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Struts
An interactive buckling model for sandwich struts accounting for buckle pattern local-
ization is extended to cover such struts with differing face plate thicknesses. Although this
does not affect the critical buckling characteristics of the structure, there is a significant
change in the postbuckling behavior; formerly symmetric secondary buckling and imper-
fection sensitivity characteristics lose this quality as both become
asymmetric. �DOI: 10.1115/1.1979513�
1 Introduction
Sandwich construction is a mass efficient structural form used

extensively in astronautic �1�, aeronautic �2,3�, and marine appli-
cations �4�. They are used as members for general loading situa-
tions: bending, shear, and axial loading. In axial compression,
however, there are serious structural integrity issues precisely be-
cause of their inherent efficiency; their susceptibility to highly
unstable interactive buckling phenomena in practical situations is
widely accepted �5,6�. Previous work developing a nonlinear
variational model, accounting for the severe interaction between
overall �Euler-type� and local modes of buckling that leads to
highly unstable localized buckling �7�, has identified the problems
with using orthotropic core materials �8�, and with having pre-
existing defects in terms of lack of straightness in the face plates
�9� and face-core delamination �10,11�. These effects do not sig-
nificantly affect the linearly evaluated critical load capacity, which
have been historically well understood �12�, but they can have
severe implications on the postcritical load-carrying capacity of
the sandwich strut concerned. Moreover, the nonlinear effects can
seriously question the practical value of linear eigenvalue analysis
for these cases—the maximum capacity of the structural compo-
nent being well below the linearly evaluated critical load and
therefore significant factors of safety would need to be applied in
relevant design rules.

A further enhancement to this sandwich structure model is pre-
sented in this paper where the stiff face plates now have the pos-
sibility of having differing thicknesses, hence, introducing a de-
gree of monosymmetry in the cross section �13�, which is a
common way of modeling corrugated sandwich panels in indus-
trial buildings. Comparing the critical buckling behavior of an
Euler strut with a doubly symmetric cross section against a mono-
symmetric one, it is well known from classical work �14� that the
respective levels of the linear buckling load may differ but their
postbuckling behavior would still be symmetric, assuming of
course that there is no possibility of local buckling within the
cross-section itself. However, and here lies the key point, if local
buckling is possible then the situation changes significantly; any
local buckling on one side of the cross-sectional neutral axis will
differ markedly from the other side due to the different configu-
ration of the section on either side of the neutral axis. For the
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sandwich structure, if the face plates have different thicknesses
then this introduces the possibility of the local mode of one of the
face plates interacting with the overall mode of buckling in dif-
fering degrees depending on the initial sign of the critical mode.
The result of this is that although the primary postbuckling re-
sponse is still symmetric—given that the overall mode of buckling
is the first instability—further deformation introduces a second
instability that leads to localized buckling in the face plate with
greater compression; the magnitude of overall buckling displace-
ment required to trigger the second instability relating to the thick-
ness of the face plate in more compression. The result of this is an
asymmetric postbuckling response following the second instabil-
ity with the consequent imperfection sensitivity also becoming
asymmetric.

The present paper begins with the development of the interac-
tive buckling model with the new feature of cross-section mono-
symmetry. The formulation is based on the variational principle of
minimum potential energy, the contributions being from the bend-
ing and compression in the face plates, shearing and transverse
compression in the core, and the work done by the external load.
The equilibrium equations are then developed using the calculus
of variations and a linear eigenvalue analysis yields the critical
load for overall buckling. As the equilibrium equations form a
system of nonlinear ordinary differential equations, subject to in-
tegral and boundary conditions, these are solved with a powerful
numerical continuation code for a series of different struts with
different levels monosymmetry with an objective to determine the
severity of the postbuckling response. A particularly severe case is
then investigated in detail such that results from both the perfect
and imperfect struts, along with a consideration of the worst case
imperfection, are presented. Conclusions are then drawn.

