8)
ω00

2 by-item variance of I0i ∼ U(0, 3)
ω11

2 by-item variance of I1i ∼ U(0, 3)
ρI correlation between (I0i, I1i) pairs ∼ U(−.8, .8)
σ2 residual error ∼ U(0, 3)
pmissing proportion of missing observations ∼ U(.00, .05)

determined the population parameters β0, τ00
2, τ11

2, ρS , ω00
2, ω11

2, ρI , and σ2 by
sampling from uniform distributions with ranges given in Table 2. We then sim-
ulated 24 subjects and 12 or 24 items from the corresponding populations, and
simulated one observation for each subject/item pair. We also assumed missing
data, with up to 5% of observations in a given data set counted as missing (at
random).

For tests of Type I error, β1 (the fixed effect of interest) was set to zero. For
tests of power, β1 was set to .8, which we found yielded power around 0.5 for the
most powerful methods with close-to-nominal Type I error.

We considered nine different analyses, three variants of ANOVA and six vari-
ants of mixed-effects models (Table 3). All LMEMs were fit using the lmer

function of the R package lme4, version 0.999375-39 (Bates et al., 2011), esti-
mated using maximum likelihood estimation. Further information and R scripts
can be found in an online appendix (http://talklab.psy.gla.ac.uk/simgen). When
fitting LMEMs, an attempt was made to fit the specified model. However, in some
cases, the estimation procedure did not converge. The assumption was that users
of LMEMs would not simply give up in the face of nonconvergence, but instead
explore simpler models. To this end, the random effects structure of the model
was progressively simplified until convergence was attained. For between-items
designs, this meant dropping the by-subjects random slope. For within-items de-
signs, statistics from the partially converged model were inspected, and the slope
associated with smaller variance was dropped. In the rare (.002%) of cases that
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Table 3: Analyses performed on simulated datasets

Analysis WSWI WSBI Test statistics
min-F′ X X min-F′

F1 X X F1
F1 × F2 X X F1, F2
Random-intercepts LMEM X X t, χ2

LR, MCMC
Maximal LMEM X X t, χ2

LR
Forward-stepping LMEM, subjects then items X X t, χ2

LR
Forward-stepping LMEM, items then subjects X t, χ2

LR
Backward-stepping LMEM, subjects then items X t, χ2

LR
Backward-stepping LMEM, items then subjects X t, χ2

LR

the random-intercept only model did not converge, the analysis was discarded.
There are various ways of obtaining p-values from LMEMs, and to our knowl-

edge, there is little agreement on which method to use. Therefore, we considered
three methods currently in practice: (1) treating the t-statistic as if it were a z
statistic (i.e., using the standard normal distribution as a reference); (2) perform-
ing likelihood ratio tests, in which the deviance (−2LL) of a model containing the
fixed effect is compared to another model without it but that is otherwise identical
in random effects structure; and (3) using Markov Chain Monte Carlo (MCMC)
sampling from the posterior distribution. Although (3) is the approach recom-
mended by (Baayen et al., 2008), MCMC sampling is not implemented in lme4

for models containing random correlation parameters. We therefore used (3) only
for random intercept only models.

In addition to LMEMs with maximal random effects and random intercepts
only, we examined the performance of stepwise-selection LMEMs, where the ran-
dom effects structure was determined either by stepping forward from simple to
more complex random effects or by stepping backward, from complex to simple
random effects. The stepping process would terminate when comparison between
the current model and the next model suggested the step was not warranted. These
stepwise selection approaches used likelihood ratio tests to compare models, with
the α level set to .05 for each comparison, which we assume is the standard ap-
proach in the literature. We tested both varieties where subject-effects steps were
considered before item-effects steps and varieties where item-effects steps were
considered before subject-effects. For between-item designs, there was only one
possible step, and therefore forward and backward models are formally identical.
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The within-item design, in contrast, has richer possibilities. For forward models,
the stepwise procedure began with a random intercept model and terminated when
a likelihood ratio test failed to indicate that including a given slope would improve
the model, retaining the simpler model. If the first slope of the possible slopes did
not “pass” the test, then the second slope was never tested. Conversely, the back-
ward model began with the maximal random effects model and terminated when
the likelihood ratio test showed that dropping the slope led to a significantly worse
fit of the model, and the more complex model was retained. If the first slope to
be tested was retained, the second slope was never tested. Any models that did
not converge during forward or backward stepping were simply ignored, and the
comparison would then be between the current model and the next model that
converged.

