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Abstract: In this paper, we address how data quality (DQ) is likely linked to failed business processes that pose 
operational risks to the Enterprise system.  Operational value at risk (OPVAR), which is used in the finance 
literature to mean how much we might expect to lose if an event in the tail of the loss probability distribution does 
not occur, can be used to conduct Enterprise software reliability and damage function analysis.  This paper explores 
(a) how to combine distributional assumptions for event frequency and severity to derive software loss cost 
estimates using the familiar example of software processing errors and (b) how to utilize the estimates of this 
distribution to estimate OPVAR-based losses.  The empirical results show (a) that it is possible to fit DQ problems, 
such as the daily mishandling event data, to a distribution and to use maximum likelihood analysis to derive a 
consistent set of critical event count thresholds and (b) that the resulting OPVAR-based losses can be used by DQ 
managers to ascertain the real costs of mitigating DQ problems.     
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INTRODUCTION 
 
Organizations often find it difficult to see the distinction between internal risks (e.g., operational risks) 
and external risks (e.g., regulations, credit, and market conditions).  This gap is particularly important for 
DQ managers because there is a grey area of risk disparity between products (e.g., DQ products) and 
processes (business requirements).  Figure 1 illustrates the gap between product- and process-related risk 
types.  From a product-related perspective, [1], [2], [3], and [4] investigate the extent to which DQ can be 
empirically estimated as a function of process risk and is demonstrated in the failure mode and effects 
analysis literature (FMEA).  [5] inquires into market and non-market valuation types of DQ quality 
supply schedules that can be empirically estimated.  These are all useful measures of risk; however, these 
models are comparatively static and lack the dynamic ability to quantify risk over a period of time. 
 

 
Figure 1: Operational risks differ from market and credit risks (KPMG, 2001) 



BACKGROUND, RATIONALE, AND PURPOSE 
 
Since the publication of the Basel Committee’s report on operational risk in September 1998 and the 
promulgation and execution of Section 13 of the Sarbanes-Oxley Act, functional IT specialists and DQ 
managers have started to speculate that perhaps the internal-external risk gap pertaining to DQ could be 
addressed by OPVAR. The Basel Committee report on operational risk analysis requires that financial 
institutions realize the benefits of measuring and streamlining the flow of capital, people, and information 
into and out of the organization through the use of TQM methods such as Six Sigma and Lean 
Manufacturing.  In fact, “banks that have implemented efficiency programs such as Six Sigma are 
discovering significant overlaps between the data required by those programs and the data required to 
comply with Basel II [6].” OPVAR and operational risk indicators are currently utilized by global banks 
and financial institutions whose liquidity is ensured for the protection of public trust. 

Operational risk indicators, which are  the risk that the organization’s operations or business processes 
will not generate the expected returns as a result of both external factors and internal factors, are random 
variables that are used to provide insight into future OR events [7].  Factors outside the organization can 
include government regulations: for example, the Data Quality Act, Clinger-Cohen Act, and Federal 
Financial Management Improvement Act.  A change in regulatory policy could have an impact on the 
immediate business process requirements of the Enterprise.  Mandated changes in an accounts payable 
system will tend to cause temporary sustained losses and earnings foregone as a result of mismatched 
requirements and transaction failures in the areas of processes, information systems, or people.  Thus, 
operational risk indicators that are carefully tracked by organizations include transaction failures, 
outdated business processes, mismatched requirements, and new automation.  In data quality, operational 
risk indicators tend to provide insight into future problems at their earliest stages so that preventive action 
can be undertaken to avoid or minimize a serious OR event.   

The purpose of this paper, therefore, is to illustrate how OPVAR techniques that are currently utilized in 
the banking sector to estimate capital charge allocation could be utilized to solve data quality problems 
through software functionality reliability analysis and the cost of software upkeep.  

 
Literature Review 

When setting aside capital for OR events, banks and other financial institutions aim to ensure the 
availability of sufficient economic capital to allow continued operations in an adverse environment or 
when internal operational failures have generated large unexpected losses [9].  Accordingly, OPVAR is 
defined as “the operational risk capital sufficient, in most instances, to cover operational risk losses over a 
fixed time period at a given confidence level.”  OPVAR can be calculated if we know F-1(1-α), where F-

1(1-α) is the percentile function in F(x), where F(x) is a cumulative distribution of a random variable.  
Thus, a 99 percent OPVAR implies α = 5 percent, which in this case is the 95th percentile, and thus 
OPVAR0.95 = F-1(1-0.95) = F-1(0.05).   

