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Overfishing, pollution and other environmental factors have greatly reduced commercially valuable
stocks of fish. In a 2006 Science article, a group of ecologists and economists warned that the world
may run out of seafood from natural stocks if overfishing continues at current rates. In this paper, we
explore the interaction between a constant proportion harvest policy and recruitment dynamics. We
examine the discrete-time constant proportion harvest policy discussed in Ang et al. (2009) and then
expand the framework to include stock-recruitment functions that are compensatory and overcompen-

Keywords: satory, both with and without the Allee effect.

Allee effect We fi tant proportion policies (CPPs). CPPs have the potential to stabili I
Compensatory and overcompensatory e focus on constant proportion policies (CPPs). CPPs have the potential to stabilize complex overcom-
dynamics pensatory stock dynamics, with or without the Allee effect, provided the rates of harvest stay below a

threshold. If that threshold is exceeded, CPPs are known to result in the sudden collapse of a fish stock when
stock recruitment exhibits the Allee effect. In case studies, we analyze CPPs as they might be applied to Gulf
of Alaska Pacific halibut fishery and the Georges Bank Atlantic cod fishery based on harvest rates from 1975
to 2007. The best fit models suggest that, under high fishing mortalities, the halibut fishery is vulnerable to
sudden population collapse while the cod fishery is vulnerable to steady decline to zero. The models also
suggest that CPP with mean harvesting levels from the last 30 years can be effective at preventing collapse
in the halibut fishery, but these same policies would lead to steady decline to zero in the Atlantic cod fish-
ery. We observe that the likelihood of collapse in both fisheries increases with increased stochasticity (for
example, weather variability) as predicted by models of global climate change.

© 2011 Elsevier Inc. All rights reserved.

Sustainability

1. Introduction with and without the Allee effect (e.g. the Ricker and modified

Ricker models) [2-4,6,9-14,17-27,29-32]. We use the model

Fisheries throughout the world are in crisis [5,7,9,11,16,22,23,
28,31,32]. In a recent paper, Ang et al. examine the degree of
sub-optimality when fishery managers use the best constant pro-
portion policy (CPP) instead of the optimal variable proportion pol-
icy (VPP). Sub-optimality was measured relative to the maximized
discounted net revenue in a single-species, discrete-time, unstruc-
tured population model [1]. In their model, Ang et al. adopted a lo-
gistic escapement function. They identified the best constant
proportion policy and the best variable proportion policy for the
Pacific halibut fishery in Gulf of Alaska in Area 3A (see Fig. 1).

In this paper, we extend that framework to include discrete-
time fisheries that exhibit compensatory stock dynamics, with
and without the Allee effect (e.g. the Beverton-Holt and modified
Beverton-Holt models) and overcompensatory stock dynamics
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framework to assess performance of harvested fisheries that vary
in levels of compensation with and without depensation (Allee
effect) under constant harvest regimes. It is known that both CPPs
can stabilize complex behavior caused by overcompensatory
dynamics but they may result in a sudden collapse of the fish stock
when the Allee effect is present. In the absence of the Allee effect,
our models show that, as the harvest fraction increases, yield (har-
vest) first rises gradually to a maximum sustainable level and then
declines continuously to zero.

As case studies, we apply the theoretical model framework to
Gulf of Alaska Pacific halibut fishery data from the International
Pacific halibut Commission (IPHC) annual reports and Atlantic
cod fishery data from the North East Fisheries Science Center
(NEFSC) Reference Document [1,5,22]. The Gulf of Alaska Pacific
halibut fishery data is for Area 3A (see Fig. 1) and that of the
Atlantic cod fishery is for the Georges Bank (see Fig. 2). Our analy-
sis indicate that under CPP, mean harvest rates of the last 30 years
are effective at preventing collapse in the halibut fishery but
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endanger the cod fishery. Stochastic versions of the model indicate
that the likelihood of the collapse of both halibut and cod fisheries
increases with increased stochasticity in the fish environment.

The rest of the paper is organized as follows. In Section 2, we
introduce the general model for regulation with a CPP and we de-
fine compensatory, overcompensatory and depensatory (Allee ef-
fect) recruitment dynamics. In Section 3 we explore the
interactions between recruitment dynamics and CPP. Section 4
examines the Gulf of Alaska halibut fishery, Section 5 analyzes
the Georges Bank cod fishery, and concluding remarks are pre-
sented in Section 6.

2. Harvested fisheries population model

In this section, we introduce the single species discrete-time
fish stock mathematical model for regulation with a CPP. At the
start of year t, we let x(t) denote the fish stock (biomass) and y(t)
the total allowable catch (TAC). The total allowable catch is the
fraction, 0 < a < 1, of the estimated stock. That is,

y(t) = ax(t). (1)

Since the harvesting fraction is constant a €(0,1), we refer to
y(t) = ax(t) as the constant proportion policy (CPP). The CPP is trans-
parent, easily implemented and historically acceptable to fishers
[1].

At the start of year t, the escapement is defined as
s(t) = x(t) = y(t) = (1 — a)x(t). (2)

We assume that reproduction occurs halfway through the season
and is characterized by the recruitment function

fis(6)) = s(t)g(s(t)), 3)

where the per-capita growth function, g: [0, co) — [0,00), is as-
sumed to be a continuously differentiable function.

The dynamics of the harvested stock are then described by the
deterministic, discrete-time, unstructured population model

X(t+1) = (1 —m)s(t) +f(s(t)), (4)

where me€(0,1) is the (constant) natural mortality rate. The
assumption about the timing of recruitment allows compression
of the age-structure of the model so that one can work with a min-
imum number of equations. There are two terms for the population
dynamics: survival of mature fish (1 — m)s(t), and recruits to the
population, f(s(t)).