We generated 100000 datasets for testing for each of the eight combinations
(effect present/absent, between-/within-item manipulation, 12/24 items). The func-
tions we used in running the simulations and processing the results are available
in the R package simgen, which we have made available in a supplementary ap-
pendix, along with a number of R scripts using the package. The appendix also
contains further information about the additional R packages and functions used
for simulating the data and running the analyses.

Results and Discussion

An ideal statistical analysis method maximizes statistical power while keeping
Type I error nominal (at the stated α level). Overall Type I error rates for the
analyses are given in Table 4 for the between-item design and in Table 5 for the
within-item design. The analyses in each table are (approximately) ranked, with
analyses lower in the table showing the highest Type I error rates. Only min-F′

was consistently at or below the stated α level. This is not entirely surprising,
because the techniques that are available for deriving p-values from LMEMs with
random slopes are known to be somewhat anticonservative (Baayen et al., 2008).
For models with maximal random-effects structure or backward selection, this
anticonservativity was quite minor, within 1–2% of α.5 It is also worth noting

5This anticonservativity stems from underestimation of the variation between subjects and/or
items, as is suggested by generally better performance of the maximal model in the 24- as opposed
to 12-item simulations. In the appendix, we show that for LMEMs with random slopes Type I
error decreases rapidly as additional subjects and items are added, while for RI-only models, error
rate actually increases.
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that F1 × F2, which is known to be fundamentally biased (Clark, 1973; Forster &
Dickinson, 1976), controlled overall Type I error better than forward-stepping or
random-intercepts LMEMs, and almost as well as maximal LMEMs.

Table 4: Type I error rate for between-items design; RI-only = Random intercepts only.

α = .01 α = .05 α = .10
Nitems 12 24 12 24 12 24

Type I Error at or near α
min-F′ .009 .009 .044 .045 .092 .093
LMEM, Maximal, χ2

LR .017 .013 .070 .058 .129 .113
F1 × F2 .014 .019 .063 .077 .120 .137
LMEM, Selection, χ2

LR .018 .013 .071 .058 .130 .113
Type I Error far exceeding α

LMEM, Maximal, t .029 .017 .086 .065 .143 .120
LMEM, Selection, t .030 .017 .088 .065 .145 .120
LMEM, RI-only, χ2

LR .032 .039 .102 .111 .171 .177
LMEM, RI-only, t .055 .051 .128 .124 .193 .189
LMEM, RI-only, MCMC .071 .103 .173 .211 .255 .294
F1 .297 .217 .421 .339 .497 .420

F1 alone was the worst performing test for between-items designs, and also
had an unacceptably high error rate for within-items designs. LMEMs with random-
intercepts only were also unacceptably anticonservative for both types of designs,
far worse than F1 × F2. In fact, for within-items designs, random-intercepts-only
LMEMs were even worse than F1 alone, showing false rejections 40-50% of the
time at the .05 level, regardless of whether p-values were derived using the nor-
mal approximation to the t-statistic, the likelihood-ratio test, or MCMC sampling.
Therefore, random-intercepts LMEMs represent a giant step backward in terms of
simultaneous generalization over subjects and items.

Occupying an intermediate range were stepwise LMEMs. For between-items
designs, where there was only one slope to make a decision about (the by-subjects
random slope), using a stepwise procedure was not much different from using
maximal random effects structure. However, performance of stepwise models de-
graded once there were two slopes to decide on, moreso for forward-stepping than
for backward-stepping models. The worst performance was for forward stepping
models. For 12-item datasets, forward models testing the subject slope first were
most likely to end up at a random-intercepts model (about 23 % of cases) followed
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Table 5: Type I error rate for within-items design; RI-only = Random intercepts only.

α = .01 α = .05 α = .10
Nitems 12 24 12 24 12 24

Type I Error at or near α
min-F′ .004 .005 .027 .031 .061 .068
LMEM, Maximal, χ2

LR .013 .012 .059 .056 .113 .108
F1 × F2 .012 .018 .057 .072 .112 .130
LMEM, Backward, Subjects First, χ2

LR .018 .012 .065 .058 .120 .110
LMEM, Backward, Items First, χ2

LR .019 .013 .067 .057 .123 .110
LMEM, Maximal, t .022 .016 .072 .063 .126 .115
LMEM, Backward, Subjects First, t .026 .017 .078 .064 .133 .117
LMEM, Backward, Items First, t .027 .017 .080 .064 .135 .117

Type I Error exceeding α
LMEM, Forward, Items First, χ2

LR .056 .041 .117 .095 .176 .150
LMEM, Forward, Items First, t .063 .045 .128 .101 .187 .156
LMEM, Forward, Subjects First, χ2

LR .076 .042 .140 .095 .200 .149
LMEM, Forward, Subjects First, t .082 .046 .149 .101 .209 .155
F1 .083 .059 .176 .139 .251 .210
LMEM, RI-only, χ2

LR .317 .377 .440 .498 .514 .567
LMEM, RI-only, t .320 .379 .441 .499 .515 .568
LMEM, RI-only-MCMC .260 .360 .390 .500 .440 .600

by forward models testing the item slope first ( 22 %) , and then backward models
testing the subject or item slope first ( 4 % in each case).