OPVAR captures both the economic and regulatory implications of risk in a financial institution, as 
shown in Figure 2 [10].  Basel II regulates banks on the basis of equity capital risk—the risk that the bank 
needs to set aside its reserves based on its financial operations.  Figure 2 shows that operational risk is 
captured by the combined probabilities of event and loss given a certain event.  Some of the measurement 
tools used to capture that information includes loss data pools and integration of external loss data 
reported in the areas of content analysis, Web-based coverage, and early warning functions.  Operations 
exposure is manifested in the form of risk indicators, while the quality index can be portrayed by a risk 



inventory list.  The quantitative methods used to model this type of framework include extreme value 
theory, cause and effect models, and other simulation models.  

  

Figure 2:  Calculation of Economic & Regulatory Capital (KPMG, 2001) 

Figure 3 shows that financial institutions utilize OPVAR to measure, for any combination of business 
lines i and type of risk j, the combined probabilities of loss of event PE, loss of a given event LGE, 
operations exposure OE, and a quality index QI, where QI is independent from PE, LGE, and OE.  

 

Figure 3:  Financial Sector Definition of OPVAR (KPMG, 2001) 

The Basel II Accord outlined in [9] accounts for three methods to calculate operational risk capital 
charge:   

“The first is the basic indicator approach, in which the required capital is determined by 
multiplying a financial indicator such as gross income by a fixed percentage.  The second is the 
standardized approach, in which a bank divides its function into a number of business lines.  For 
each business line, the required operational risk capital is calculated by multiplying an indicator, 
typically the gross income or asset size of the business line, by a fixed percentage.  The total 
operational risk capital charge is the sum of the required capital across all the business lines.  The 
third method is a type of internal measurement approach based on a bank’s internal risk 
management system.  In this approach, operational risk is categorized based on business lines and 



event type determined by the regulators.  The total capital charge is the sum of the required 
capital across each business line and each even-type combination.” 

Figure 4 shows the expected capital charge of a bank—it is determined by regulators as the expected 
operational risk loss ELij for each business segment and for each risk type γij, where EL is equal to the 
regulatory exposure per type of risk and business line segment EIij, probability of loss event PEij for type 
of risk j in the business segment i determined by banks, and the loss given event LGEij for type risk j in 
the ith business segment determined by banks. 

 

Figure 4:  Capital Charge Derivation {Basel II Internal Measurement Framework (KPMG, 2001)} 

OPVAR and Data Quality 

Banks aim to set aside capital for operational risk events to ensure the availability of sufficient economic 
capital and to allow continued operation, especially when internal operational failures have generated 
large unexpected losses.  Similarly, ERP-based organizations must mitigate software failures that usually 
originate from outdated business processes.  OPVAR could be used by DQ managers as the operational 
risk capital sufficient to cover most DQ-related operational risk losses over a period of time at a certain 
risk confidence level.  OPVAR measures the distribution percentile, disregarding data quality losses 
beyond a point called α.  OPVAR therefore indicates the greatest amount an organization can expect to 
lose if that αth percentile occurs.   

Bank capital risk was previously used to model the true costs of data quality by defining costs as a 
function of risk and multiplying by γ, the factor determined by the organization’s DQ manager.  [2] 
previously addressed the use of FMEA to approximate the true costs of data quality by quantifying the 
risk parameters severity, probability of failure, and detectability.  This approach simply involves 
multiplying the nominal costs of IT manual workarounds by the combined probabilities of fault and 
escaping detection.  Unfortunately, this modeling framework is not dynamic, and it relies heavily on risk 
priority numbers (RPNs) and on the costs of workarounds when the actual costs are not available.  On the 
other hand, OPVAR does not require RPNs and allows simulation of costs over time.   

