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Abstract. This paper deals with general linear multistep methods (LMMs) for the numerical solution of
initial value problems. In the context of semi-discretizations of nonlinear time-dependent partial differential
equations, much attention was paid to LMMs fulfilling special stability requirements, indicated by the terms
total-variation-diminishing (TVD), strong stability preserving (SSP) and monotonicity. Stepsize restrictions,
for the fulfillment of these requirements, were studied by Shu & Osher [J. Comput. Phys., 77 (1988) pp. 439-
471 and in numerous subsequent papers.

These special stability requirements imply essential boundedness properties for the numerical methods,
among which the property of being total-variation-bounded (TVB). Unfortunately, for many LMMs, the
above special requirements are violated, so that one cannot conclude via them that the methods are (total-
variation-)bounded.

In this paper, we focus on stepsize restrictions for boundedness directly - rather than via the detour of
the above special stability requirements. We present conditions by means of which one can check, for given
LMMs, whether or not nontrivial stepsize restrictions exist guaranteeing boundedness.

We illustrate the relevance of the above conditions by applying them to various classes of well-known
LMMs, hereby supplementing earlier results, for these classes, given in the literature.

Key words. initial value problem, semi-discretization, ordinary differential equation, nonlinear hyper-
bolic partial differential equation, linear multistep method (LMM), monotonicity, strong-stability-preserving
(SSP), total-variation-diminishing (TVD), boundedness, total-variation-bounded (TVB).
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1 Introduction

1.1 Stepsize-coefficients for monotonicity

In this paper we deal with the numerical solution of initial value problems, for systems of ordinary
differential equations which can be written in the form

(1.1)
d

dt
u(t) = F (u(t)) (t ≥ 0), u(0) = u0.

Here F : V → V denotes a given function from a vector space V into itself, u0 ∈ V is given, and
u(t) ∈ V is unknown (for t > 0).

The general linear multistep method (LMM), for solving initial-value problems, yields approx-
imations un ≈ u(n∆t), where ∆t denotes a positive stepsize. The method can be written in the
form

(1.2) un =

k∑
j=1

aj un−j + ∆t

k∑
j=0

bj F (un−j).
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Here k ≥ 1 is a fixed integer – the step-number – and aj , bj are coefficients specifying the method.
The vectors un are computed successively from preceding approximations un−k, . . . , un−1 using (1.2)
for n ≥ k. The method is called explicit if b0 = 0, and implicit otherwise.

Throughout the paper, we assume that

(1.3)

k∑
j=1

aj = 1,

k∑
j=1

j aj =

k∑
j=0

bj ,

which amounts to requiring consistency of the method, cf. e.g. Butcher [1], Hairer, Nørset & Wanner
[5], Henrici [8].

In the following, ‖ · ‖ denotes a seminorm on the vector space V. Much attention has been paid
in the literature to situations where the approximations un satisfy

(1.4) ‖un‖ ≤ max
1≤j<k

‖un−j‖.

This inequality has often been referred to by the term monotonicity or strong stability. It is of
particular importance in situations where the initial value problem (1.1) results from (method of
lines) semidiscretizations of time-dependent partial differential equations. Choices for ‖ · ‖ which
occur in that context, include e.g. the supremum norm ‖x‖ = ‖x‖∞ = supi |ξi| and the total
variation seminorm ‖x‖ = ‖x‖TV =

∑
i |ξi+1 − ξi| (for vectors x with components ξi). Numerical

processes, satisfying ‖un‖TV ≤ max{‖un−1‖TV , . . . , ‖un−k+1‖TV }, play a special role in the solution
of hyperbolic conservation laws and are called total-variation-diminishing (TVD), cf. e.g. Harten [7],
Shu [17], Shu & Osher [18], LeVeque [15], Hundsdorfer & Verwer [13].

In the literature, restrictions on ∆t can be found which guarantee the monotonicity property (1.4).
In most papers, a condition on F is imposed which essentially amounts to the basic assumption

(1.5) ‖v + τ F (v)‖ ≤ ‖v‖ (for all v ∈ V),

where τ denotes a given positive constant. We will say that γ is a stepsize-coefficient for monotonicity
of the LMM, if γ > 0 and the stepsize restriction

(1.6) 0 < ∆ t ≤ γ · τ

implies monotonicity, in the sense of (1.4), whenever V is a vector space with seminorm ‖ · ‖, and
F : V→ V satisfies the above basic assumption. A necessary and sufficient condition, for any given
γ > 0 to be such a stepsize-coefficient, is as follows:

(1.7) b0 ≥ 0, and aj ≥ 0, bj ≥ 0, γ bj ≤ aj (for 1 ≤ j ≤ k).

