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A Global Control Strategy for
Efficient Control of a Braille
Impact Hammer
A combined control scheme relying on feedback-based local control in the vicinity of
periodic system responses and global control based on a coarse-grained approximation
to the nonlinear dynamics is developed to achieve a desirable dynamical behavior of a
Braille printer impact hammer. The proposed control methodology introduces discrete
changes in the position of a system discontinuity at opportune moments during the ham-
mer motion while the hammer is away from the discontinuity, thereby exploiting the
recurrent contacts with the discontinuity to achieve the desired changes in the transient
dynamics. It is argued that, as the changes in the position of the discontinuity affect the
motion only indirectly through changes in the timing and state at the subsequent contact,
the control actuation can be applied over an interval of time during the free-flight motion
as long as it is completed prior to contact. A forced, piecewise smooth, single-degree-of-
freedom model of a Braille impact hammer is used to illustrate the methodology and to
yield representative numerical results. �DOI: 10.1115/1.2159033�
1 Introduction
A Braille printer is an automated device that produces se-

quences of dots on paper representing Braille text for visually
impaired persons �1,2�. Here, the motion of a movable mass is
excited in order to generate repeated impacts between the mass
and an anvil resulting in indentations in the paper being fed past
the anvil. The quality of the resulting printout is reflected in the
readability and durability of the dots. Low-velocity impacts result
in weak dots that reduce readability. On the other hand, high-
velocity impacts may result in holes in the paper. Moreover, if the
movable mass is not retrieved from the anvil immediately follow-
ing the impact, the motion of the paper past the anvil may result in
tears. These observations impose constraints on the design and
function of a Braille printer. Impact hammers similar to those used
in a Braille printer are also common in matrix printers that apply
color on paper to produce hard-copy computer output. Although
the aim is not to generate measurable indentations in the paper,
similar considerations apply to their design.

The presence of impacts results in an inherently nonlinear me-
chanical system, even when the excitation and the material re-
sponse is linear. One would thus expect that Braille printers could
exhibit highly irregular system responses, the coexistence of mul-
tiple system attractors, and bifurcations in system behavior �see
�1,2�, but also �3–5� in the case of matrix printers�. The nons-
moothness originating in discontinuous changes in system state or
forcing due to impacts could further result in discontinuity-driven
bifurcations, such as those associated with grazing, zero-velocity
contact.

Improvements in the function of impact-hammer-based printing
devices may be achieved through passive redesign of system
properties or the active imposition of feedback control �e.g.,
�2,6,7��. A typical design objective may be to increase the rate at
which impacts can be generated �and thus the printing speed�,
while maintaining print quality.

The purpose of this paper is to outline a control strategy of a
Braille impact hammer that presupposes the coexistence of mul-
tiple recurrent system responses and exploits the presence of dis-
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continuities for affecting their stability. The paper proposes im-
provements in a previously studied local control algorithm �2,7�
and appends this to a global control strategy based on a coarse
discretization of the system dynamics.

The paper is organized as follows. Section 2 presents a brief
review of the model formulation and its dynamics. The control
methodology is developed in Sec. 3, followed by representative
numerical results in Sec. 4 and a concluding discussion in Sec. 5.

2 Mathematical Model
Following Jerrelind and Dankowicz �2�, the motion of the im-

pact hammer is modeled using a single-degree-of-freedom system,
see Fig. 1. Here, the spring-loaded core is excited by an electro-
magnetic force generated by a current pulse through a surrounding
coil. Collisions with the front and back stops are modeled as per-
fectly inelastic impacts with associated changes in the total mov-
ing mass.