Since data quality researchers developed clearer definitions of IQ, such as accuracy, believability, 
relevancy, and timeliness [10]—dimensions of IQ that determine whether the quality of information 
meets or exceeds the requirements needed to solve business problems—other researchers, such as [2], [4], 
[11], [12], [13], and [14], have provided a framework for the taxonomy, shape, and empirical dimensions 
of data quality cost structures.  Modeling OPVAR in data quality contributes to the DQ literature by 



incorporating relatively new techniques to discover how internal factors—methodological failures in ERP 
transactions—affect software reliability and software maintenance costs.  To obtain management 
visibility, data quality researchers can sample transaction failures periodically.   

As in FMEA, the frequency of errors in the functionality of IT systems should be assessed, as well as 
their severity, measured in its relative economic value.  In this manner, sampled transactions can be 
checked and corrected where indicated, then revalued.  Comparing this result to the original valuation 
provides an estimate of the severity (model errors) for IT transactions. Extrapolating the empirical results 
from the sample to the overall population will provide an estimate of the frequency, severity, software 
functionality mismatch, and business process requirements of the organization.  Using the OPVAR 
method, it will be possible to fit the frequency and severity distributions and define critical values using 
confidence intervals.  Ultimately, these results can be used to control the sampling process, and depending 
on the point in the lifecycle where the error occurs, a causal model can be used to translate the error into a 
true DQ-driven loss estimate. 

METHODS 

Modeling Data Quality Losses 

The methodology depicted in this section is adopted from [7].  Accordingly, OPVAR analysis shows that 
by studying transaction processing errors, distributional assumptions for event frequency and severity can 
be combined to derive loss estimates.  Transaction handling losses can be handled as a single distribution.  
However, combining separate distributions for the data mishandling event process and the severity is 
preferable, as this provides insight into the root causes of DQ losses.  The event process for handling 
transaction errors is likely best approximated as a Poisson process.  Its frequency of error distribution is 
that of a Poisson variable as well.  In the example below, Mondays and Fridays tend to have a higher 
proportion of mishandled transactions than other days (Figure 5).  The numbers of transaction 
mishandling events on the various days of the week follow different Poisson processes with respective 
parameters.  On Mondays, for instance, the number of mishandled transactions is distributed as P , 
while that for Tuesday is P , and so on.   

 

Figure 5:  Mishandled Errors (O’Brien, 2006) 

After fitting the daily mishandling event data to a distribution, a consistent set of critical event count 
thresholds are derived for each day of the week using Maximum Likelihood Analysis.  By using the same 
confidence intervals applied to the daily distributions, the appropriate warning signs regarding the source 
of the mishandled error are identified.  When estimating the continuous variable that describes the 



severity of transaction mishandling events (e.g., penalty payments in the case of mismatched supply order 
and delivery terms), the usual choice is the Weibull distribution (Figure 6).  

 

 

Figure 6:  Weibull distribution (O’brien, 2006) 

The shape of the Weibull distribution is primarily a function of its parameters  and ß and its probability 
density function, which is given by:  

 

where 0<x, 0< , and 0<ß. 

To model total losses, a mixture of the Poisson and Weibull distributions is formulated.  For simplicity, 
these mixed distributions are modeled as a compound Poisson process.  The total loss due to mishandled 
DQ transactions, or severity amount, S (t), for some time interval (0, t), forms a compound Poisson 
process if (a) the frequency of mishandled transaction events forms a Poisson process; (b) the individual 
loss amounts are independent and identically distributed; and (c) the individual loss amounts are 
independent of the number of events N(t). 

If the mishandled transaction events occur in accordance with a Poisson process with rate and the 
moment generating function (MGF) of the individual loss amounts (random variable x) is Mx(u), then the 
MGF of S(t), the mixture distribution, is: 

 

It can be shown that 

E(S(t))= tm1 

and 



V(s(t))= tm2 

where m1 is the mean of the Weibull distribution and m2 its variance. 

 

Taking the overall loss distribution and using it to attribute risk capital to the overall transaction process 
will lead to mean and variance estimation of the total loss from the DQ mishandling.  Thus, just as banks 
have to scale the loss distribution from daily totals to the confidence interval level as imposed by the 
financial institution’s capital risk allocation policy, DQ managers must measure the loss distribution 
based on the organization’s risk aversion policy to DQ errors.  DQ managers must therefore have a DQ 
“risk capital policy,” a set of rules that allocates a portion of the firm’s IT budget to fix the functional 
distortions that are attributed to detrimental business requirements in check.  Simulation can then be used 
to aggregate loss distributions across multiple operational risk categories.   