Using Eqgs. (2) and (3), Model (4) becomes the exploited fish
population model,

X(t+1) = Gx(t) = (1 - a)x(6)(1 —m+g((1 - a)x(t))). ()

The set of iterates of the function G is equivalent to the set of stock
sequences generated by Model (5). Note that when the per capita
growth rate is the logistic model and

sxe) =r(1-57).

then Model (5) reduces to that of Ang et al. [1].

The fish population is said to be persistent if lim ,_,..G'(x) > O for
all x > 0. Moreover, the population is said to be uniformly persistent
when there exists a constant # > 0 such that lim,_,..G'(x) > # for all
x>0.

In Section 3 we analyze the behavior of Model (5) under CPP, for
stock populations exhibiting compensatory, overcompensatory
and/or depensatory (Allee effect) recruitment dynamics. First, we
define these terms in Section 2.1.

2.1. Compensatory, overcompensatory and depensatory vital rates

The per-capita growth rate, g, is said to be compensatory if for all
s=0
dg(s)
s <0
df(s)
ds
and

>0

limf(s) =n > 0.
$—00
When g is compensatory the decline in the per-capita growth rate
with density exactly compensates for the increase in density so that
the net growth rate is asymptotically constant [3].

For example, when f is the classic monotone Beverton-Holt
stock recruitment model,

os
S)=—— 6

1) =17 55 (6)
where the intrinsic growth rate, «, and the scaling parameter, 3, are
positive constants, then g is compensatory. If o > 1, then f(0)> 1,
the Beverton-Holt model has a globally attracting equilibrium point
atx,, = % € (0, 00) and all positive initial conditions converge to x.,
monotonically under f iterations.

The per-capita growth rate, g, is said to be overcompensatoryif
limf(s) = 0.
§—00
When g is overcompensatory an increase in s is more than compen-
sated for by a decrease in g(s) at high densities [3].

For example, when f is the classic Ricker stock recruitment
model,

f(s) = ase™”, (7)

where the intrinsic growth rate, «, and the scaling parameter j are
positive constants, then g is overcompensatory [29-32]. If o> 1,
then f(0) > 1 and the one-humped Ricker model has a positive equi-
librium point at x,, = “;—f € (0,00) . Depending on the model param-
eters, the Ricker model can exhibit oscillatory and chaotic
dynamics.

When

dg(s)
ds

for some s > 0, then the per-capita growth rate g is said to exhibit
depensation or the Allee effect [3].The Allee effect describes a positive
relation between population density and the per capita growth rate
of species. In the presence of the Allee effect, there is a decrease in
population growth rate at low population sizes, and the effect usu-
ally saturates or disappears as populations get larger. Presence of
the Allee effect in populations may be due to any number of causes.
In some species, reproduction or finding a mate is increasingly dif-
ficult as the population density decreases [3-6,11,14,16,19,25].

For example, when f'is either the modified Beverton-Holt stock
recruitment model,

>0

os?
fis)= 11 ps2 (8)
or the modified Ricker stock recruitment model,
f(s) = os’e -, (9)

g is depensatory.

Scramble and contest competition are two extreme forms of
intraspecific competition for resources [21]. Systems that exhibit
scramble competition try to support all individuals including those
who are non-reproductive. In scramble competition, the resources
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are equally divided among individuals, so that, beyond a threshold
density, none can get enough of a share of the resource to survive
and reproduce. Anadromous brown trout, Salmo trutta, exhibits
scramble competition when it strives to secure broadcast food
items by being better at searching and handling the items [23].
Models that are subject to overcompensatory dynamics, such as
the Ricker model, provide examples of systems where new recruits
experience scramble competition. In contest competition, some
individuals get a big enough share of the resource to survive and
reproduce at the expense of the rest. Anadromous brown trout
exhibits contest competition when it interferes with other individ-
uals for food items or for a territory [23]. Models that are subject to
compensatory dynamics, such as the Beverton-Holt model (a spe-
cial case of Smith-Slatkin model), provide examples of systems
where new recruits experience contest competition.

3. Recruitment functions and stock dynamics

In this section, we study Model (5) where the stock population
exhibits compensatory or overcompensatory dynamics with or
without the Allee effect. We see that the behavior of discrete-time
CPP regulated fishery systems with compensatory dynamics ech-
oes the well known behavior of their continuous-time counterparts
with constant proportion harvesting (see [4]). When there is no Al-
lee effect, a gradual increase in harvesting fraction, a, leads to a
gradual change in stock population and the corresponding catch.
But when the stock system is subject to the Allee effect, then a
gradual increase in the harvesting rate can lead to a sudden col-
lapse of the fishery through an underlying fold bifurcation in the
dynamics. In contrast, discrete-time CPP regulated fishery systems
with overcompensatory dynamics in the presence of the Allee ef-
fect exhibit period-doubling bifurcations and chaotic dynamics
combined with a similar fold bifurcation underlying fishery col-
lapse. In Sections 3.1, 3.2, 3.3, 3.4 we describe these dynamics in
more detail.

3.1. Compensatory stock dynamics
To study the effects of CPP and compensatory stock dynamics,

we assume that in Model (5) the fish population dynamics are
compensatory. That is, we assume that for all x > 0

dg(x)
=27 <0.
dx <
Whenever a < a, = % > 0,G'(0) > 1 and we assume that G has

a globally attracting positive fixed point, x,, and all positive popu-

lation sizes converge to x., monotonically under G iterations.
Since g is a decreasing function, the maximum value of the

effective per capita growth, % is (1 — a)(1 — m +g(0)). Thus, if

» Tx
a> e

then @ =(1-a)(1-m+g((1—-a)x(t))) <1 and the population
size approaches zero for any initial biomass. That is, under CPP
the model has a critical harvesting rate, a.,, with the property that
any larger harvesting rate will lead to the depletion of the exploited
stock. However, when a < a., then the stock persists on a globally
attracting positive steady state biomass,

1 L (1-1-mA-a)
= (e (10
and the corresponding positive steady state TAC

. a 1f(1-(1-m)(1-aq)
O e T a

Thus, G exhibits compensatory dynamics whenever the harvesting
rate is below the critical value a.. Next, we use the Beverton-Holt

model (compensatory dynamics) to illustrate the continuous rela-
tionship between steady state TAC and harvest rates.