2 Interactive Buckling Model
Sandwich panels have stiff face plates placed on a lightweight

and softer core material. Figure 1 shows the layout of the sand-
wich strut to be studied. Face plates are assumed to be thin, which
in the present case means that through thickness shear is negli-
gible and that the depth of the core b is large in comparison,
isotropic and have a Young’s modulus E and Poisson’s ratio �.
The core can be constructed from balsa wood, two-dimensional
cellular materials such as, aluminium honeycombs, or three-
dimensional cellular materials such as polyurethane foams
�15–17�. The constitutive law for these materials are commonly
assumed to be either isotropic, orthotropic, or transversely isotro-
pic. In the present paper, for the least complexity, the core will be
assumed to be homogeneous and isotropic with Young’s modulus
Ec and Poisson’s ratio �c, even though previous interactive local-
ized buckling studies have investigated the effect of core orthot-

ropy �8�. The principal difference from previous interactive buck-
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ling formulations is that here the face plates have differing
thicknesses introducing the opportunity for asymmetry of re-
sponse particularly in the postbuckling range; the symmetry of the
critical buckling response is basically unchanged but the relative
location of the resulting secondary instability depends on the
thickness configuration of the face plates and the initial orienta-
tion of the critical buckling displacement. It is also worth noting
that owing to face plate anisotropy, monosymmetry can be intro-
duced to the sandwich panel even if face plates have equal thick-
nesses �18�.

The expected behavior of such a strut in compression is for it to
follow the pure squash fundamental path, Fig. 2�a�, and then to
buckle in the overall mode—Fig. 2�b�—causing differential com-
pression in the faces. This is likely to be followed closely by a
secondary bifurcation, in which the face under the greater com-
pression buckles in a second localized mode, Fig. 2�c�. Any initial
geometric imperfection in the strut �shown as an initial value of
end-shortening Ei� smears out the nonsmooth nature of the perfect
equilibrium path shown in Fig. 2�d�.

2.1 Cross-section Monosymmetry. Figure 1 shows the
monosymmetric configuration of the sandwich strut with differing
face plate thicknesses tt and tb representing the “top” face and
“bottom” face, respectively. When undergoing overall buckling,
the bottom face plate is deemed always to have the greater com-
pression; the extra secondary buckling displacement is thus al-

Fig. 1 The sandwich strut and its cross section. The face
plates can have different thicknesses „tb and tt… and that the
distance from the top face plate to the neutral axis is ȳ. Note
that the load P is applied at the neutral axis of the strut.

Fig. 2 Typical load P vs end-shortening E equilibrium diagram
for sandwich struts: „a… fundamental path; „b… critical path of
overall buckling; „c… secondary path of localized buckling; „d…

typical imperfect structure equilibrium path
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ways confined to that face plate. With these definitions, the dis-
tance of the cross-section neutral axis from the top face-core
interface ȳ can be found in the conventional way for a section
with different material elements and is a key quantity to the for-
mulation of the model

ȳ =
Ecb

2 + Etb�2b + tb�1 − �2��
2�Ecb + Etb�1 + ���

, �1�

where the ratio of the face plate thicknesses � is defined

� =
tt

tb
, �2�

which at times is referred to as the monosymmetry parameter. Of
course if the load were to be applied elsewhere from the neutral
axis then the structure would combine bending and compression, a
more complicated modeling problem which is beyond the scope
of the present study and is left for future work.

2.2 Face Plate Displacements. An earlier theoretical model
�7� had overall buckling represented by sway and tilt components
of a long wave mode �Fig. 3� reflecting the possibility of shearing
deformations in the core material where

W�x� = qsL sin
�x

L
, �3�

��x� = qt� cos
�x

L
, �4�

and interactive localized buckling defined by two functions w�x�
and u�x� representing, respectively, lateral and in-plane displace-
ments of a single face plate �Fig. 4�. There is also a pure squash
strain component of both faces, �, which is introduced as a degree
of freedom.

3 Variational Formulation
The principle of minimum potential energy is the basis for the

following model’s formulation. The total potential energy function
V is defined as the sum of the internal strain energy stored in the
structure �U� minus the work done by the external loads �PE�. The
accumulated energy has a functional form which is then analyzed
using the calculus of variations to determine the equilibrium equa-
tions.

Fig. 3 Sway and tilt components of overall mode

Fig. 4 Displacement functions used to model localized

buckling
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3.1 Strain Energy. In a general state of deflection there are
three components of strain energy U: pure bending in the faces
alone �Ub�, membrane action in stretching or compressing the
faces �Um�, and core energy �Uc� that comprises transverse and
shearing strains.