For the sufficiency of this condition, see e.g. Gottlieb, Ketcheson & Shu [4], Hundsdorfer & Ruuth
[11], Shu [17], Shu & Osher [18], and for the necessity, cf. Spijker [19], [20].

It follows from condition (1.7) that there is a stepsize-coefficient for monotonicity, if and only if

(1.8) b0 ≥ 0, aj ≥ 0, bj ≥ 0 (for 1 ≤ j ≤ k), and ai > 0 for all i ∈ {1, 2, . . . , k} with bi > 0.

Clearly, using criterion (1.8), it is very easy to check, for any given LMM, whether or not a stepsize-
coefficient exists for monotonicity.

1.2 Stepsize-coefficients for boundedness

Condition (1.8) requires evidently that all coefficients of the LMM are non-negative. Unfortunately,
many methods of practical interest fail to have this property – notably the well-known Adams-
Bashforth and Adams-Moulton methods as well as the backward differentiation methods (for k > 1),
see e.g. Hairer, Nørsett & Wanner [5], Henrici [8] and Section 5 of the present paper. Moreover, by
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Lenferink [14] (Theorem 2.2), a general negative result was proved for explicit methods with order
of accuracy p = k > 1: none of these methods have a stepsize-coefficient for monotonicity.

These circumstances suggest that there are situations where monotonicity may essentially be too
strong a theoretical demand. Accordingly, various authors were led to study, along with monotonic-
ity, the weaker boundedness property

(1.9) ‖uN‖ ≤ µ · max
0≤j<k

‖uj‖,

for approximations uN obtained by the LMM from starting vectors u0, . . . , uk−1. Here µ is a constant,
independent of N ≥ k, which is allowed to be greater than 1. This property, with ‖ · ‖ = ‖ · ‖TV ,
is known as total variation boundedness (TVB), which is of crucial importance in the solution of
hyperbolic conservation laws, cf. e.g. LeVeque [15], Hundsdorfer & Verwer [13].

We will say that γ > 0 is a stepsize-coefficient for boundedness of the LMM, if a constant µ
exists such that the stepsize restriction (1.6) implies the bound (1.9) (for all N ≥ k), whenever V is
a vector space with seminorm ‖ · ‖, and F : V→ V satisfies the basic assumption (1.5).

In the literature, LMMs were identified for which no stepsize-coefficient exists for monotonicity
but still for boundedness, notably by Hundsdorfer and co-authors, see [9], [10], [11], [12], [16] –
cf. also Section 5 of the present paper.

1.3 Purpose of the paper

The natural question arises of whether criteria (1.7) and (1.8) have simple counterparts which are
decisive for boundedness, rather than monotonicity.

A suitable counterpart of criterion (1.7) follows easily from the material in Hundsdorfer, Mozartova
& Spijker [9]. But, this variant of criterion (1.7) does not lead directly to a corresponding variant of
criterion (1.8) – in a similar easy way as criterion (1.7) leads to (1.8). In the literature, no general
and simple criterion seems to be available, thus far, for the existence of a stepsize-coefficient for
boundedness. In the present paper, we are looking for such a criterion.

Using results of Crouzeix & Raviart [3], Hundsdorfer, Mozartova & Spijker [9], Tijdeman [21],
we shall find simple conditions for the existence of a stepsize-coefficient for boundedness. We shall
apply these conditions to well-know classes of LMMs, viz. Adams-Moulton, Adams-Bashforth, Milne-
Simpson and Nyström methods as well as backward differentiation formulas and extrapolated ver-
sions thereof.

1.4 Outline of the rest of the paper

In Section 2 we give definitions and make basic assumptions, to be used in the rest of the paper.
Furthermore, we formulate the Theorems 2.1 and 2.2, which are related to the results mentioned
above of Crouzeix & Raviart [3] and Hundsdorfer, Mozartova & Spijker [9], respectively.

In Section 3 we formulate – without proof – our main result, Theorem 3.1. The theorem yields,
for a large class of LMMs, a relatively simple condition which is necessary and sufficient for the
existence of a stepsize-coefficient for boundedness. Moreover, the theorem leads to Corollary 3.3
which gives two general and still more simple conditions – one being sufficient and one necessary for
a stepsize-coefficient to exist.