In spite of the quantitative analysis aspect of OPVAR, reducing internal business process risk is 
ultimately the goal.  This can be addressed by either modeling data flows or capturing the breakdown in 
business process requirements and making appropriate improvements in the Enterprise.  The greatest 
gains from OPVAR modeling, therefore, will involve streamlining the organization’s core workflows.   

The Data  
 
Time series data were obtained for Physical Movement ID, Action, Source, Type of Transaction, 
Operation, Volume Summary, Transaction Date, Material, Mode, Load, Discharge, Document ID, 
Contract Number, Order Number, Batch, Ship Number, Last, Funding, Signal Code, Customer Supply 
DODAAC, Suffix, Reason Code, Deemed Date, Create Date Time, Last Update Date Time, Movement 
Level, Original Movement ID, Freight, Error, and Physical Movement ID.  The data stem from an Oracle 
Constellar Report from a Department of Defense database for the period of January 27 through July 29, 
2005 (Figure 7).  We used a sample dataset of 396 to simplify the scope of the analysis and to amplify the 
results of the suggested modeling framework.   
 
The Value of Damage Function is a variable that originates from multiplying the Volume Summary, the 
quantity of fuel procured by the Department of Defense for its customers (e.g., Army, Navy, Marine 
Corps, Air Force), by the DoD standard price of $1.78 in fiscal year 2006, the rate DoD charges its 
customers for the administrative costs of procurement for the year.  These administrative costs are used as 
proxies for the estimated premium used by the Defense Finance & Accounting Service (DFAS) to charge 
an overhead for administrative actions stemming from data quality errors.  The data quality errors are 
deeply rooted in the business requirements that define the software functionality.  For instance, the error 
“Using the supply order, the delivery terms and delivery point were not found” stems from a business rule 
that the delivery terms (e.g., pipe, barge, truck) and delivery point (e.g., origin, FOB destination) were not 
placed in the supply order.  The Value of Damage Function variable will be the foundation of the Weibull 
analysis: (a) reliability table, (b) Weibull parameters, and (c) survival graphs.  These Weibull results will 
be used to obtain both operational value current loss and expected shortfall. 



 
Figure 7:  DoD Constellar Report (Department of Defense) 
 
RESULTS 
 
To obtain OPVAR estimates, we utilize a reliability engineering analysis to determine Weibull parameters 
α and β and Poisson parameter λ.  These parameters are needed to fit the daily mishandling event data to a 
distribution such that a consistent set of critical event count thresholds are derived for each day of the 
week using Maximum Likelihood Analysis.  To estimate the spread or shape of the distribution of failure 
times, we conducted a Weibull cumulative distribution function transformation so that it appears in the 
familiar form of the straight line Y = mX+b.  By applying Ordinary Least Squares to the logarithmic 
transformation of (1/(1-Median Ranks)) on the intercept and the logarithmic transformation of (damage 
costs), this provides a straight line once the predicted Y and actual Y are placed on scatter plot.  We 
obtain parameter estimates that will enable us to make inferences about the software design’s reliability.   
 
The α and β parameters are 638.7 and 0.980210544, respectively.  Figure 8 below shows that based on the 
current software design, about 29.5 percent of the software functionality should survive at least at the 
121st cycle or threshold of $638.7.  Since β borderlines between less than 1.0 and close to 1.0, there are 
two possibilities: (a) 1.0 indicates a constant failure rate, which means that the software functionality 
components that have survived burn-in will subsequently exhibit a constant failure rate; (b) less than 1.0 
indicates that the product has a decreasing failure rate, a feature of "infant mortality" indicating that the 
product is failing during its ”burn-in“ period.  



 
Figure 8:  Approximately 30 percent of the software functionality should survive at least 121 cycles or at the 
$638.7 threshold. 

To estimate λ, consider the frequency of loss daily data for software shown in Figure 9.  The first column 
shows the potential number of errors of this category per day, beginning at 0 and ending at 10.  For each 
data quality error category, the number of observations is recorded in column i and the number of events 
per day is logged in column n.  The product of both columns is placed in the third column, i * n.  
Summing the third column and dividing it by the number of events equates to an estimate of λ, which is 
49.45.    
 