From the point of view of overall Type I error rate, we can rank the analyses
for both within- and between-items designs in order of desirability:

1. min-F′ and maximal LMEMs;
2. backward-stepping LMEMs and F1 × F2;
3. forward-stepping LMEMs;
4. F1 and random-intercepts LMEMs.

It would also seem natural to draw a line separating analyses that have an “accept-
able” rate of false rejections (i.e., 1–2) from those with a rate that is intolerably
high (i.e., 3–4). However, it is insufficient to consider only the overall Type I error
rate, as there may be particular problem areas of the parameter space where even
the best analyses perform poorly (such as when particular variance components
are very small or large). If these areas are small, they will only moderately affect
the overall error rate. This is a problem because we do not know where the actual
populations that we study reside in this parameter space; it could be that they in-
habit these problem areas. It is therefore also useful to look at Type I error rate as
a function of certain random effect parameters. This provides not only a further
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Figure 2: Type I Error rate for between-items design, analyses at or near the nominal α level, as
a function of by-subject random slope variance τ11

2 and by-item random intercept variance ω00
2.

The p-values for all LMEMs in the figure are from likelihood-ratio tests. Top row: 12 items;
bottom row: 24 items.

check on the soundness of the best analyses, but also gives some insight into why
some of the poorer analyses break down.

To probe deeper into these analyses’ performances, it is useful to recognize the
principles at play in determining statistical power for multilevel analyses (includ-
ing mixed-model ANOVA). As with any inferential analysis, the theoretical limit
on power ultimately derives from the signal-to-noise ratio. For multilevel models
in particular, variability at the level of cluster (subject and/or item) is an essential
part of this noise. Analyses that are fundamentally sound will interpret increased
cluster-level variability as noise and thus will be more conservative. In contrast,
analyses that are fundamentally flawed will tend to interpret this variability as sig-
nal, thus increasing the Type I error rate. The variances that are most in danger of
being “misinterpreted” as signal are those that can drive differences between treat-
ment means. Thus, in between-item designs, item variance is a potential culprit;
in within-items designs, the item variance contributes equally to the two treatment
means and is therefore factored out, but the treatment-by-item variance can drive
differences between means. This implies that the variance components to look
at for the within-subjects/between-items design are the by-item intercept variance

23



Figure 3: Type I Error rate for between-items design, analyses exceeding the nominal α level, as
a function of by-subject random slope variance τ11

2 and by-item random intercept variance ω00
2.

The p-values for all LMEMs in the figure are from likelihood-ratio tests. Top row: 12 items;
bottom row: 24 items.

(ω00
2) and the by-subject slope variance (τ11

2); for the within-subjects/within-
items design, they are the by-subject slope variance τ11

2 and the by-item slope
variance ω11

2.
Figures 2–5 show the predicted Type I error rate (see supplementary on-line

material for information) for the analyses as a function of these critical variances.
From Figures 2 and 4 it can be seen that only min-F′ maintains the Type I error
rate consistently below the α-level throughout the parameter space. It can also
be seen that min-F′ becomes increasingly conservative as the relevant random ef-
fects become small, replicating Forster & Dickinson (1976). Maximal LMEMs
show no such increasing conservativity, performing well overall, especially with
24-item datasets. In contrast, the performance of model selection approaches de-
grades as the critical random slope parameters become small, especially with re-
spect to the slope that is tested as the first step in within-item designs (Figures 2
and 4). Random-intercepts LMEMs degrade extremely rapidly as a function of
random slope parameters; even at very low levels of random-slope variability, the
Type I error rate is unacceptably high (Figures 3 and 5).