3.1.1 Bending Energy. The bending energy components arise
from the overall bending of both faces, coupled with the local
bending of the lower face plate. Linear curvature expressions suf-
fice giving the following expression for the contribution from the
overall mode:

Ubo =
1

2
E�

0

L ��It + Ib�qs
2�4

L2 sin2 �x

L
�dx , �5�

where E is the Young’s modulus of the face plate with an associ-
ated Poisson’s ratio �. The quantities of It and Ib are the local
minor axis second moments of area of the top and bottom face
plates, respectively,

It =
ctt

3

12�1 − �2�
�6�

Ib =
ctb

3

12�1 − �2�
�7�

The model assumes that the bottom face plate has the greater
compression once overall buckling has occurred.

The sandwich panel is also modeled with a generalized imper-
fection that represents the initial deformation of the more com-
pressed face plate w0, which is formulated from an energy prin-
ciple. The form of the imperfection closely matches that of the
localized buckling mode for the strut on a softening foundation—
derived from a first order approximation of a multiple scale per-
turbation analysis �19�

w0�x� = A0 sech���x − L/2��cos����x − L/2�/L� , �8�

where A0 is the amplitude of the imperfection, with � and �
defining the shape of it; � governs the degree of localization and
� governs the number of sinusoidal waves in the imperfection.
The imperfection is introduced by supposing an initially deformed
shape of the more compressed face plate w0�x� is stress relieved,
such that the elemental bending moment, M, and thus stored strain
energy of bending Ubl drop to zero as represented in Fig. 5 �20,9�:

dUbl = 1
2 Md� = 1

2EIb�	 − 	0�2dx , �9�

where 	 is the curvature of the strut due to w, 	0 is the curvature

Fig. 5 Stress-relieved state of the strut, after Thompson and
Hunt „see Ref. †20‡…
of the strut due to w0 and EIb is the flexural rigidity of the imper-
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fect face plate. This also assumes that the strain energy in the
foundation is nonzero in the initial state. Assuming a small deflec-
tion curvature relationship, i.e., 	=w�, the strain energy of bend-
ing becomes

Ubl = 1
2EIb�

0

L

�w� − w0��
2dx , �10�

where primes represent differentiation with respect to the spatial
variable x. Therefore the total strain energy stored from bending
Ub is the sum of Ubo and Ubl, thus

Ub =
1

2
E�

0

L ��It + Ib�qs
2�4

L2 sin2 �x

L
+ Ib�w� − w0��

2�dx . �11�

3.1.2 Membrane Energy. The membrane strain energy Um
accounts for the axial tension and compression in the face plates
when the structure bends after overall buckling. In the “tilt” con-
figuration shown in Fig. 3, the upper face plate simply contributes
the tensile equivalent of the compressive strain resulting from
overall buckling along with the component of pure squash �:


xt = qt
ȳ�2

L
sin

�x

L
− � , �12�

while the lower face plate adds as extra contributions the corre-
sponding strains from Von Kármán large-deflection plate theory


xb = u� +
1

2
w�2 − qt�b − ȳ�

�2

L
sin

�x

L
− � . �13�

The membrane strain energy is therefore �D=Etbc /2�:

Um =
Ettc

2 �
0

L


xt
2 dx +

Etbc

2 �
0

L


xb
2 dx

= D�
0

L �qt
2��ȳ2 + �b − ȳ�2�

�4

L2 sin2 �x

L

+ 2qt�b − ȳ�1 + ���
�2

L
sin

�x

L
� + �1 + ���2

+ u�2 +
1

4
w�4 + u�w�2 − �2� + 2qt�b − ȳ�

�2

L
sin

�x

L
�

�	u� +
1

2
w�2
�dx . �14�

3.1.3 Core Energy. In general, the core provides all the
transverse and shear resistance but only some of the longitudinal
resistance, most of which comes from the faces. Analysis is some-
what simplified if it is assumed that the faces provide all of the
latter; a usual assumption if the core is assumed to be soft �21�.
Plane stress expressions are readily derivable which include a lon-
gitudinal strain component in the core, but little is lost conceptu-
ally if this is ignored �8�. To match the assumed displacements
w�x� and u�x� on the lower face and zero on the upper face of Fig.
4, displacements wc�x ,y� and uc�x ,y� must vary through the core.
If x and y are defined as in Fig. 3 and linear variations with y are
assumed the following expressions are obtained:

uc�x,y� = 	 ȳ − y

b

u�x� , �15�

wc�x,y� = 	 ȳ − y

b

w�x� . �16�

It is worth noting that the validity of this assumption has been
confirmed in earlier work in a comparative study on a simplified

strut on a nonlinear elastic foundation with a simulated overall
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buckling mode �7�. Under the assumption that 
x is zero in the
core, the remaining core strains can be written


y = 	 �wc

�y

 = − 	w

b

 , �17�

�xy =
�W

�x
− � +

�wc

�x
+

�uc

�y

= �qs − qt�� cos
�x

L
+ 	 ȳ − y

b

w� −

u

b
, �18�

where Gc is the core shear modulus and can be related to the
core’s Young’s modulus Ec for an isotropic material

Gc =
Ec

2�1 + ��
. �19�

At this point it is worth re-emphasizing that although soft-core
materials are usually modeled constitutively as orthotropic or
transversely isotropic, the present study takes the simplest case of
isotropy such that the effect of differing face plate thicknesses is
highlighted more than the constitutive law of the core material;
comparisons of core orthotropy versus isotropy have been studied
at length in earlier work �8�. Therefore, the general expression for
the strain energy stored in the core is

Uc =
Ecc

2�1 − �c
2��0

L�
ȳ−b

ȳ


y
2dydx +

Gcc

2 �
0

L�
ȳ−b

ȳ

�xy
2 dydx , �20�

and substituting the appropriate expressions and integrating with
respect to y, we obtain �G=Gccb /2�:

Uc =�
0

L �	1

2
kw2 −

1

3
k1w3 +

1

4
k2w4
 + G��qs − qt�2�2 cos2 �x

L

+ �qs − qt�� cos
�x

L
	w� −

2u

b

 + 	1

3
w�2 +

u2

b2 −
1

b
uw�
��dx ,

�21�

where k is introduced as the linear component of the transverse
core stiffness

k =
Ecc

�1 − �c
2�b

. �22�

Note the introduction of nonlinearities in the core’s transverse
stiffness �k1 and k2� that account for the general cellular core
material response under direct compression. The force versus dis-
placement profile of a cellular core material in direct compression
has a distinctive shape in that it is initially linear followed by a
plateau where the stiffness can actually drop below zero �k1
0�
as the microscopic cell walls in the material matrix buckle elasti-
cally. Subsequently the material restiffens �k2
0� as the cells
densify and the material becomes more resistant to further cellular
compression �17,22�. For the purposes of the present study, which
is to examine the location of the secondary instability and the
initial postbuckling response, the core is assumed to behave in a
linearly elastic fashion �k1=k2=0�.

3.2 Work Done By Load. The final component of energy to
be identified is the work done by the load. The overall tilt mode
contributes nothing to the corresponding deflection E of a load P
applied along the neutral axis of the cross section �Fig. 1�, while
the contribution from the local buckling of a single face scales the
total of the end shortening of the face itself by the ratio of the
distance to the neutral axis from the top face plate ȳ to the depth
of the core b. Together with the contributions from pure squash
and sway from overall buckling �Fig. 3� this gives the work done

as
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PE = P�
0

L �qs
2�2

2
cos2 �x

L
− 	 ȳ

b

u� + ��dx . �23�

3.3 Potential Energy Functional. The total potential energy
V of the complete structure is given by the summation of all the
strain energy terms: Uc, Um, and Ub, minus the work done by the
load, PE �23�. This hybrid form of the potential energy involves
three degrees of freedom: qs, qt, and �; and a functional involving
the two functions w�x� and u�x�:

V =�
0

L �1

2
E��It + Ib�qs

2�4

L2 sin2 �x

L
+ Ib�w� − w0��

2� + D�qt
2��ȳ2

+ �b − ȳ�2�
�4

L2 sin2 �x

L
+ 2qt�b − ȳ�1 + ���

�2

L
sin

�x

L
� + u�2

+ �1 + ���2 +
1

4
w�4 + u�w�2 − �2� + 2qt�b − ȳ�

�2

L
sin

�x

L
�	u�

+
1

2
w�2
� +

1

2
kw2 + G��qs − qt�2�2 cos2 �x

L
+ 	1

3
w�2 +

u2

b2

−
1

b
uw�
 + �qs − qt�� cos

�x

L
	w� −

2u

b

� − P�qs

2�2

2
cos2 �x

L

− 	 ȳ

b

u� + ���dx �24�

The strut width c is a common factor which can be completely
eliminated from the model. It is therefore taken as unity for the
purposes of numerical solution.