Example 1. When we adopt the Beverton-Holt form for the stock
recruitment function, then

qm:“‘”yofm+Tiﬁ%3ﬁ)

and

_o—m

T1-m4oa

The stock goes extinct whenever a>a,. When a<ag then
G'(0)>1,0<G'(x,) <1, G'(x)>0 and G"(x) <0 for all x> 0. So, the
stock persists at the globally attracting steady state biomass,

1 <(17(1)(0(+]*m)7]
pA-a\ 1-(1-a)1-m) )

and the corresponding steady state TAC is

. a (1-a)(e+1-—m)—1
“‘%mfm<1fafmafm>>

For example, if we let
p=1, m=0223 and ae(0,1),

then a. = 0.735. Fig. 3 shows that the steady state biomass, x.., de-
clines gradually to zero with increasing levels of harvesting. How-
ever, in Fig. 4 the corresponding steady state TAC first increases
to a maximum before it declines continuously to zero at a = a., so
that the maximum sustainable TAC is achieved at an intermediate
value of a.

A CPP regulated fishery that exhibits compensatory dynamics
and no Allee effects leads to continuous relationships between
the steady state biomass, catch and harvest rates (see Figs. 3 and
4). Such continuous relationships are known to be useful in actual
fisheries as they make it relatively easy to recognize when the fish-
ery is being overharvested, and to remedy the situation by reduc-
ing the harvest rate to that yielding maximum sustainable TAC
levels [4].

Acr

Xoo =

o=3,

3.2. Allee effect and compensatory stock dynamics

To include the Allee effect in Model (5), we assume that
whenever

(max,g(x)) —m

O<a<tr= 1 —m+ (max,g(x))’

then the effective density-dependent per-capita growth rate,

steady state

Fig. 3. The steady state biomass decreases continuously to zero with increasing
levels of harvesting.
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1.0 1

TAC

0.5

Fig. 4. TAC first increases to a maximum before it declines to zero with increasing
values of a.

CO0_ (-1 - m g1 - a),

increases continuously from positive values smaller than 1 to a
maximum value greater than 1 and then decreases continuously
to positive values smaller than 1 as the stock size is further
increased.

By our assumptions, when a < a then G has two positive fixed
points, the Allee threshold x* and a positive steady state x., > x4 .
Allinitial population sizes in the interval [0, x% ) converge to {0} un-
der G iterations. Furthermore, we assume that all positive initial
population sizes greater than x4 converge monotonically to the
attracting steady state biomass x... Our assumptions guarantee a
strong Allee effect and compensatory dynamics in Model (5) when-
ever the harvesting rate is below the critical value a,.

In the presence of the Allee effect, whenever the harvesting rate
a > dg, then
@ <1

X
for all x > 0 and the steady state biomass and TAC both collapse to
zero. However, whenever the harvesting rate a < a., then there is
persistence of the fish population at high initial stock levels.

Example 2. To study the relationship between the steady state
biomass, TAC and harvest rates in the presence of the Allee effect,
we adopt the modified Beverton-Holt form for the stock recruit-
ment function and let

G = (1—a[1-me— 210X )
1+ (1 —a)x?
Then the critical harvesting rate is

0 - o—2my/B
T a4+2(1—-m)p’

the Allee threshold is

o1 —a) —Jo2(1 - — 41 - (1 —a)(1 — m))®
o 21 - a)(1 - (1 —a)(1 —m)) ’

the positive steady state biomass is

21— a)+ /o2 (1 — ) —4p(1 — (1 — a)(1 —m))?
oo = 2p(1-a)(1 - (1 -a)(1 —m)) 7

and the corresponding steady state TAC is

a(oc(l —a)+ \/a2(1 —a?—4p1—(1-a)(1 - m))2>
21 —a)(1 - (1 —a)(1 —m)) '

When a > a., then the stock size and TAC decline to zero. Further-
more, when a < a. the stock and TAC collapse to zero for any initial
stock size smaller than x? . However, when 0 < a < a,, then for initial
population sizes greater than x4 the stock persists on the steady
state biomass x,, and corresponding TAC y = ax.. > 0.

yO(/:

If 0 <a <ag, then G has two positive fixed points, ¥4 and x... If
a=da, then x4 =x,, and G has only one positive fixed point. G
has no positive fixed points whenever a > a.. That is, in the pres-
ence of the Allee effect and compensatory stock dynamics, the
steady state biomass and corresponding TAC exhibit a discontinu-
ity at a = a.. The positive steady state and corresponding steady
state TAC suddenly collapse to zero as a exceeds a.. We summarize
this in the following result.

Theorem 1.

_ 1 B (1 —a)x
G(x) =G(x,a)=(1—a)x (1 m +—1 e a)2x2>

exhibits a fold bifurcation at

0 o —2my/p
Ta+2(1-myE

Proof. Let a — —>™" _ Then

a+2(1-m)/p
_a+2(1-m)V/p
X17T7
G<oc+2(l—m)\/[_i o—2my/p )_a+2(1—m)\/ﬁ
2p "a+2(1-m)/B/) 28 ’
and
o fa+2(1-m)/B  a-2myB \
p= () <

Now, apply the Fold Bifurcation Theorem to obtain the result
[15,31].