The widely adopted F1 × F2 criterion seems to occupy an interesting mid-
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Figure 4: Type I Error rate for within-items design, analyses at or near the nominal α level, as a
function of by-subject random slope variance τ11

2 and by-item random slope variance ω11
2. The

p-values for all LMEMs in the figure are from likelihood-ratio tests. Top row: 12 items; bottom
row: 24 items.

dle ground between maximal LMEMs and random-intercepts LMEMs. On the
one hand, it is clearly far less anti-conservative than random-intercepts LME; in
fact, its average behavior in terms of Type I error across our simulations is com-
parable to maximal LME analyses (slightly less anti-conservative for 12 items,
slightly more anti-conservative for 24 items). The visualization in terms of the
critical variances, however, reveals that F1 × F2 is still fundamentally unsound:
it becomes increasingly anti-conservative as either subject or item random slopes
grow (Figure 4). As Clark (1973) pointed out, subject random slopes are not ac-
counted for in the F2 analysis, nor are item random slopes accounted for in the
F1 analysis. The fact that both F1 and F2 analyses have to pass muster keeps this
anti-conservativity relatively minimal as long as subject and/or item slope vari-
ances are small, but the anti-conservativity is there nonetheless.

Note also that F1 × F2 and backwards-stepping LMEMs yield almost comple-
mentary Type-I error distributions (Figure 4): while F1 × F2 encounters problems
when random slope variances get large, backward-stepping LMEMs encounter
them when random slope variances get small. The latter is likely because back-
ward selection more often eliminates the relevant slope terms from the model
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Figure 5: Type I Error rate for within-items design, analyses exceeding the nominal α level, as a
function of by-subject random slope variance τ11

2 and by-item random slope variance ω11
2. The

p-values for all LMEMs in the figure are from likelihood-ratio tests. Top row: 12 items; bottom
row: 24 items.

(Type-II error due to lack of evidence for the inclusion of random slopes). Again,
this underscores the general superiority of maximal LMEMs.

In sum, insofar as one is concerned about drawing conclusions likely to gener-
alize across subjects and items, only min-F′ and maximal LMEMs are fundamen-
tally sound.6 F1-only and random-intercepts LMEMs are fundamentally flawed,
as are forward selection models, especially in cases with few observations. The
widely-used F1 × F2 approach is flawed as well, but may be acceptable in cases
where maximal LMEMs are not applicable. The question now is which of these
analyses best maximizes power (Tables 6 and 7; Figures 6 and 7).

Overall, maximal LMEMs showed better greater power than min-F′; for the
α=.05 level, it yielded power that was higher than min-F′. However, it is not
immediately clear how much of this advantage is due to the greater anticonser-
vativity of maximal LMEMs. One way to address this is to use the test statistics
from the datasets we generated under the null hypothesis as a null-hypothesis dis-

6Backwards selection may also be categorizable as fundamentally sound, but we see nothing
to recommend it over maximal LMEMs.
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Table 6: Power for between-items design; RI-only = Random intercepts only.

α = .01 α = .05 α = .10
Nitems 12 24 12 24 12 24

Type I Error at or near α
min-F′ .079 .154 .210 .328 .311 .444
LMEM, Maximal, χ2

LR .118 .185 .267 .364 .371 .478
F1 × F2 .106 .222 .252 .403 .355 .510
LMEM, Model Selection, χ2

LR .119 .186 .269 .364 .372 .478
Type I Error exceeding α

LMEM, Maximal, t .162 .214 .300 .382 .394 .490
LMEM, Model Selection, t .164 .215 .302 .383 .395 .490
LMEM, RI-only, χ2

LR .164 .279 .319 .449 .419 .548
LMEM, RI-only, t .228 .318 .360 .472 .447 .563
LMEM, RI-only-MCMC .252 .444 .428 .601 .524 .680
F1 .541 .571 .671 .706 .732 .767

tribution for the test statistics in the power analysis. This can be used to correct
for the small degree of anticonservativity of maximal LMEMs. Applying these
corrections, for the between-item design with α=.05, the corrected power values
for maximal LMEMs (.223 and .342 for 12 and 24 items, respectively) were be-
tween 4% and 6% higher than the uncorrected values for min-F′ (.210 and .328).
Thus, there does not seem to be a substantial power advantage to using maxi-
mal LMEMs for between-item designs. In contrast, maximal LMEMs retained
a considerable power advantage for within-items designs, with corrected power
levels for α=.05 (.433 and .592) that were 16% to 32% higher than the uncor-
rected power values for min-F′ (.327 and .512). Applying the same procedure to
likelihood-ratio-test random-intercepts LMEMs reveals corrected powers below
those of maximal LMEMs (between-items: .216 and .314 for 12 and 24 items re-
spectively; within-items: .380 and .531). That is, most of the apparent additional
power of maximal LMEMs over min-F′ is real; but most of the apparent power of
random-intercepts LMEMs is illusory.