3.4 Linear Eigenvalue Analysis for Overall Buckling. Lin-
ear eigenvalue analysis yields the critical load for overall buckling
PC, arising on the pure squash fundamental path F at which qs
=qt=w=u=0. The potential energy is nondiagonal with respect to
qs and qt, and so this critical load occurs when the matrix

Vij
F = 	Vss

F Vst
F

Vts
F Vtt

F 
 �25�

is singular, where

Vij
F = � �2V

�qi�qj
�F

. �26�

Therefore the critical load for overall buckling is obtained

PC = 2G +
�2EIb

L2 �1 + �3� − 
 2G2

D�2

�L2 ��ȳ2 + �b − ȳ�2� + G� ,

�27�

and this expression holds for both positive and negative values of
qs.

3.5 Equilibrium Equations. The integral in Eq. �24� repre-
senting the total potential energy of the physical system which
must be stationary at equilibrium; the calculus of variations is
applied to find this condition. The analysis that follows is a sum-
mary of this application of the calculus of variations. Consider the
Lagrangian �L� of the form

V =�
0

L

L�w�,w�,w,u�,u,x�dx . �28�

For the system to satisfy equilibrium V has to be stationary. This
requires the first variation of V, which is given by the following

expression �24�:
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�V =�
0

L � �L
�w�

�w� +
�L
�w�

�w� +
�L
�w

�w +
�L
�u�

�u� +
�L
�u

�u�dx .

�29�

By satisfying the condition �V=0, the Euler–Lagrange equations
give a system of nonlinear ordinary differential equations

EIbw�� + D�2�w� + 2qt�b − ȳ�
�2

L
	sin

�x

L
w� +

�

L
cos

�x

L
w�


− 3w�2w� − 2�u�w� + u�w��� + G�u�

b
−

2

3
w� + �qs

− qt�
�2

L
sin

�x

L
� + kw = EIbw0��, �30�

D�u� + w�w� − qt�b − ȳ�
�3

L2 cos
�x

L
�

+
G

b
�1

2
w� −

u

b
+ �qs − qt�� cos

�x

L
� = 0. �31�

Other equilibrium equations are found by differentiating V with
respect to the degrees of freedom �, qs and qt, respectively,

2qt��b − ȳ�1 + ��� + �1 + ���L −
PL

2D
=�

0

L 	u� +
1

2
w�2
dx ,

�32�

P = E�It + Ib�
�2

L2 + 2G	qs − qt

qs

 +

2G

qs�L�0

L

cos
�x

L
	w� −

2u

b

dx ,

�33�

D

G
�qt��ȳ2 + �b − ȳ�2�

�2

L2 +
4

�L
�b − ȳ�1 + ����� − �qs − qt�

=�
0

L �2D�b − ȳ�
GL2 sin

�x

L
	u� +

1

2
w�2


+
1

�L
cos

�x

L
	w� −

2u

b

�dx . �34�

The system of equilibrium equations are also subject to three
boundary conditions at each end, these are determined from inte-
grating V by parts and yield the following �7�:

w�0� = w��0� = 0, �35�

w�L� = w��L� = 0, �36�

u��0� +
1

2
w�2�0� − � =

Pȳ

Db
, �37�

u��L� +
1

2
w�2�L� − � =

Pȳ

Db
. �38�

However, owing to the symmetry of the structure lengthwise it is
easier to solve the equations numerically between x=0 and mid-
span x=L /2. The following symmetry condition is therefore im-
posed at midspan in the numerical code:

w��L/2� = w��L/2� = u�L/2� = 0, �39�

and because of this the conditions at x=L, i.e., conditions given in

�36� and �38� are automatically satisfied.
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4 Numerical Experiments
The full system of equilibrium Eqs. �30�–�34� are discretized

and solved subject to the conditions �35�, �37�, and �39� using the
numerical continuation package AUTO97 �25�. This allows the
evaluation of the physical postbuckling modes and the equilibrium
response of a variety of different strut configurations that are se-
lected initially from earlier studies.