Sudden collapse of fishery systems due to a small increase in
exploitation rates, as predicted by Theorem 1, are also known to
occur in continuous-time depensation models as well as discrete-
time models with non-overlapping generations [31]. To illustrate
this in a specific example of Model (11), we use the same
parameter values as in Example 1.

p=1, m=0223 and ae(0,1).

With this choice of parameters, a.. = 0.561. As predicted by Theo-
rem 1, Figs. 5 and 6 show the sudden decline in the steady state bio-
mass and corresponding TAC as a exceeds ag;.

In the presence of the Allee effect and compensatory stock
dynamics, a CPP regulated fishery exhibits a discontinuity in the
steady state biomass and corresponding steady state TAC at a = d;.
This sudden jump to zero in the biomass and corresponding steady
state TAC gives little warning of the fishery collapse as harvesting
levels gradually increase, and so is relevant to issues of species
extinction, conservation, fishery management and stock rehabili-
tation [4].

o =3,

3.3. Overcompensatory stock dynamics

To study the effects of CPP and overcompensatory stock dynam-
ics in the absence of the Allee effect, we assume that G is a
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steady state

Fig. 5. The steady state biomass suddenly jumps to zero as a exceeds dc.

TAC

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a

Fig. 6. The TAC suddenly jumps to zero as a exceeds a.

one-humped map and the per-capita growth rate in Model (5), g, is

overcompensatory. Furthermore, whenever 0 < a < a; = 155",
we assume that G has a unique positive fixed point, x... That is,

we assume that for all x>0

dg(x)
“dx <0

and

limf(x) =

X—00
whenever
0<a<ag.

Consequently, some positive population sizes “overshoot” x., under
G iterations. That is, G exhibits overcompensatory dynamics when
the harvesting rate is below the critical value a,.

By the monotonicity assumption, if a > a, = li‘go()o’)i”m > 0 then
the population size approaches zero for any initial population size.
When a < a., zero is a repelling fixed point and the positive closed
interval [c,d] is G — invariant, where ¢ = min,{G[x.., max,(G[0,x..])]}
and d = max,{G[0,x..]} Thus, the stock population persists when
O<a<ae.

Unstructured population models with overcompensatory
dynamics can exhibit a period-doubling bifurcation route to chaos.
In these models, it is possible for the stock to persist on a cyclic or
chaotic attractor. Next, we use the Ricker model (overcompensa-
tory dynamics) to illustrate the relationships between the cyclic
attractors, TAC and harvest rates.

Example 3. Sockeye salmon (Oncorhynchus nerka) stocks of British
Columbia provide one of the clearest examples of cycling fish
populations (overcompensatory dynamics) [19,20]. In Myers et al.
[19], obtained that the Ricker model accounts for the observed
sockeye cycles. When we adopt the Ricker form for the stock
recruitment function, then

G(x) = (1 —a)x(1 — m + oe #1-9%)

and

g, %—m

T 1+o-—m’

The stock goes extinct when a > a. whereas it persists when a < a,.
Moreover, when

1—(1—a)(1—m)<“
1-a

LA=-00-ad-m)

1-a

=)
eram,

then the steady state biomass is

X — 1 In oa(l—a)
T opl-a) \1-(1-a)(1-m)
and the corresponding steady state TAC is

. a a(l—a)
Vo= pi—ay (1 T —a —m))'

However, when the intrinsic growth rate o exceeds
(-0-a/d-m) pr=r=ir=m, then the steady state biomass and TAC under-
g0 perlod doubling blfurcatlon To illustrate this in a specific exam-

ple, we let
a=0.3,

m=0.135, f=1 and o=e" wherere (4,8).

Fig. 7 shows that with this choice of parameters, when r € (4,4.494)
then Model (5) with the Ricker stock recruitment exhibits a steady
state positive fixed point biomass and a positive fixed point TAC. As
r is increased past 4.494, the fixed point biomass and fixed point
TAC exhibit a period-doubling bifurcation route to chaos. Thus,
when r > 4.94, the example illustrates cyclic and chaotic attractors
for the steady state biomass and corresponding TAC in Model (5)
with CPP and overcompensatory stock dynamics.

To investigate the relationship between the cyclic attractors,
TAC and harvest rates, we let

p=1, a=e¢*, m=0135 and ac(03,1).

With this choice of parameters, a.=0.982 and Fig. 8 shows the
gradual decline in the stock biomass and TAC as a exceeds ac. In
addition, Fig. 8 shows a period-doubling bifurcation followed by a

Steady state biomass

4 T 8

Fig. 7. Steady state biomass (black) and TAC (red) undergo period-doubling
bifurcations route chaos as r is varied between 4 and 8. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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period-doubling reversal (bubble bifurcation) in both the stock bio-
mass and TAC as the harvesting rate is varied between 0.3 and 0.982
[27].

As in Figs. 3 and 4, Fig. 8 shows that a CPP regulated fishery that
exhibits overcompensatory dynamics and no Allee effect leads to
continuous relationships between the steady state biomass, catch
and harvest rates.