To account for the explicit time dependence of the system forc-
ing, let the state of the dynamical system governing the impact
hammer be given by

x = �x ẋ t�T, �1�

where x denotes the hammer’s horizontal displacement, ẋ is its
horizontal velocity, and t is time. The dynamics of the hammer are
modeled through a combination of smooth changes in the state
described by appropriate differential equations and discontinuous
changes in the state associated with the transitions between free-
flight motion and contact with the front or back stop, respectively.
Specifically, we introduce two event functions

hfs�x� = x − s , �2�

hbs�x� = x − � , �3�

whose zero-level surfaces in state space correspond to the onset
and termination of contact with the front and back stop, respec-
tively. Here, we assume that crossings of the zero-level surface of
hfs for ẋ�0 result in discrete changes in the state given by the

jump function
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gfront impact�x� = �x
mcore

mcore + mfs
ẋ t�T

, �4�

where mcore and mfs are the masses of the core and front stop,
respectively. Similarly, crossings of the zero-level surface of hbs
for ẋ�0 result in discrete changes in the state given by the jump
function

gback impact�x� = �x
mcore

mcore + mbs
ẋ t�T

, �5�

where mbs is the mass of the back stop.
The differential equations governing smooth changes in the

state are given by the vector field

f�x� =�
ẋ

1

meff
�Fspring + Fmag + �hfs � 0	Ffs + �hbs � 0	Fbs�

1

 ,

�6�
where

meff = mcore + �hfs � 0	mfs + �hbs � 0	mbs, �7�

Fspring = − k�x + dspring� , �8�

Fmag = I2�t��L1x + L0� , �9�

Ffs = − kfs�x − s + dfs� − cfsẋ , �10�

Fbs = − kbs,1�x − ��2 − kbs,2�x − �� − cbsẋ , �11�
and the Boolean expressions evaluate to 1 when true and 0 other-
wise. The terms dspring and dfs refer to the preload of the spring
and the front stop, respectively. A graph of the form of the current
pulse I�t� is presented in Fig. 2. For numerical values of the pa-
rameters used in the discussion below see Table 1.

Fig. 1 Schematic model of the Braille printer impact hammer
Fig. 2 Approximated current pulse †2‡
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The formulation above in terms of a smooth dynamics de-
scribed by the vector field f and discrete dynamics described by
the event functions hbs and hfs and the associated jump functions
gback impact and gfront impact, respectively, can be easily imple-
mented in MATLAB using the built-in event-handling routines.

The maximum rate at which dots may be generated is limited
by the minimum lag time Tlag between subsequent pulses. Figure
3 shows the steady-state impact-hammer dynamics that result
from a periodic excitation under variations in Tlag for �=0. Here,
large values of Tlag correspond to a periodic system response of
the same period as that of the excitation. As Tlag is decreased,
stability is lost at a cyclic fold bifurcation, after which the system
exhibits a highly irregular response. As indicated in the figure, it is
possible to delay the onset of the irregular motions by statically
shifting the back stop in the direction of the paper, i.e., increasing
�.

3 Control Methods
The numerical results presented above reflect the response of

the impact hammer to a periodic excitation. This is in contrast to
the typical excitation used in practice, where a preselected se-
quence of current pulses is used to produce dots according to a

Table 1 Specification of parameters for the Braille printer
model †2‡

Fig. 3 Bifurcation diagram of the steady-state response of the
impact hammer to a periodic current pulse under variations in
lag time Tlag. Here, the gray curves indicate the shift of the
periodic-trajectory bifurcation curves under variations in the

position of the back stop, �.
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desired pattern. There, Tlag is chosen such that the hammer is
allowed to come to rest against the back stop �as a result of a large
dissipation of energy in the collision with the back stop� prior to
the following pulse. This ensures a repeatable starting condition
and guarantees that a high-quality dot may be generated per pulse.
Contrary to the steady-state results in Fig. 3, the current operating
paradigm thus relies primarily on transient dynamics.

An alternative to the design based on the transient system re-
sponse is provided by considering the use of feedback control to
switch between different steady-state motions under periodic ex-
citation with different impact velocities. For example, Fig. 3
shows the coexistence of multiple periodic system responses
�stable and unstable� corresponding to low- and high-velocity im-
pacting motions over certain ranges in Tlag. The feedback algo-
rithm could then be designed to guide the actual response between
these periodic motions and thus switch between impacts that re-
sult in readable dots and impacts that do not.