In the present study, the initial sign of the overall mode ampli-
tude qs is of paramount importance; the overall mode is triggered
at the same load for both positive and negative values of qs put-
ting the thicker and thinner face plates into extra compression in
turn. Therefore, with a face plate configuration with differing
thicknesses, a source of asymmetry in the postcritical buckling
response is introduced; the secondary bifurcation that triggers lo-
calized buckling occurs at different magnitudes of qs depending
on its initial sign. This leads to the conclusion that the degree of
imperfection sensitivity of the strut is asymmetric.

The cases are presented such that a symmetric struts with dif-
ferent core properties are selected from which their relative face
plate thicknesses are varied. The struts are compared against each
other by measuring the proximity of the secondary instability
leading to localized buckling relative to the initial instability that
causes overall �Euler-type� buckling. The study then focuses in on
a particular strut with a highly pronounced overall-local mode
interaction and presents its postbuckling characteristics together
with a study of its behavioral sensitivity to initial geometric im-
perfections.

4.1 Proximity of Secondary Bifurcation. The basic strut
used in the numerical study has the following material properties
taken from the literature �26,5,7�. The strut length and core depth
are kept constant in the present study: L=508 mm and b
=50.8 mm, respectively. The face plate material properties are
also kept constant: Young’s modulus E=68,947.57 N/mm2 and
Poisson’s ratio �=0.3. The face plate thicknesses and the Young’s
modulus of the core are varied in the numerical study.

Figure 6 shows the effect of changing the monosymmetry pa-
rameter � for the strut on the relative gap between the critical
bifurcation for overall buckling and the secondary bifurcation for
localized buckling �ES /EC�. Three different cases of core modulus
are shown and it can be seen that the degree of monosymmetry
can bring together the separate bifurcations, which in turn results
in a less stable structure in the postbuckling range. For the cases
of Ec=300 and 198.57 N/mm2, there is clearly a worst case
monosymmetry with a minimum value ES /EC being achieved for a
certain value of �, as shown in Table 1. For the third case, Ec
=50 N/mm2, the bifurcations become all but simultaneous for a
relatively large range of �, this is most likely due to the local

Fig. 6 Relative proximity of secondary and critical bifurca-
tions for struts with different cores and monosymmetries
mode becoming nearly critical for those values.
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4.2 Full Postbuckling Results. Leading on from the previous
section, postbuckling results are now presented for a strut that has
quite differing relative secondary bifurcation properties depending
on the sign of the overall buckling. Figures 7–9 show a schematic
representation of the selected strut, buckling displacements, and
equilibrium diagrams for the geometrically perfect strut, respec-
tively. The selected strut has the following dimensions and prop-
erties: face thicknesses 1.0 and 0.8 mm; length L=508 mm; core
depth and properties b=50.8 mm, Ec=50 N/mm2, and �c=0.2. As
shown in Fig. 7, if the thicker face plate is in extra compression
after overall buckling is triggered then qs is negative and if the
thinner face plate is in extra compression after overall buckling
then qs is positive. For qs�0 the value of the monosymmetry
parameter �=0.8 with the bifurcation proximity: ES /EC=1.267,
and for qs
0 the value of the monosymmetry parameter �=1.25
with the bifurcation proximity: ES /EC=1.016.

It can be seen in the graphs that the secondary �localized� post-
buckling modes of w, shown in Figs. 8�a� and 8�c�, have differing
localized wavelengths for the face plates. Moreover, the important
result from this is shown in Fig. 9 where the proximity between
the critical and secondary bifurcations is significant only for qs

�0; for qs
0 the gap is much smaller. This implies that if the
strut has imperfections forcing qs
0, the strut is much less likely
to reach the linear eigenvalue critical load than if qs�0 were
forced. This asymmetry in the potential sensitivity to imperfec-
tions is now quantified in the following section.