Section 4 is devoted to proving Theorem 3.1. In Sections 4.2, 4.3 we first derive the two key
Lemmas 4.1 and 4.4; Tijdeman’s result, [21], plays a part in proving the latter lemma. Next, in
Section 4.4, these two lemmas are used, together with Theorems 2.1, 2.2, in the actual proof of
Theorem 3.1.

In Section 5 we illustrate Theorem 3.1 and Corollary 3.3 in an analysis of implicit and explicit
Adams methods and backward differentiation formulas, as well as of Milne-Simpson and Nyström
methods. The outcome of this analysis supplements earlier results for these methods given in the
literature.
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2 Some results from the literature

2.1 Definitions and basic assumptions

Any polynomial, with complex coefficients, will be said to satisfy the root condition if

(2.1) All roots ζ of the polynomial have a modulus |ζ| ≤ 1, and any roots of modulus 1 are
simple.

We adjoin to method (1.2) the following polynomials:

(2.2) a(z) = 1−
∑k

1 aj z
j , ρ(ζ) = ζk a(1/ζ) and

b(z) =
∑k

0 bj z
j , σ(ζ) = ζk b(1/ζ).

Consider the polynomial ρδ(ζ) = ρ(ζ)− δ · σ(ζ), depending on the parameter δ ∈ C. We define the
stability region S of the LMM to be the set of all δ ∈ C for which 1 − δ · b0 6= 0 and ρδ(ζ) satisfies
the root condition. We shall denote the interior of S by int(S).

Throughout the rest of the paper, it will be assumed that

(2.3) The polynomial ρ(ζ) satisfies the root condition,

(2.4) The polynomials ρ(ζ) and σ(ζ) have no common root.

These two conditions on the LMM amount to requiring zero-stability and irreducibility, respectively,
which are no practical restrictions, cf. e.g. [1], [5]. Furthermore, it will be assumed throughout that

(2.5) b0 ≥ 0.

This inequality is fulfilled for all well-known implicit LMMs, and trivially for all explicit ones.

2.2 Disks within the stability region

Boundedness of LMMs will be related, in Section 4.4, to the existence of values α > 0 with the
following geometric property:

(2.6) The disk {z : z ∈ C with |z + α| ≤ α} belongs to S.

In the present subsection we recall a criterion, given in the literature, for the existence of α > 0
satisfying (2.6).

To formulate the criterion, we need some definitions. Similarly as e.g. in [8], we refer to the roots
of ρ(ζ) with modulus equal to 1, say η1, . . . , ηq, as the essential roots; and we adjoin to them the
growth parameters λ1, . . . , λq, defined by

(2.7) λj =
σ(ηj)

ηj · ρ′(ηj)
.

We choose the numbering of the essential roots such that

(2.8) η1 = 1.

It can easily be seen (cf. e.g. [8]) that, corresponding to each essential root ηj , there is a root
ζ(δ) of the polynomial ρδ(ζ) with

(2.9) ζ(δ) = [1 + λj · δ +O(δ2)] · ηj (for δ → 0).

Using (2.9), the following theorem can be proved – see [3] (Chapter 1, Theorem 4.5).

Theorem 2.1 (Crouzeix & Raviart, 1980). There exists a value α > 0 with property (2.6), if and
only if all growth parameters λj are real and positive.
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2.3 A condition for stepsize-coefficients relevant to boundedness

In the literature, results were obtained yielding a condition that is necessary and sufficient in order
that a given γ > 0 is a stepsize-coefficient for boundedness. To formulate the condition, we introduce
values µn (for n ∈ Z) by the relations

(2.10) µn = 0 (n < 0), µn =
∑k
j=1 aj µn−j − γ

∑k
j=0 bj µn−j + bn (0 ≤ n ≤ k),

µn =
∑k
j=1 aj µn−j − γ

∑k
j=0 bj µn−j (n > k).

Clearly, the values µn depend on γ. For the sake of readability however, we suppress this dependence
in our notation.

From [9] (Theorem 4.1 and Lemma 4.3), one arrives easily at

Theorem 2.2. Any given γ > 0 is a stepsize-coefficient for boundedness if and only if

(2.11) −γ ∈ int(S) and µn ≥ 0 (for all n ≥ 1).