Here it is proposed to control the observed dynamics of the
impact hammer by exploiting the regular impacts between the
hammer and the back stop. In particular, feedback-based, discrete
changes in the position of the back stop that are introduced at
opportune moments during the hammer’s free-flight phase may
have significant effect on the impact velocity following the next
contact between the hammer and the back stop. Indeed, the sug-
gested changes do not directly affect the system dynamics at the
time that they are made. Instead, it is only by affecting the timing
of the subsequent contact, the resultant change in momentum, and
the timing of the release from the back stop that the imposed
change indirectly controls the system dynamics.

From the above observations, it follows that the changes in the
position of the back stop may be modeled as instantaneous, as
long as they are completed before contact occurs. Finally, as the
proposed control strategy relies on contact between the hammer
and the back stop, it has no effect on trajectories that fail to impact
the back stop.

3.1 Local Control. In a previous paper ��2�, see also �7��, a
control strategy was introduced to affect the local stability char-
acteristics of a periodic system response of the impact hammer.
There, discrete changes were made to �—the value of x that cor-
responds to the onset and termination of contact between the ham-
mer and the back stop—whenever the state reached a Poincaré
section Pcontrol given by the zero-level surface of the event func-
tion

hcontrol�x� = x − d , �12�

for some constant ��d�s. Specifically, the control law

� → �ref + c · �x − x * � �13�

was considered, where �ref is a preselected reference value for the
position of the back stop, c is a row matrix of gain parameters,
and x* is a comparison state on Pcontrol. Given a periodic trajec-
tory that intersected Pcontrol transversally in the point xref, the goal
was to find optimal values for the entries of c and a suitable
method for selecting x* that would achieve a desirable objective in
terms of the local stability of the periodic motion.

Two local control strategies were proposed in �2�, referred to as
reference feedback and delay feedback. In the case of reference
feedback, the comparison state x* was chosen to equal the known
quantity xref. In contrast, in the case of delay feedback, the com-
parison state x* was chosen to equal the value of x at the previous
intersection with the Poincaré section Pcontrol. As this did not re-
quire knowledge of xref, it was suggested that delay feedback
would result in a more robust control strategy.

To analyze the effect of the control strategy on the local stabil-

ity of the periodic trajectory, the augmented state
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x̃ = �x � x * �T. �14�

is introduced. Smooth changes in x̃ are then described by the
augmented vector field

f̃�x̃� = �f�x,�� 0 0�T �15�

In addition to the discrete changes in x̃ associated with the onset
of contact with the front and back stop, respectively, an additional
discrete change in x̃ will now occur whenever the trajectory
crosses Pcontrol for ẋ�0 given by the jump function

g̃control�x̃� = �x �ref + c · �x − x * � x * �T �16�

in the case of reference feedback and

g̃control�x̃� = �x �ref + c · �x − x * � x�T �17�
in the case of delay feedback.

Let x̃ref= �xref �ref xref�T. Then, in the absence of the discrete
changes in x̃ due to g̃control, the system dynamics near the given
periodic trajectory can be described by the Poincaré map

P̃�x̃� = �P�x,�� � x * �T, �18�

for which

P̃�x̃ref� = x̃ref. �19�

In fact, even in the presence of the discrete changes in x̃ due to
gcontrol,

P̃ � g̃control�x̃ref� = P̃�x̃ref� = x̃ref, �20�

i.e., the existence of the periodic trajectory is not affected by the
proposed control.

In the absence of control, the local flow near the periodic tra-
jectory is to lowest order captured by the matrix

P̃x̃�x̃ref� = �Px
ref P�

ref 0

0 1 0

0 0 Id

 , �21�

where Px
ref=Px�xref ,�ref� and P�

ref=P��xref ,�ref�. In the presence of
control, the corresponding matrices are

P̃x̃�x̃ref� · g̃control,x̃�x̃ref� = �Px
ref + P�

ref · c 0 − P�
ref · c

c 0 − c

0 0 Id

 �22�

in the case of reference feedback and

P̃x̃�x̃ref� · g̃control,x̃�x̃ref� = �Px
ref + P�

ref · c 0 − P�
ref · c

c 0 − c

Id 0 0

 �23�

in the case of delay feedback. For example, the nontrivial eigen-
values of these matrices are given by the roots of the equation