General Discussion

Recent years have witnessed a surge in popularity of LMEMs in psycholin-
guistics and related fields. In many respects, the excitement these models have
generated over the past several years is well deserved, given their great flexibility
and their ability to model effects at the level of the individual trial. Despite this
popularity and widespread use, there seems to be little understanding of the critical
role of random effects in these models, leading to wildly varying random effects
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Figure 6: Power for between-items design, analyses at or near the nominal α level, as a function
of by-subject random slope τ11

2 and by-item random slope ω00
2. The p-values for all LMEMs in

the figure are from likelihood-ratio tests. Top row: 12 items; bottom row: 24 items.

specifications. We have emphasized that specifying random effects in an LMEM
involves essentially the same principles involved in the selection of an analysis
technique from the traditional menu of options. And since this is the case, re-
searchers using LMEMs should adhere to the standards regarding generalization
that have governed research in psycholinguistics and related fields for almost half
a century. Historically, the standard for ANOVA has been to assume the presence
of random condition-specific effects whenever observations across multiple con-
ditions belong to a single cluster (most typically experimental subject and item,
as explored in this paper). The reason for this is that our field is primarily con-
cerned with discovering phenomena that generalize beyond the specific subjects
or items involved in an experiment; if different subjects or items have different id-
iosyncratic sensitivities to experimental condition, then failing to include random
condition-specific effects in ANOVA analysis often leads to inaccurate inferences
about the generalizability of an observed effect. As we have shown both theoreti-
cally and through extensive simulations, this issue is every bit as true for LMEMs
as for ANOVA.

Our survey of the generalizability of various analyses for data with crossed
random effects leads to the clear conclusion that the only real contenders are max-
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Table 7: Power for within-items design; RI-only = Random intercepts only.

α = .01 α = .05 α = .10
Nitems 12 24 12 24 12 24

Type I Error at or near α
min-F′ .129 .266 .327 .512 .463 .643
LMEM, Maximal, χ2

LR .240 .382 .460 .610 .582 .717
F1 × F2 .212 .410 .440 .643 .568 .746
LMEM, Backward, Subjects First, χ2

LR .251 .384 .467 .612 .586 .718
LMEM, Backward, Items First, χ2

LR .257 .384 .470 .612 .588 .718
LMEM, Maximal, t .306 .425 .496 .629 .603 .727
LMEM, Backward, Subjects First, t .315 .427 .502 .631 .608 .728
LMEM, Backward, Items First, t .319 .427 .505 .631 .609 .728

Type I Error exceeding α
LMEM, Forward, Items First, χ2

LR .331 .429 .516 .635 .621 .733
LMEM, Forward, Items First, t .384 .465 .547 .652 .640 .742
LMEM, Forward, Subjects First, χ2

LR .367 .428 .551 .635 .649 .734
LMEM, Forward, Subjects First, t .412 .464 .575 .652 .664 .742
F1 .455 .538 .640 .724 .725 .800
LMEM, RI-only, χ2

LR .787 .904 .853 .935 .883 .949
LMEM, RI-only, t .789 .904 .854 .935 .883 .949
LMEM, RI-only-MCMC .860 .898 .880 .918 .920 .939

imal LMEMs and min-F′. Given the lore about the conservatism of min-F′ and
the power of LMEMs, it comes as something of a surprise that, in terms of power,
maximal LMEMs in between-items designs perform nearly identically to min-
F′, and in within-items designs shows a considerable improvement in power of
between 16% and 32%.

Although min-F was the only analysis to consistently maintain the Type I error
rate at or below α, there are be serious drawbacks to readopting it as a standard for
the field. First, LMEMs offer numerous advantages over min-F′, including being
able to accommodate continuous predictors, and correct handling of imbalanced
(e.g., missing) data. Another often-overlooked advantage is that it can accom-
modate richer clustering structure than just subjects and items as sampled units,
which can be useful in studies of dialogue for example, where the dyad is often an
important unit of analysis over and above the individual subject. Additionally, it
is not yet clear whether min-F′ performs well on other types of data, such as cate-
gorical data. Indeed, because min-F′ is designed for continuous data, we suspect
it would be vulnerable to the scaling artifacts that afflict conventional ANOVA
when applied to categorical data from factorial designs (Jaeger, 2008). In con-
trast, maximal LMEMs can accommodate many different kinds of data without
such artifacts. Finally, the inflation of the Type I error rate for maximal LMEMs
with likelihood-ratio tests was minor (6-7% instead of 5%), and we feel this is
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Figure 7: Power for within-items design, analyses at or near the nominal α level, as a function of
by-subject random slope variance τ11

2 and by-item random slope variance ω11
2. The p-values for

all LMEMs in the figure are from likelihood-ratio tests. Top row: 12 items; bottom row: 24 items.

a small price to pay for the benefit of having an approach that can more flexibly
accommodate predictors and response variables of different types.