4.2.1 Imperfection Sensitivity. The geometric imperfection w0,
shown in Eq. �8�, is introduced for the strut that was selected in
the previous section. For each face the imperfection sensitivity for
the periodic mode was determined using the following technique:
keeping the localization parameter � at zero and the wave number
parameter � at the linear eigenvalue solution, the value of the
imperfection magnitude E0, where

etric strut with face thicknesses 1.0 and
508 mm, b=50.8 mm, Ec=50 N/mm2, and
Table 1 Worst case monosymmetry parameter � for different
core moduli Ec. Simultaneous „compound… bifurcation points
would be represented by ES /EC=1.

Ec �N/mm2� � ES /EC

300 1.15 1.610
198 1.27 1.278
50 1.40–2.00 1.005
Fig. 7 The selected strut: definitions of the thicknesses tt, tb,
monosymmetry parameter �, and the sign of overall buckling q
Fig. 8 Postbuckling profiles of monosymm
0.8 mm. Other dimensions and properties: L=
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E0 =�
0

L
1
2w0�

2dx , �40�

was varied; each variation of E0 gave an explicit value of A0. The
imperfection magnitude E0 is in fact a measure of the axial end-
shortening introduced by the imperfection in the face plate prior to
the commencement of external loading. The load P was then var-
ied as a parameter in AUTO to find the corresponding limit load
Pl / PC �see Fig. 2�. The locus of these values of the limit loads
plotted against the size of the initial imperfection defines the so-
called imperfection sensitivity curve.

For the localized imperfection at a particular value of E0, � was
still kept at the linear eigenvalue solution but now both � and A0
were varied. Again, the load P was then varied as a parameter to
find the corresponding limit load Pl / PC; the worst case was de-
fined as the combination of A0 and � that minimized the limit load
for a given value of E0. Figures 10–12 show the imperfection
sensitivity curves and the changing profile of the imperfection
respectively for the cases where the sole imperfection is confined
to either the thicker or thinner face plate. As expected from pre-
vious work �9�, the localized imperfection gives the more severely
unstable equilibrium response for nontrivial values of E0. More-
over, the monosymmetry of the sandwich panel means that the
relative imperfection sensitivity is higher when the thinner face is
imperfect rather than the thicker face; for example, when E0 / tb

Fig. 10 Imperfection sensitivity curves fo
tions for the monosymmetric strut with th

Fig. 9 Postbuckling equilibrium diagram
nesses 1.0 and 0.8 mm. Other dimensions
=50 N/mm2, and �c=0.2.
thinner face is much more sensitive
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=0.025, the limit load for localized imperfections for qs�0 is
Pl / PC=0.917, the corresponding limit load level for qs
0 being
Pl / PC=0.765, a drop in ultimate strength by 17% for an imper-
fection amplitude A0 very much less than a third of the face plate
thickness.

5 Conclusions
The present paper has formulated an enhanced variational in-

teractive buckling model for sandwich struts that includes mono-
symmetry in the cross section, a component type that is relatively
common in practical engineering situations. The principal finding
is that this monosymmetry of construction introduces asymmetry
in the nonlinear response, i.e., different localized postbuckling
responses are found depending on the initial orientation of the
critical buckling. An important issue here is that the relative prox-
imity between the critical and secondary bifurcation can be sig-
nificantly changed just by reversing the orientation of the critical
buckling mode. The parametric study showed regimes where the
degree of monosymmetry forced the critical and secondary bifur-
cations to be effectively coincident. Moreover, the detailed nu-
merical study that focused in on a particular strut configuration
showed a marked difference between the sensitivities to initial
imperfections for the individual face plates; the thinner face being
much more severely unstable after triggering the interactive �lo-
calized� mode than the thicker face.

eriodic and localized geometric imperfec-
nesses 1.0 and 0.8 mm; in this case the

f monosymmetric strut with face thick-
d properties: L=508 mm, b=50.8 mm, Ec
r p
ick
s o
an
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These findings are significant for design practice, as although
the basic result of linear eigenvalue analysis is unchanged, the
nonlinear analysis reveals a significant sensitivity to very small
defects in the geometry such that the structure in certain configu-
rations can only attain a fraction at its critical buckling load.
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