�Px
ref + P�

ref · c − �Id� = 0, �24�

in the case of reference feedback and

��2Id − ��Px
ref + P�

ref · c� + P�
ref · c� = 0 �25�

in the case of delay feedback.
Since P�x ,�� lies on Pcontrol, it follows that the first row of Px

ref

and P�
ref must equal zero. Consequently, the first row of P�

ref ·c
must also equal zero. It is now straightforward to show that there
are only two nontrivial eigenvalues in the case of reference feed-
back and only three nontrivial eigenvalues in the case of delay
feedback. In contrast, as the first component of x−x* automati-
cally equals zero on Pcontrol, it follows that only the last two com-
ponents of c remain to affect the local stability of the periodic
trajectory. In the case of reference feedback, it is, in fact, possible

to express the components of c in terms of a pair of desirable
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eigenvalues �except for a restricted set of numerical values for the
components of Px

ref and P�
ref� although we refrain from showing

the explicit formulas. As the number of eigenvalues in the case of
delay feedback exceeds by one the number of control parameters,
there are no such corresponding expressions in the case of delay
feedback.

To improve on the local control strategy discussed here and, in
particular, to be able to fully control the eigenvalues associated
with delay feedback due to its desirable independence of xref, the
jump function associated with delay feedback is modified to

g̃control�x̃� = �x � + c��� − �ref� + c · �x − x * � x�T, �26�

where c��0 is an additional control value �the previous formula-
tion corresponds to the special case c�=−1�. It now follows that
the local flow near the periodic trajectory is to lowest order cap-
tured by the matrix

P̃x̃�x̃ref� · g̃control,x̃�x̃ref� = �Px
ref + P�

ref · c �1 + c��p�
ref − P�

ref · c

c 1 + c� − c

Id 0 0

 .

�27�
It is straightforward to show that there are again only three non-
trivial �nonzero� eigenvalues of this matrix. It is now possible to
express the last two components of c and the control parameter c�
in terms of a triplet of desirable eigenvalues �except for a re-
stricted set of numerical values for the components of Px

ref and
P�

ref� although we again refrain from showing the explicit formu-
las. For example, it is now typically possible to achieve a super-
stable periodic trajectory by selecting values for the control pa-
rameters that yield all zero eigenvalues. �Some further properties
of the local control strategies are considered in the Appendix.�

3.2 Global Control. The linear nature of the local control
strategies discussed in the previous section limits their applicabil-
ity for global control purposes. For example, while it may be
possible to switch between different periodic motions by manipu-
lating c and x* in the case of reference feedback and c� and c in
the case of delay feedback �cf. �2��, the transitions are typically
accompanied by significant transients.

To address the need for a global control strategy, the idea of

approximating the global Poincaré map P̃�x̃� by a cell mapping
�8� defined on �a subset of� Pcontrol is proposed. Specifically, at-
tention is restricted to points on Pcontrol that lie on trajectories that
impact the front and back stops only once before again returning
to Pcontrol. A rectangular grid is introduced on the set of allowable
initial conditions and the grid cells are numbered appropriately.
Each cell is then associated with the number of the cell within
which the trajectory based at the center of the original cell inter-
sects Pcontrol after one iteration. The corresponding mapping is

clearly a discrete approximation to the global Poincaré map P̃.
Here, approximation errors arise from the fact that the images of

all points in a cell under P̃ are approximated by the image of the
center point. Such errors are thus related to the grid resolution and
the nonlinearity of the dynamical system.

The approximate Poincaré map obtained through the cell map
technique can now be combined with either or both of the local
control strategies to yield a global control scheme. Here, the cell
map data are mined to find an appropriate value of � that will
result in a desirable value of x at the next intersection with Pcontrol
that is suitable for subsequent application of the local strategies.
The possibility of using the cell map information to control the
value of x several iterates downstream is typically compromised
by the loss of accuracy associated with the grid resolution.

4 Numerical Results
The performance of the control scheme proposed above is il-
lustrated by considering the possibility of generating a predeter-
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mined sequence of high- and low-velocity impacts between the
hammer and the front stop. This corresponds to a working sce-
nario under which the position of the back stop is used to select
between impacts that will generate a dot on the paper and impacts
that will not.