3.4. Allee effect and overcompensatory stock dynamics

To model overcompensatory dynamics in the presence of the
Allee effect, we assume that G is a one-humped map and whenever

(max,g(x)) —m

0<a<a":1—m+(maxxg(x))7

then the effective density-dependent per capita growth rate,

@: (1—a)(1—m+g((1-a)x)),

increases continuously from positive values smaller than 1 to a
maximum value greater than 1 and then decreases continuously
to positive values smaller than 1 as the stock size is further in-
creased. Furthermore, we assume that the unique critical point of
G is not in the basin of attraction of the origin and

fimjio) =0

By our assumptions, when a < a., then G has two positive fixed
points, the Allee threshold x* and a positive steady state x., > x4 .
All initial population sizes in the interval [0,x4) converge to {0}
under G iterations. In addition, when a < a., we assume that some
positive population sizes “overshoot” x_, under G iterations and the
stock persists for some initial population sizes in the open interval
(x4, 00). G is a one-humped map implies G can exhibit cyclic and
chaotic attractors in the presence of the Allee effect. That is,
depending on model parameters, positive initial population sizes
greater than x4 may converge to an attractor that is fixed, cyclic
or chaotic whenever a<ac. The stock collapses and the corre-
sponding TAC decline to zero whenever the harvesting rate a > a.,
whereas for high initial population sizes there is persistence on
fixed, cyclic or chaotic attractor when a < a.,. That is, our assump-
tions guarantee the Allee effect and overcompensatory dynamics in
Model (5) whenever the harvesting rate is below the critical value
Acr.

Example 4. To study the relationship between the attractors, TAC
and harvest rates in the presence of the Allee effect, we adopt the
modified Ricker form for the stock recruitment function and let

Gx) = (1 —a)x(1 —m+ o(1 — a)xe P1-0%),

25

steady state biomass

0.3 a .1

Fig. 8. Steady state biomass (black) and TAC (red) undergo period-doubling and
period-doubling reversal bifurcations before declining smoothly to zero as a is
varied between 0.3 and 1. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Then the critical harvesting rate is
o —mfe

Y= “mpeto’

whenever the unique positive critical point of G is not in the basin of
attraction of the origin. If 0 < a < a,, then G has two positive fixed
points, x4 and x... Typically, the stock persists on a cyclic or chaotic
attractor when 0 < a < a. If a = a., then A = x., and G has only one
positive fixed point. G has no positive fixed points whenever a > a,.
That is, independent of initial stock sizes, the stock collapses when
a > a. Therefore, in the presence of the Allee effect and overcom-
pensatory stock dynamics, the stock size and corresponding TAC ex-
hibit a discontinuity at a = a.. The stock size and TAC suddenly
collapse to zero as a exceeds a.. We summarize this in the follow-
ing result, where for simplicity we let g=1.

Theorem 2.
G(x) =G(x,a) = (1 —a)x(1 —m+ o1 — a)xe~179%)
exhibits the fold bifurcation at

o —me

S A meta

Proof. The proof is similar to that of Theorem 1. As in Theorem 1,
let a., = Oj;—me Then

m)e+o”

1 1
G<1 - acﬁa“) 1

and

1
M:Gx(_l_—acr,acr> = 1

Now, apply the Fold Bifurcation Theorem to obtain the result
[15,31].

To use specific model parameters to illustrate the predicted
sudden collapse in a CPP regulated fishery that exhibits overcom-
pensatory dynamics in the presence of the Allee mechanism
(Theorem 2), we use the same parameter values as in Example 3.
o= e

p=1,

With this choice of parameters, a. =0.952. As predicted by
Theorem 2, Fig. 9 shows the sudden decline in the stock population
and TAC as a exceeds a.

When an unstructured exploited stock model has the Allee ef-
fect, its stock and TAC curves are strikingly different from that of
the corresponding model without the depensation effect. In the
presence of compensatory and overcompensatory stock dynamics,
the Allee mechanism generates a discontinuity at a = a,,, with the
stock size and TAC suddenly collapsing to zero through a fold bifur-
cation as a approaches the critical value.

In the one-humped modified Ricker model with an Allee effect,
if an initial stock size, xq, is smaller than the unique positive critical
point, X, and the constant harvesting rate a > a = (EtL-0%- > 0,
then the small initial stock size leads to a collapse of the fishery.
We summarize this in the following result.

m=0.135 and ae(0,1).

Corollary 1. Let

Gx)=1—-ax(1 —m+g((1—a)x),

have a unique positive critical point X, where
g((1 —a)x) = a(1 — a)xe F1-ox,

If
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Fig. 9. The stock size and corresponding TAC suddenly collapse to zero as a exceeds
Acr.

0 < xg < Xer
and

_ g((1—a)x)—m
T T g —am)

>0,
then lim,_,..G'(xo) = 0 and the stock collapses to zero.

Proof. Since a > a = {£{-0%0 > 0, we have (1—-a)(1-m+g
((1 —a)xo) = 1. Using the fact that g is strictly increasing on
[0,x) and 0 < (1 —a)xo < (1 —a)xo < X, we obtain g((1 — a)xo)

< g((1 —a)xo). Hence,
1-a)(1-—m+g((1—-a)x) <(1—-a)(1-m+g((1—-a)xy))=1.

When the harvesting rate is a > a and the initial positive stock size
is xg, we have

G(xo) = (1 —a)xo(1 —m+g((1 - a)xo) < Xp < X

Furthermore, (1 — a)G(xg) < (1 — a)xg < X, imply that g((1 — a)G(xo))
<g((1 — a)x) and G?(xo) < G(xo) < Xo. Proceeding exactly as above,
we obtain that the sequence {G'(xo)};>o decreases to zero.

4. Gulf of Alaska Pacific halibut

The Alaskan Halibut fishery, one of the few success stories in the
book on USA fishery management, is currently regulated using
a TAC within a system of individual transferable quotas. Ang
et al. [1] extracted data from the International Pacific halibut
Commission (IPHC) annual reports on the Pacific halibut estimated
biomass x(t) and harvest y(t) for the years 1975-2007 in Area 3A of
the Gulf of Alaska (see Fig. 1) [5]. The data is given in Table 1.

In Fig. 10, we use the data in Table 1 and a(t) = f% to obtain a
graphical view of how the harvest rate a(t) and stock biomass
x(t) change with time.