This theorem might – in principle – be used to check, numerically, whether for a given LMM
there exists any stepsize-coefficient for boundedness. But, because the µn depend on γ, an obvious
difficulty with this approach would lie in the formal necessity to check the inequalities µn ≥ 0 – not
only for all n ≥ 1 but possibly also – for infinitely many values γ > 0.

In the present paper, the above theorem will be used differently. It will play a part in deriving
a relatively simple condition which is sufficient for the existence of a stepsize-coefficient for bound-
edness – cf. below Theorem 3.1 (I) and Section 4.4. Moreover, Theorem 2.2 will play a part in
obtaining a slightly weaker condition which is necessary for the existence of a stepsize-coefficient –
cf. Theorem 3.1 (II) and again Section 4.4.

3 The main theorem and a corollary

To formulate our main result, Theorem 3.1, we introduce the values τn which are generated by the
above relations (2.10), if the factor γ in front of the sum

∑k
j=0 bj µn−j is replaced by 0, i.e.

(3.1) τn = 0 (n < 0), τn =
∑k
j=1 aj τn−j + bn (0 ≤ n ≤ k),

τn =
∑k
j=1 aj τn−j (n > k).

In the theorem, we will refer to the following condition:

τn ≥ 0 (whenever n ≥ 1),(3.2.a)

τj τn−j = 0 (for 1 ≤ j ≤ n− 1) whenever τn = 0.(3.2.b)

Theorem 3.1. (I) Assume that ζ = 1 is the only essential root. Then condition (3.2) implies the
existence of a stepsize-coefficient for boundedness.
(II) Conversely, assume there exists a stepsize-coefficient for boundedness. Then condition (3.2) is
fulfilled, and all growth parameters λj are equal to 1.

The theorem will be proved in Section 4.
Clearly, Theorem 3.1 doesn’t give – for the full class of LMMs – a single condition that is at the

same time necessary and sufficient, for the existence of a stepsize-coefficient. But, the theorem does
yield such a condition, e.g, within the – slightly restricted – class of LMMs for which

(3.3) ζ = 1 is the only essential root with growth parameter λj = 1.

For such LMMs, the theorem evidently shows that a stepsize-coefficient for boundedness exists if
and only if

(3.4) ζ = 1 is the only essential root, and (3.2) holds.
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Remark 3.2. Without the restriction (3.3), condition (3.4) would no longer be a sufficiently general
criterion for the existence of a stepsize-coefficient. This can be seen from a counterexample, e.g. (5.8)
or (5.9) in Section 5.5.

Using consistency and zero-stability of the LMM, it can be seen that there is an index n with
1 ≤ n ≤ k and τn 6= 0. The smallest of such indices will be denoted by n0, i. e:

n0 = min { n : 1 ≤ n ≤ k and τn 6= 0 }.

The following corollary, to the above theorem, involves the simple conditions

(3.5) τn > 0 (for all n ≥ n0)

and

(3.6) τn ≤ 0 (for some index n ≥ n0 which is a multiple of n0) .

Clearly, (3.5 ) =⇒ (3.2). Furthermore, it is not difficult to see that property (3.6 ) violates (3.2).
We thus have the following consequence of Theorem 3.1:

Corollary 3.3. If (3.5) holds and ζ = 1 is the only essential root, then there exists a stepsize-
coefficient for boundedness. On the other hand, if (3.6) holds, then no such coefficient exists.

Condition (3.5) does, of course, not cover all situations where condition (3.2) is fulfilled. But,
when n0 = 1, either condition (3.5) or (3.6) must be fulfilled – so that: (3.5) ⇐⇒ (3.2). Checking
condition (3.2) is thus particularly simple in case n0 = 1. For all LMMs to be studied in Sections
5.1 - 5.4, the last equality will turn out to be in force.

Many methods of practical interest have a %-polynomial that has no essential roots different from
ζ = 1, cf. e.g. [5], [8]. Theorem 3.1 shows that, for all of these methods, criterion (3.2) is decisive for
the existence of a stepsize-coefficient for boundedness. Moreover, Corollary 3.3 shows that, for such
methods with n0 = 1, a stepsize-coefficient for boundedness exists if and only if the simple condition
(3.5) is fulfilled.

4 Proof of the main theorem

4.1 Preliminaries

We consider an arbitrary consistent, zero-stable and irreducible LMM, with b0 ≥ 0. We shall prove
below Parts (I) and (II) of Theorem 3.1. We have split up our proof in three steps, to be described
in the Sections 4.2, 4.3, 4.4, respectively.