Let �ref=0 mm, Tlag=0.00165 s, and d=2.5 mm. Denote im-
pacts with impact velocities in the range �2.0, 2.2� as “strong” and
in the range �1.1, 1.5� as “weak.” The backward-in-time images of
these regions under the free-flight flow are shown in Fig. 4. Here
we again omit trajectories that impact more than once in forward
time prior to returning to Pcontrol.

For the chosen parameter values there exist a high-impact-
velocity stable periodic trajectory at

x1
ref � �0.0025 2.14 0.00252�T, �28�

such that

Px
ref1 � � 0 0 0

68.4 0.1168 − 154.4

− 0.00632 − 0.0001079 0.1427

 , �29�

P�
ref1 � � 0

462

− 0.800

 , �30�

and a low-impact velocity unstable periodic trajectory at

x2
ref � �0.0025 1.32 0.00350�T, �31�

such that

Px
ref2 � � 0 0 0

623 1.231 − 748

1.041 − 0.00206 1.250

 , �32�

P�
ref2 � � 0

1147

− 2.53

 �33�

�cf. Fig. 4�.
For each of these periodic trajectories, the linear approxima-

tions afforded by Eqs. �22� and/or �27� may be used to arrive at
values for the gain parameters c and c�. As indicated previously,
closed-form expressions may be obtained for the gain parameters
in terms of a set of desirable eigenvalues. For example, all zero
eigenvalues in the case of delay feedback correspond to

c2 = 0.0000598, c3 � − 0.0791, c� � − 1.350 �34�

Fig. 4 The backward-in-time images of trajectories based at
initial conditions at the front stop with strong „high impact
velocity… and weak „low impact velocity… impacts under the
free-flight flow. Here, the dots refer to the location of periodic
system responses.
for the high-impact trajectory and
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c2 � − 0.000926, c3 � 0.397, c� � 0.0844, �35�
for the low-impact trajectory. Similarly, in the case of reference
feedback, closed-form expressions may be obtained for the gain
parameters that minimize the ratio between the distance from xref

at subsequent intersections with Pcontrol. For example, defining the
distance by �ẋ2+500��2, where �= t modulo the period T of the
excitation, yields

c2 � − 0.000202, c3 � 0.268 �36�
for the high-impact trajectory and

c2 � − 0.000931, c3 � 0.566 �37�
for the low-impact trajectory.

Finally, construct a cell mapping on a 40�80�40 rectangular
grid on the volume 1.0� ẋ�3.0, 0�� /T�1, and −0.002��
�0.002.

The existence of the periodic trajectories in the high- and low-
impact-velocity regions in Fig. 4 suggests using the cell map data
to reach a local neighborhood of the desirable periodic trajectory
and the local control to remain within this neighborhood. Here,
the nonlocal strategy is designed to select the value of � that �i�
lies inside the corresponding region in Fig. 4 and �ii� minimizes
the distance �as defined above� to the appropriate periodic trajec-
tory. Moreover, once inside the local neighborhood of the desir-
able periodic trajectory, reference feedback using the above gain
parameter values is applied at most three consecutive iterations,
after which delay feedback is applied using the above gain param-
eter values. It is assumed that ��� may not exceed 2 mm and that
the extreme value is used whenever the feedback suggests a value
of ��� larger than 2 mm.

Consider, as an example, the impact pattern

0 − 1 − 1 − 0 − 0 − 0 − 0 − 0 − 1 − 1 − 1

where 1 represents a strong impact and 0 a weak impact. Figures
5 and 6 show the time evolution of ẋ, 0, and � for the desired
impact pattern using reference feedback along and using the com-
bined control scheme, respectively. Here, we note that while ref-
erence feedback is able to achieve a switch between the low- and
high-impact-velocity regions, this is accompanied by significant
transients, especially when attempting to reach the high-impact-
velocity region. In contrast, the combined control scheme is able
to eliminate these transients in favor of a rapid convergence to-
ward the desired periodic trajectory.