Next, for each model form g(x) of interest, we use the Akaike
Information Criterion (AIC) for the goodness-of-fit. That is, for each
g(x), we use y>-fitting to find the point estimates of parameter val-
ues and then compute the corresponding AIC value to measure the
goodness-of-fit. We assume that the underlying errors are nor-
mally distributed and independent. Consequently, the likelihood
function for each model form g(x) is given by

Table 1
Pacific halibut biomass (x10° pounds) and Harvest (x10° pounds) in Gulf of Alaska.
Year X Y, E; Year X, Y, E,
1975 90.989 10.6 192 1992 190.776 26.782 69.093
1976 89.339 11.044 154.848 1993 188.782 22.738 58.728
1977 89.484 8.641 141.639 1994 192.548 24.844 72.776
1978 96.987 10.295 132.051 1995 196.91 18.342 44.375
1979 106.831 11.335 131.86 1996 209.634 19.696 42.008
1980 116.954 11966 101.441 1997 219.196 24.628 53.93
1981 129.693 14.225 100.211 1998 223962 25.703 57.317
1982 142.881 13.53 79.529 1999 223.847 25.292 58.192
1983 159.637 14.112 58.629 2000 216.138 19.288 43.634
1984 173.717 19.971 37.729 2001 208.928 21.541 46.055
1985 184.207 20.852 40.54 2002 195.243 23.131 45.897
1986 194.695 32.79 66.398 2003 188.546 22.748 46.858
1987 194.991 31.316 65.258 2004 171.794 25.168 52.041
1988 198.127 37.862 78.25 2005 143.105 26.033 58.543
1989 193.12 33.734 77341 2006 125.32 25.714 63.921
1990 189.684 28.848 84.873 2007 136.344 26.2 64.024
1991 189.582 22.926 75.455 2008 - - -
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Fig. 10. The halibut harvest rate a(t) (dashed curve) and the halibut observed
biomass x(t) (solid curve) versus time t in years.

2007 1 1
L= H (2716?)

t=1976
2007 . . 2
< exp ( $% e+ ) =501 m +g(60) )
t=1976 t

Therefore,

1 >%1 X XKD s -m+gs))’ _ - 7

2 2 )
27107 2 45 o? 2

1nL:1n<

where C is a constant that is independent of the choice of model
form, and

. 20207 X+ s —m 860N
’ t=1976 Jt

For y2-fitting, we seek the values of the model parameters that

2
Maximize InL=C - %,

subject to s(t) = x(t) —y(t) and m=0.15.

Furthermore, we assume that the variance in the observed data is
directly proportional to the stock size. That is, o, = cx(t) where c is
a proportionality constant. Then the maximization process is equiv-
alent to the following:
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Table 2
Parameter estimates for the logistic, Beverton-Holt and Ricker models fit to stock (x)
and harvest rate (a) data for the Alaskan halibut Using AIC.

Model g(s) Parameters y?
1. Beverton-Holt fevs o =0.4455, f=3.240 x 1073 0.1203
2. Ricker oe s =0.4273,  =2.343 x 10> 0.1197
3. Modified Beverton- % o=7.474 x 1073, 0.1158
Holt p=1.180 x 104
4. Modified Ricker ase”  %=9.504x 1073, 0.1152
p=1.013 x 1072
5. Logistic r(1-%) r=04145K=5516 0.1191
Prediction by modified Ricker model
—-—-a=01277
250+ — —a=0.16 ]
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Fig. 11. Modified Ricker model predictions of halibut stock size (in millions of
pounds) after 2007 at the constant harvest values a=0.1277, 0.16, 0.17 and

a(t)=0.192, where «=0.0102 and B=0.0104 and initial population size
x(0) = x(2007).
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subject to s(t) = x(t) —y(t) and m =0.15.

)

Consequently,
AIC =2k — 21InL = 2k — 2C + 2,

where k =2 is the number of parameters in each model. Since the
same data points are used for each model fit,

AlC,, = 22,

modulo a constant. By the y2-fitting, we obtain that the modified
Ricker model has lowest AIC score (see Table 2). That is, the modi-
fied Ricker model “best” fits the halibut data with o = 9.504 x 1073,
B=1.013 x 1072 and c?)? = 0.1152. These values imply a no-harvest
steady state of 286.0 million pounds. This value might be compared
to that of Ang et al. [1], who found a carrying capacity of 309 million
pounds in 2008.

4.1. Sustainability of Pacific halibut fishery

Using the AIC goodness-of-fit to the standard and modified
Beverton-Holt and Ricker models, we obtain that the two models
that “best” fit the halibut data are the modified Ricker and the
modified Beverton-Holt models. This suggests that halibut popula-
tion dynamics exhibit the Allee effect, and so the halibut fishery is
susceptible to sudden collapse under CPP harvesting strategy at
high levels, as shown in Sections 3. In this section, we use the mod-
ified Ricker model with point estimates of the parameters
2 =9.504 x 1073 and g =1.013 x 102 from Table 2 to predict the
long-term population dynamics of the Pacific halibut under differ-
ent harvesting regimes. In this case, using the modified Ricker
model we obtain that a. =0.1633. That is, the model predicts
extinction of the Pacific halibut whenever the harvest rate is higher
than ac.