It is also clear from our survey that researchers who wish to use LMEMs need
to be more attentive to how they specify random effects. Through this article, we
have argued for a design-driven approach to specifying random effects. This con-
trasts, for example, with the common use of stepwise approaches in the literature.
Although a stepwise approach might be justifiable in some circumstances—for
example, when analyzing a very large corpus with many different possible mod-
els and many observations to boost power—it is certainly not justifiable in the
case of a designed psychological experiment, where the possible sources of de-
pendency can be clearly identified in advance. If the field wishes to loosen the
standards for hypothesis testing, then it should do so across the board, not just for
LMEMs. Indeed, it is possible to use a mixed-model ANOVA to decide whether
or not a treatment-by-subject interaction or treatment-by-item interaction should
be included in the model, and then to use simpler models if warranted. The fact
that this approach has not emerged as a standard in the field might be taken to
indicate that researchers have generally preferred analyses with maximal (or close
to maximal) random effect structures.
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Insofar as we as a field continue to be primarily concerned with discover-
ing effects that generalize beyond specific experimental subjects and items, we
should insist that researchers use random slopes in mixed-effects model analyses
wherever they are justified by the design. Under this standard, random-intercepts
LMEMs are only justifiable in two primary cases: (1) when all factors are-subject
and between-items, and (2) in a within-subject/between-items design in which
there is only a single item in each cell of the design.7 In all other cases, random-
intercepts LMEMs are about the worst analysis one can perform: they are defi-
nitely worse than F1 × F2, and often even worse than F1 alone!

Although in our investigation we have only looked at a very simple one-factor
design with two levels and idealized data from a continuous response distribution,
we see no reason why our results would not generalize to more complex designs
and other types of data. First, the principles are the same in higher-order designs
as they are for simple one-factor designs: any main effect or interaction for which
there are multiple observations per subject or item can vary across these units,
and, if this dependency is not taken into account, the p-values will be biased
against the null hypothesis.8 Furthermore, LMEMs generalize straightforwardly
to other types of data such as categorical or count data through specification of
a distribution function (e.g. binomial, poisson) and a link function (e.g., logit,
probit). Because the underlying estimation algorithm is the same, we see little
reason to expect the performance of LMEMs to differ much in these scenarios,
although it is worth fully investigating this possibility. In contrast, we would
expect the performance of ANOVA-based approaches to degrade because they
assume that the response is normally distributed.

Producing generalizable results with LMEMs: Best practices
Our theoretical analyses and simulations lead us to the following set of rec-

ommended “best practices” for the use of LMEMs. We offer these not as the best

7Random-intercept models may also be appropriate in the analysis of visual-world eyetracking
data and other time-series data when observations have been “aggregated up” to the subject or
item level in order to minimize the impact of within-trial observational dependencies (Barr, 2008;
Mirman et al., 2008). Still, the soundness of using random-intercept models in such cases should
be further investigated, especially for higher order designs.

8To demonstrate this, we conducted Monte Carlo simulation of a 24-subject, 24-item 2×2
within/within experiment with main fixed effects, no fixed interaction, and random by-subject and
by-item interactions. When analyzed with random-intercept LMEMs, we found a Type I error rate
of .69; with maximal LMEMs the Type I error rate was .06. A complete report of these simulations
appears in the supplementary appendix.
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possible practices—as our understanding of these models is still evolving—but as
the best given our current level of understanding.

Identifying the maximal random effects structure
As we have emphasized throughout this paper, the same considerations come

into play when specifying random effects as when choosing from the menu of
traditional analyses. So the first question you should ask yourself when trying to
specify a maximal LMEM is: which factors are within-unit (subjects or items),
and which are between? If a factor is between subjects or items, then the random
intercept will do. Of course, the same principles apply for specifying by-item
random slopes as for specifying by-subject random slopes, so to simplify the ex-
position we will only talk about the by-subject slopes. If a factor is within-subject,
then chances are that you need a by-subject random slope for that effect. The only
exception to this rule is when you only have a single observation for each com-
bination of subject and treatment level. It may be the case that, due to missing
data, some of your subjects (or items) have only one or zero observations for one
or more treatment levels; still, one should at least try to estimate a random slope
for this factor.