5 Discussion
The control strategy implemented here offers an alternative to

the operating mode of existing impact-hammer based printing de-
vices. Where current devices use the transient dynamics of the
impact hammer to achieve a desirable impact velocity, assuming
that the hammer essentially comes to rest in between pulses, the
proposed strategy relies on the existence of desirable recurrent
motions for the uncontrolled system. Indeed, in current designs,
part of the energy injected into the hammer from the coil current
is used to overcome static friction. As the proposed strategy relies
on keeping the hammer in constant motion, this is avoided. On the
other hand, the proposed strategy may result in higher heat gen-
eration than the current control strategy as it keeps the current
pulses coming even when the hammer is in the weak-impact
mode.

The success of the proposed scheme suggests the possibility of
redesigning the back stop to reduce the amount of energy lost in
collisions of the impact hammer with the back stop. Coupled with
a reduction in the amplitude of the current pulse, this might allow
for a switching between strong and weak �or no� impacts with an
overall reduction in energy consumption and subsequent heat gen-
eration. This is clearly an area for more careful study and should
be integrated with a careful discussion of the practical means by

which both the sensing �corresponding to Pcontrol� and the control
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�for example, using stacked, amplified piezoactive actuators for
stroke lengths up to fractions of 1 mm� can be implemented in an
actual impact hammer.
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Nomenclature
x , ẋ , ẍ 	 displacement, velocity and acceleration of the

core
t 	 time

mcore 	 mass of core
mfs 	 mass of front stop
mbs 	 mass of back stop

Fig. 6 Dynamic response of the impact hammer under the
combined control scheme. Here, the desired impact pattern
0-1-1-0-0-0-0-0-1-1-1 governs the switch between the appropri-
ate values of xref and the associated gain parameter values.
Specifically, panels „a… and „d… depict the time evolution of the
hammer velocity including discrete points representing the ve-
locity at the Poincaré section „panel „a…… and the velocity at the
impact with the front stop „panel „d……. Panels „b… and „c… show
the time evolution of � and �, respectively, including discrete
points representing their values upon leaving the Poincaré sec-
tion, i.e., after the imposition of g̃control.
k 	 stiffness of helical spring
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kfs 	 stiffness of front stop
kbs,1 ,kbs,2 	 stiffness of back stop

cfs 	 damping of front stop
cbs 	 damping of back stop

s 	 position of front stop
� 	 position of back stop

dspring 	 initial deformation of the spring
dfs 	 initial deformation of the front stop

L ,L0 ,L1 	 coil inductance
I�t� 	 current
Tlag 	 lag time between current pulses

Appendix
The linear control strategies discussed in this paper are charac-

terized in the context of the local stability of an existing �and
persistent� periodic trajectory of the uncontrolled system. As sug-
gested above, it is possible to select numerical values for the
control parameters that will result in arbitrary eigenvalues for the
linearization about the periodic trajectory. Indeed, as long as the
resultant nontrivial eigenvalues are kept away from 1, the implicit
function theorem guarantees that there are no additional periodic
trajectories with a single intersection with the Poincaré section
Pcontrol in some neighborhood of x̃ref. The implicit function theo-
rem does not, however, make any claims regarding the global
behavior of the controlled system.

Consider, for example, the dynamical system obtained by ap-
plying reference feedback with a particular value of �ref to the
original system for arbitrary values of x on Pcontrol. Then, for a
periodic trajectory of this system with a single intersection x̃
= �x � x*�T with Pcontrol

x̃ = � P�x,��
�ref + c · �P�x,�� − x * �

x*

 . �A1�

It follows that x must lie on a periodic trajectory of the uncon-
trolled system with �=�ref+c · �x−x*� for some x*. In contrast, in
the case of delay feedback, for a periodic trajectory with a single
intersection x̃= �x � x*�T with Pcontrol

x̃ = � P�x,��
� + c��� − �ref� + c · �P�x,�� − x * �

P�x,��

 . �A2�

It follows that x must lie on a periodic trajectory of the uncon-
trolled system with �=�ref. Thus, while new periodic trajectories
with a single intersection with Pcontrol may occur in the controlled
system with reference feedback, this cannot happen with delay
feedback. Similar conclusions hold for periodic trajectories with
multiple intersections with Pcontrol.
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