If the harvest rate is kept constant at the 2007 harvest rate of
a=0.192 > a., the model predicts halibut extinction by 2050
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Fig. 12. Stochastic modified Ricker model predictions of halibut stock size (in millions of pounds) in 2100 at the constant harvest value a = 0.16, for ¢ € {0.1,0.2,0.3,0.4} where

%=9.504 x 103 and f=1.013 x 102
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(see Fig. 11). To make a model prediction under the recent constant
mean harvesting rate, we assume that a;eqn, = 0.1277, where apeqn
is the mean of the harvest rates from 1976 to 2007 (see Table 1 and
Fig. 11). That is, we assume that the TAC, y(t), is directly propor-
tional to the stock size x(t). The modified Ricker model with these
parameters predicts persistence of the Pacific halibut with initial
population size x(0)=x(2007)=136.344 > x.. = 98.72. However,
when the constant harvest rate is changed from a=0.1277 to
a=0.17, an increase of 48.8%, then the Pacific halibut population
collapses by 2085 (see Fig. 11).

Our analysis suggests that a CPP with mean harvesting levels of
the last 30 years are sustainable in the halibut fishery. However, it
is important to note that our analysis also indicates that a CPP at
maximum recent levels, or at any harvesting level above
a.=0.1633, would lead to collapse of the halibut population.

We now explore the effects of uncertainty and environmental
variation on the halibut fishery. We show that under increasing
uncertainty, such as the more extreme weather variations pre-
dicted by models of global climate change, the otherwise well
managed halibut fishery is vulnerable to sudden collapse.

A theoretical approach to understanding stock persistence un-
der uncertainty is to include stochasticity in per-capita growth rate
of the population. Consequently, we consider the stochastic modi-
fied Ricker model

x(t+1) =1 -a)x()(1—m+EE)ou(1 — a)x(t)e PI-ax®) (12)
where £(t) is a random variable describing the environmental state.
That is, in Model (12) the stochastic per-capita growth rate is
E)a(1 — a)x(t)eP1-ax® For simplicity, we assume that £(t) has
uniform distribution on (1 — 6,1 +6). That is, £(t) has mean-pre-
serving spread; E(&(t)) = 1 and Var(&(t)) = % Model (12), a stochas-
tic model extension, reduces to the deterministic modified Ricker
model when 6 = 0 and Var(&(t)) = 0. Ellner [8], Benaim and Shreiber
[2] and others have studied stochastic discrete-time population
models in the absence of the Allee mechanism.

Next, we impose a constant harvesting policy and let a = 0.16 so
that the deterministic modified Ricker model with 5=0
(Var(&(t)) = 0), x=9.504 x 10~ and = 1.013 x 102 predicts per-
sistence of halibut at a steady state halibut biomass of 137.7 x 10°
pounds (see Fig. 12). To link the variance to the probability of per-
sistence under many realizations, we keep all the parameters con-
stant at their current values except the variance parameter 6. For
small values of §, the stochastic model predicts persistence of hal-
ibut with probability one in 2100. Fig. 12 shows that, for small val-
ues of the variance, many realizations lead to a “bell curve” shape
distribution centered around the halibut biomass of 137.7 x 10°
pounds. However, the probability of halibut persistence in 2100
decreases with increasing values of § (see Fig. 12). When the vari-
ance is large enough, halibut goes extinct by 2100 with high prob-
ability, while the corresponding deterministic model predicts
halibut persistence in 2100 (see Fig. 12).

5. Georges Bank Atlantic cod

Unlike the Alaskan halibut, Georges Bank Atlantic cod stock is
overfished. Using the North East Fisheries Science Center (NEFSC)
Stock Assessment Report of 2009 [22], we extracted data on the
Atlantic cod estimated biomass x(t) and harvest rate a (or h in
Table 3) for the years 1978-2008 in the Georges Bank. The data
is given in Table 3.

As in Section 4, we use the Akaike Information Criterion (AIC)
for the goodness-of-fit. That is, we seek the values of the model
parameters that fit the observed values of x(t+ 1) in Table 3 and
the predicted values given by s(t)(1 —m+g(s(t))), where
s(t)=x(t) — y(t) and m=0.20. The NEFSC uses m=0.20 as the

Table 3

Atlantic cod biomass (in metric tons) and harvest rate in Georges Bank.
Year X he Year X h,
1978 72,148 0.18847 1994 21,980 0.282701
1979 73,793 0.149741 1995 17,463 0.199275
1980 74,082 0.219209 1996 18,057 0,18781
1981 92,912 0.176781 1997 22,681 0.193574
1982 82,323 0.282033 1998 20,196 0.189526
1983 59,073 0.34528 1999 25,776 0.170108
1984 59,920 0.206545 2000 23,796 0.156601
1985 48,789 0.338185 2001 19,240 0.281787
1986 70,638 0.147236 2002 16,495 0.252869
1987 67,462 0.19757 2003 12,167 0.255417
1988 68,702 0.231541 2004 21,104 0.081034
1989 61,191 0.208597 2005 18,871 0.0873972
1990 49,599 0.335648 2006 21,241 0.0819517
1991 46,266 0.295344 2007 22,962 0.105181
1992 34,877 0.331848 2008 21,848 unknown
1993 28,827 0.350394 2009 - -

current “working value” of the natural mortality of Atlantic cod.
We use the values of a given in Table 3.

As in Table 2, we summarize in Table 4 the estimates of the
parameter values that fit the standard and modified forms of
the Beverton-Holt and Ricker models. From Table 4, in contrast
to that the halibut data, the two models that “best” fit the cod data
are the logistic and Ricker models with no Allee effect, suggesting
that unlike Pacific halibut fishery, the Atlantic cod fishery is not
susceptible to sudden collapse under CPP harvesting policy. The

Table 4
Parameter estimates for the logistics, Beverton-Holt and Ricker models fit to stock (x)
and harvest rate (a) data for Georges Bank Cod.