The same principles apply to higher-order designs involving interactions. In
most cases, one should also have by-subject random slopes for any interactions
where all factors comprising the interaction are within-subject; if any one factor
involved in the interaction is between-subject, then the interaction cannot be esti-
mated, and no random slope is needed. The exception to this rule, again, is when
you have only one observation per subject per cell9. If some of the cells for some
of your subjects have only one or zero observations, you should still try to fit a
random slope.

Random effects for control predictors
One of the most compelling aspects of mixed-effects models is the ability to

include almost any control predictor—by which we mean a property of an exper-
imental trial which may affect the response variable but is not of theoretical inter-
est in a given analysis—desired by the researcher. In principle, including control
variables in an analysis can rule out potential confounds and increase statistical
power by reducing residual noise. Given the investigations in the present paper,
however, the question naturally arises: in order to guard against anti-conservative

9A cell is any unique combination of all the factors involved in the interaction; in a 2x2 design,
where both factors are within subject, there are four cells.
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inference about a predictor X of theoretical interest, do we need by-subject and
by-item random effects for all our control predictors C as well? Suppose, after all,
if there is no underlying fixed effect of C but there is a random effect of C—could
this create anti-conservative inference in the same way as omitting a random ef-
fect of X in the analysis could? To put this issue in perspective via an example,
Kuperman et al. (2010) include a total of eight main effects in an LME analysis of
fixation durations in Dutch reading; for the interpretation of each main effect, the
other seven may be thought of as serving as controls. Fitting eight random effects,
plus correlation terms, would require estimating 72 random effects parameters,
36 by-subject and 36 by item. One would likely need a huge dataset to be able
to estimate all the effects reliably (and one must also not be in any hurry to pub-
lish, for even with huge amounts of data such models can take extremely long to
converge).

To our knowledge, there is little guidance on this issue in the existing litera-
ture, and more thorough research is needed. Based on a limited amount of infor-
mal simulation, however (reported in the supplementary appendix), we propose
the working assumption that it is not essential for one to specify random effects
for control predictors to avoid anticonservative inference, as long as interactions
between the control predictors and the the factors of interest are not present in the
model (or justified by the data).

Coping with failures to converge
It is altogether possible that the maximal LMEM will not converge with the

full random-effects specification. In our experience, the likelihood that a model
will converge depends on two factors: (1) the extent to which random effects in
the model are large, and (2) the extent to which there are sufficient observations
to estimate the random effects. Generally, as the sizes of the subject and item
samples grow, the likelihood of convergence will increase. Of course, one does
not always have the luxury of using many subjects and items. And, although the
issue seems not to have been studied systematically, it is our impression that fitting
maximal LMEMs is less often successful for categorical data than for continuous
data.

It is fortunate that LMEMs will be more likely to converge when the ran-
dom effects are large, since this is exactly the situation where F1 × F2 is anti-
conservative. This points toward a possible practice of trying to fit a maximal
LMEM wherever possible, and resorting to F1 × F2 analyses if the model will not
converge and if ANOVA is appropriate for the design. It is important, however, to
resist the temptation to step back to random-intercepts models. When the maximal
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LMEM does not converge, the first step should be to check for possible misspec-
ifications or data problems that might account for the error. A common mistake
is to specify an unidentifiable model by including effects that cannot be estimated
from the data such as a by-item random slope for a between-item effect. It may
also help to use standard outlier removal methods and to center or sum-code the
predictors. Once data and model specification problems have been eliminated,
the next step is to seek out the next most complex model that does converge. We
recommend the following approach. When using a package such as lme4, it is
possible to inspect the random effects from the nonconverged model. One can
then identify the highest-order term whose variance is the smallest, remove that
term, and then re-fit the model. This process can be repeated until convergence is
achieved.10

However, a cautionary note may be in order here. A situation may arise where
the above strategy produces ‘theoretically undesirable’ models in which, for ex-
ample, a higher order term is dropped that might be essential for distinguishing
between two alternative hypotheses. We are not entirely sure how to proceed
in such cases, and clearly, the issue of non-convergence needs to be addressed
more fully in future research. A potential last resort in case of severe convergence
problems might be to drop the concept of crossed random effects altogether and
perform separate by-subject and by-item LMEMs, similar in logic to F1×F2, each
with appropriate maximal random effect structures, or possibly after aggregating
up to confound random slope variance with residual error, thus enabling the use
of random-intercepts LMEM, although the soundness of this approach should be
further investigated.