With an eye to the condition on µn occurring in Theorem 2.2, we shall relate, in Section 4.2,
condition (3.2) to the non-negativity of µn for bounded n. Next, we shall analyse, in Section 4.3,
the non-negativity of µn for n → ∞. In Section 4.4, we shall complete the proof of Theorem 3.1,
using the conclusions of Sections 4.2, 4.3 and the material of Section 2.

4.2 Non-negativity of µn – for 1 ≤ n ≤ m

For given integer m ≥ 1, we shall denote by I the identity matrix of order m+ 1 and by E = (eij)
the square matrix, of order m+ 1, with eij = 1 for i = j + 1 and eij = 0 otherwise.

The values µn and τn (for 0 ≤ n ≤ m), defined by (2.10), (3.1), can conveniently be related to
each other by introducing the following lower triangular Toeplitz matrices (of order m+ 1):

(4.1) M =

m∑
j=0

µjE
j , T =

m∑
j=0

τjE
j .
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Using the polynomials a(z), b(z), introduced in Section 2, we can rewrite the relations defining µn
and τn (0 ≤ n ≤ m) as [a(E) + γ b(E)]M = b(E) and a(E)T = b(E), respectively. From the last
two equalities, one finds the expression

M = T (I + γ T )−1.(4.2)

In Lemma 4.1 below, the restrictions imposed on τn by condition (3.2) will be related to the
following non-negativity property of µn:

(4.3) For each m ≥ 1, a value γ[m] > 0 exists such that: µn ≥ 0 for all γ ∈ (0, γ[m]] and
1 ≤ n ≤ m.

Note that this property can be viewed as a variant of the property of µn occurring in Theorem 2.2
– the latter property being that µn ≥ 0 for fixed γ > 0 and all n ≥ 1.

Lemma 4.1. Property (4.3) is present if and only if the values τn satisfy (3.2).

Proof.
1. For any fixed m ≥ 1 and sufficiently small γ > 0, we see from the expression (4.2) that

M = T [I − (γT )2]−1 (I − γT ) = [I + (γT )2 + (γT )4 + . . . ] (T − γ T 2), which implies

(4.4) M = [I + (γT )2 + (γT )4 + . . . ]
m∑
n=0

(τn − γ σn)En, where σn =

n∑
j=0

τj τn−j .

It follows that (3.2) implies property (4.3).
2. Conversely, assume (4.3). Consider any m ≥ 1 and let γ ∈ (0, γ[m]]. All entries of the m×m

matrix M , corresponding to this γ, are non-negative.
By letting γ → 0 in the expression (4.4), we find (for 1 ≤ n ≤ m) that τn ≥ 0, and σn = 0 as

soon as τn = 0. Hence, (3.2) is in force. 2

4.3 Non-negativity of µn – for n > m

In this section we focus on another variant of the property of µn occurring in Theorem 2.2, viz.:

(4.5) γ0 > 0 and m ≥ 1 exist such that: µn ≥ 0 for all γ ∈ (0, γ0] and all n > m.

To study this property, it is convenient to analyse first the values vn defined by

(4.6) vn = 0 (n < 0), v0 = 1, vn =

k∑
j=1

aj vn−j − γ

k∑
j=0

bj vn−j (n ≥ 1);

because the solution µn of (2.10) can be represented as

(4.7) µn = (1 + γ b0)−1
k∑
j=0

bj vn−j .

Defining un = vn−k+1, we see that un satisfies the LMM-relations (1.2) (for n ≥ k), with
F (v) = −γ v, ∆ t = 1 and uk−1 = 1, ui = 0 (0 ≤ i ≤ k − 2). The values vn may thus be viewed
as LMM approximations arising in solving the test equation u′ (t) = −γ u(t). An analysis of such
approximations was given earlier in the literature, notably in [8], Section 5.3.1. Our analysis below
will differ from from the one in that reference; we will study the behavior of vn when γ and n tend
(independently of each other) to 0 and ∞, respectively, by using contour integration in the complex
plane.
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The behavior of vn (for n→∞) is governed by the roots of the equation ρ(ζ)+γ σ(ζ) = 0, which
we denote by ζj(γ) (1 ≤ j ≤ k). Indicating by ηj the essential roots, as in Section 2.2, we (can)
choose the numbering of the roots ζj(γ) such that

lim
γ→0

ζj(γ) = ζj(0), with ζj(0) = ηj (1 ≤ j ≤ q), |ζj(0)| < 1 (q < j ≤ k).