 
Figure 9:  Poisson model parameter estimation based on frequency of loss data 

As explained in the methods section, we obtain aggregate operational risk losses by collecting data on 
frequency and severity of losses for a particular operational risk type and then fitting a frequency and 
severity of loss model to the data.  The simplest technique to obtain this result is Monte Carlo simulation 
through the following steps: (a) choose a severity of loss and frequency of loss probability model—this 
was accomplished through a Poisson frequency of loss model and a Weibull severity of loss model; (b) 
simulate the number of losses and individual loss amounts and then calculate the corresponding aggregate 
loss; (c) repeat many times (at least 5000 times) to obtain an empirical aggregate loss distribution.  The 
empirical results are displayed in Figure 10.  The Monte Carlo simulation shows that given the previously 
estimated Weibull parameters α and β and Poisson parameter λ, the current loss is approximately $43 
million.  At 95 percent confidence, the operational value at risk is equal to $59.62 million.  Given the 
frequency and severity of loss model, we compute the aggregate operational loss distribution of each risk 



type and business line—data quality errors stemming from underlying software functional failure and 
business process inconsistencies.  This is similar to the way financial institutions determine the cost of 
capital; the estimated OPVAR at $59.72 million is the “capital” required by data quality managers that 
could be used to mitigate operational loss experience across business lines in the Enterprise.   
 

 
Figure 10:  Monte Carlo simulation results 

 
DISCUSSION 
Thus far, the paper has focused on controlling operational risk; to do so, the risk must first be measured.   
Unfortunately, operational value at risk is not the optimal measure of risk because aggregating individual 
risks does not increase overall risk, or is not a coherent risk measure [8, p. 110].  A consistent alternative 
to OPVAR is expected shortfall (ES), which is the average value of losses that can be expected if a loss in 
excess of OPVAR is observed.  [8] states that “ES informs data quality managers how much might the 
organization expect to lose if an event in the tail of the distribution does occur.”  Figure 11 shows the 
results of the probability weighted average loss beyond OPVAR, which is done by slicing the tail of the 
aggregate loss distribution above the OPVAR confidence level into N slices and then calculating the 
percentile of each slice.  The results show that the average of these slices provides an estimated ES of 
$63.5 million.  This value is larger than the estimated OPVAR value of $59.72 million because “it reflects 
what one can expect to lose on average if an event beyond OPVAR occurs.” 
 

 
Figure 11:  Expected Shortfall results 

 
LIMITATIONS 
Other risk-measuring techniques, such as the probability weighted average loss beyond OPVAR, and 
other algorithms with properties that a good risk metric should possess could be more optimal than 
OPVAR itself.  When aggregating individual risks does not increase overall risk due to a non-coherence 
risk measure violation, OPVAR cannot become the optimal risk measuring technique.  While the proof of 
this coherent risk measure violation is beyond the subject of this paper ([8], p. 110), readers will only 
need to be aware of the context of two random uncorrelated losses X and Y and a risk measure that is 



denoted by ρ().  If ρ() is an optimal risk measure, it will have to satisfy the subadditivity criteria: For all X 
and Y, ρ (X+Y)≤ ρ (X) + ρ (Y), which implies that aggregating individual risks does not increase overall 
risk.  Thus ES is used as the average value of losses that can be expected from data quality problems if a 
loss is observed in excess of OPVAR. 
 
CONCLUSION 
In this paper, we address how data quality is likely linked to failed business processes that pose 
operational risks to the Enterprise system.  Operational value at risk is at least one of the proposed tools to 
estimate appropriate costs required to mitigate data-quality-driven IT functionality problems.  We 
estimate OPVAR by constructing the aggregate loss distribution, assuming that simulated losses are a 
result of the combined frequency and severity of loss distributions through the Weibull and Poisson 
models.  For each frequency/severity of loss model, the parameters α, β, and λ must be estimated before 
loss distribution can be simulated.  DQ managers will benefit from knowing that risk measures such as 
operational value at risk or expected shortfall (approximately $63.5 million in this case study) can be 
estimated by fitting the loss distribution of the organization. 
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