Computing p-values
There are a number of ways for computing p-values from LMEMs, none of

which is uncontroversially the best. Although Baayen et al. (2008) recommended
estimating them through Monte Carlo Markov Chain (MCMC) simulation, to our
knowledge this is not yet implemented for maximal LMEMs in easily accessible
software packages.11 Our simulations suggest that until a more general MCMC

10We evaluated the viability of this recommendation by correlating the random slope ranks
from the nonconverged within-subject/within-item LMEMs with the actual ranks from the relevant
generative models. The correlations obtained were reasonably high at r = .74 (N = 387) and
r = .83 (N = 192) for 12-item and 24-item experiments, respectively.

11MCMC simulations for random-slopes and more complex mixed-effects models can be run
with general-purpose graphical models software such as WinBUGS (Lunn et al., 2000) or JAGS
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solution arrives, we consider the next best approach for typical psycholinguistic
datasets—where the number of observations far outnumbers the number of model
parameters—the likelihood-ratio (LR) test. To perform such a test, one compares
a model containing the fixed effect of interest to a model that is identical in all
respects except the fixed effect in question. One should not also remove any ran-
dom effects associated with the fixed effect when making the comparison. In other
words, LR tests of a fixed effect with k levels should have only k − 1 degrees of
freedom (e.g., one degree of freedom for the dichotomous single-factor studies in
our simulations). We have seen cases where removing the fixed effect causes the
comparison model to fail to converge. Under these circumstances, one can alter
the comparison model following the procedures described above to attempt to get
it to converge, and once convergence is achieved, compare it to an identical model
including the fixed effect. Note that our results indicate that the concern voiced by
Pinheiro & Bates (2000) regarding the anti-conservativity of likelihood-ratio tests
to assess fixed effects in LMEMs is essentially unfounded, at least for datasets of
the typical size of a psycholinguistic study.

Reporting results
It is not only important for researchers to understand the importance of using

maximal LMEMs, but also for them to articulate their modeling efforts with suf-
ficient detail so that other researchers can understand and replicate the analysis.
In our informal survey of papers published in JML, we sometimes found nothing
more than a mere statement that researchers used “a mixed effects model with
random effects for subjects and items.” This could be anything from a random-
intercepts only to a maximal LMEM, and obviously, there is not enough infor-
mation given to assess the generalizability of the results. One needs to provide
sufficient information to the reader to be able to recreate the analyses. One way
of satisfying this requirement is to report variance-covariance matrix, which in-
cludes all the information about the random effects, including their estimates. This
is useful not only as a check on the random effects structure, but also for future
meta-analyses, etc. A simpler option is to mention that one attempted to use a
maximal LMEM and, as an added check, also state which factors had random
slopes associated with them. If a slope was needed but excluded to attain con-
vergence, this should also be stated, as well as the decision criteria for removing

(Plummer, 2003); in particular JAGS has a good interface to R called rjagswhich can be useful for
this purpose. This approach can be delicate and error-prone, however, and we do not recommend
it at this point as a general practice for the field.
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slopes. For example: “We used a maximal LMEM with by-subject random slopes
for factors X, Y, and by-item random slopes for factor X. Although required, the
maximal LMEM including a by-subject slope for the X-by-Y interaction did not
converge. Inspection of the random effects parameter estimates from the uncon-
verged model suggested that the X-by-Y interaction term was the highest-order
slope with the smallest variance, and so was dropped from the model.”

At a recent workshop on mixed-effects models, a prominent psycholinguist12

memorably compared encouraging psycholinguists to use linear mixed-effects
models to giving shotguns to toddlers. Might the field be better off without com-
plicated mixed-effects modeling, and the potential for misuse they bring? Al-
though we acknowledge this complexity and its attendant problems, we feel that
one of the reasons why researchers have been using mixed-effects models incor-
rectly is due to the misconception that they are something entirely new, a mis-
conception that has prevented us from seeing the continued applicability of their
previous knowledge about what a generalizable analysis requires. As we hope to
have shown, by and large, researchers already know most of what is needed to use
LMEMs appropriately. So long as we can continue to adhere to the standards that
are already implicit, we therefore should not deny ourselves access to this new ad-
dition to the statistical arsenal. After all, when our investigations involve stalking
a complex and elusive beast (whether the human mind or the feline palate), we
need the most powerful weapons at our disposal.
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