Model g(s) Parameters Ay?
1. Beverton-Holt T% 2=0.3949and f=2.179 x 10°¢  1.00362
2. Ricker oe s o =0.3940 and B 1.00360
=2.014 x 107
3. Modified ﬁ o =2.860 x 107° and 1.06790
Beverton-Holt p=1.141x10"°
4. Modified Ricker ase s o=3.597 x 107> and 1.0594
£=3.096 x 106
5. Logistic r(] — %) r=0.5999 and K=170014 1.00356
x 10" Prediction by Ricker model
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Fig. 13. The Ricker model predictions of cod stock size (in metric tons) after 2007 at
the harvest values a e {0.105,0.15,0.19,0.2106}, where o=3.94 x 107! and
B =2.014 x 10~ and initial population size x(0) = x(2008).
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Fig. 14. Stochastic Ricker model predictions of cod stock size (in metric tons) in 2100 at the constant harvest value a = 0.2106, for 6 € {0.1,0.2,0.3,0.4} where o« = 3.94 x 107!

and f=2.014 x 1075,

more biologically relevant classic Ricker model with no Allee effect
“best” fits the cod data with o =3.94 x 107!, =2.014 x 107 and
c2y?=1.360. These values imply a no-harvest cod steady state of
3.37 x 10° metric tons in Georges Bank.

5.1. Sustainability of Georges Bank Atlantic cod fishery

For over 200 years, the Georges Bank cod fishery enriched New
England and the rest of the world. However, the North East Fisher-
ies Science Center announced recently that the cod population of
Georges Bank is collapsing [22]. In this section, we use the Ricker
model with estimates of the parameters «.=3.94 x 107! and § =
2.014 x 1075 from Table 4 to assess the long-term performance
of Georges Bank Atlantic cod under various constant harvesting
parameter regimes.

To make a model prediction under different harvesting levels,
we choose four different values of a (see Fig. 13). When
a=a(2007)=0.1050 < a,- = 0.1961, the cod population rebounds
and persists at a steady state value of 1.2 x 10> metric tons. That
is, under the 2007 fishing mortality, the Ricker model predicts per-
sistence of the Georges Bank cod. However, if a=dpeq-
n=0.2106 > a, and initial population size x(0)= x(2008), then
X(2100) = 78 metric tons and eventually the Atlantic cod goes ex-
tinct; where a,,eqn, is the mean of the harvest rates from 1978 to
2007 (see Table 3 and Fig. 13). Thus, with the relatively small stock
size in 2008, cod persists when a < a., while it decreases gradually
to zero as the harvesting values exceed a,, (see Fig. 13).

From Table 3, we see that from 1988 to 1994, the harvesting
level was above @peq;, and the cod population exhibited rapid
decline. From 1995 to 2003, the mean harvesting level was
0.209, approximately equal to d,;eqn, and the stock population did
not recover. As illustrated in Fig. 13, harvesting levels must be
reduced below a if the cod population is to recover, and the
recovery is much faster with smaller harvesting levels. Our model
provides the ground work for an economic analysis on the choice of

a harvesting strategy that optimizes the cod yield, while ensuring
robust recovery of the stock.

As in Model (12), we now use a stochastic extension of the
deterministic Ricker model to link environmental variability with
probability of persistence under the mean harvesting level a,eqn.
That is, we consider the stochastic Ricker model

X(E+1) = (1 = Aean)X(H)(1 — M + E(E)0U(1 — Apegy )P mean(O))
(13)

where o« =3.94 x 107" and § =2.014 x 107, Since E(£(t)) = 1, Mod-
el (13) reduces to the deterministic Ricker model whenever 6 = 0.
Recall that when a=dane,, and the initial population size
x(0) = x(2008) = 21,848 metric tons, then the deterministic Ricker
model predicts an Atlantic cod biomass of 78 metric tons in 2100,
which is significantly small compared to the population in 2008.
As with the halibut fishery, we now link the variance to the proba-
bility of persistence of cod fishery under many realizations. That is,
we keep all the parameters of Model (13) constant at their current
values except the variance parameter §. For small values of ¢, the
stochastic model predicts persistence of cod with probability one
in 2100 at the relatively small biomass of 78 metric tons. Fig. 14
shows that, for small values of the variance, many realizations lead
to a “bell curve” shape distribution centered around the cod bio-
mass of 78 metric tons in 2100. However, the probability of cod per-
sistence in 2100 at the small biomass decreases with increasing
values of § (see Fig. 14).

6. Conclusion

We have used a discrete-time model without age-structure to
assess the performance of a CPP in fisheries that vary in levels of
compensation with and without the Allee effect (depensation).
When there is no Allee effect, it is known that CPP regulated fishery
systems decline to zero gradually under high harvesting levels.
However, when the Allee effect is present, the fishery systems
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exhibit a sudden decline to zero under high exploitation levels. We
use a Fold Bifurcation Theorem to predict the sudden decline in
such a fishery when it is managed using a CPP. As in [31], our fish-
ery models illustrate that high fishing levels are capable of stabiliz-
ing complex overcompensatory dynamics via period doubling
reversal bifurcations.

Using Gulf of Alaska Pacific halibut data from the International
Pacific halibut Commission (IPHC) annual reports and Georges
Bank Atlantic cod data from the North East Fisheries Science Center
(NEFSC) Reference Document 08-15 [5,22], we demonstrate that
the modified Ricker model with the Allee effect best fits the Pacific
halibut fishery data while the Ricker and logistic models with no
Allee effect best fit the Atlantic cod data. Consequently, under high
fishing mortalities, the halibut fishery is vulnerable to sudden pop-
ulation collapse while the cod fishery is vulnerable to steady de-
cline to zero. Under harvesting levels from the last 30 years, the
CPP did a reasonable job of preventing the collapse of the halibut,
but left the Atlantic cod at risk of collapse. Under increased uncer-
tainty, such as more severe weather extremes as predicted by
models of global climate change, fisheries managed using CPP
may be more susceptible to collapse.
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