We define ξj(γ) = 1/ζj(γ) for ζj(γ) 6= 0, and choose positive ε, θ0, θ1, γ0 with θ0 < θ1 < 1 such
that, for all γ ∈ (0, γ0],

|1− ζj(γ) ξi(γ)| ≥ ε, (for 1 ≤ i ≤ q, 1 ≤ j ≤ q, i 6= j),

θ1 ≤ |ζj(γ)| ≤ 1/θ1 (for 1 ≤ j ≤ q) and |ζj(γ)| ≤ θ0 (for q < j ≤ k).

For such γ, the function f(z) =
∑∞

0 vn z
n is analytic on the disk |z| < θ1, and because of the

definition of vn, we have (1 + γ b0)−1 [a(z) + γ b(z)] f(z) = 1, which implies

f(z) =

∞∑
0

vn z
n = (1 + γ b0) [a(z) + γ b(z)]−1 =

k∏
1

[1− ζj(γ) z]−1 (for |z| < θ1).

We shall obtain a useful expression for vn, by combining the formula

(4.8) vn =
1

2πi

∮
|z|=θ0

z−n−1 f(z) dz

with the partial fraction decomposition f(z) = g(z) + h(z), where g(z), h(z) are defined by

g(z) =

q∑
i=1

{
[1− ζi(γ) z]−1

k∏
j=1

j 6=i

[1− ζj(γ) ξi(γ)]−1
}
, h(z) = f(z)− g(z).

It can be seen that

h(z) = H(z; ζ1(γ), . . . , ζk(γ))

k∏
j=q+1

[1− ζj(γ) z]−1,

where H(z; z1, . . . , zk) is a polynomial with respect to the variable z, as well as a continuous function
of (z; z1, . . . , zk) on the set specified by the inequalities

(4.9) |1− zj/zi| ≥ ε (for 1 ≤ i ≤ q, 1 ≤ j ≤ q, i 6= j),
θ1 ≤ |zj | ≤ 1/θ1 (for 1 ≤ j ≤ q), and |zj | ≤ θ0 (for q < j ≤ k).

Because h(z) is holomorphic for |z| < 1/θ0, we find, by inserting the decomposition f(z) =
g(z) + h(z) into (4.8), that

vn = I0 + I1, with I0 =
1

2πi

∮
|z|=θ0

z−n−1 g(z) dz and(4.10)

I1 =
1

2πi

∮
|z|=%

z−n−1 h(z) dz, where % =
1/θ0 + 1/θ1

2
> 1.

We have the expression

I0 =

q∑
i=1

αi(γ) ζi(γ)n where, for γ → 0,(4.11)

αi(γ) =

k∏
j=1

j 6=i

[1− ζj(γ) ξi(γ)]−1 =
(1 + γ b0) ζi(γ) k−1

%′(ζi(γ)) + γ · σ′(ζi(γ))
∼ (1 + γ b0) ζi(γ) k−1

%′(ζi(γ))
.
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Furthermore, defining µ = max |H(z; z1, . . . , zk)|, where the maximum is over the set specified by
the equality |z| = % and the inequalities (4.9), there follows |I1| ≤ µ · %−n. Combining the last
inequality with (4.10), (4.11), we see that there is a γ0 > 0 such that, for 0 < γ ≤ γ0 and n ≥ 0,

vn = (1 + γ b0)

q∑
i=1

[1 + εi(γ, n)]
ζi(γ)n+k−1

%′(ζi(γ))
where lim

γ→0
n→∞

εi(γ, n) = 0.

By inserting this expression for vn into (4.7) and applying the definition of the growth parameters,
(2.7), it can be seen that

µn =

q∑
i=1

[1 + Ei(γ, n)] λi ζi(γ)n where lim
γ→0
n→∞

Ei(γ, n) = 0.

From the expression (2.9) we have ζi(γ) = [1− λi γ +O(γ2)] · ηi (for γ → 0), which leads to

Lemma 4.2. There is a γ0 > 0 such that, for 0 < γ ≤ γ0, the values µn (n ≥ 1), defined by (2.10),
satisfy

(4.12) µn =

q∑
i=1

[1 + Ei(γ, n)] λi · η ni · exp{−λi γ n [1 +Di(γ)]},

where lim γ→0
n→∞

Ei(γ, n) = 0 and Di(γ) = O(γ) (for γ → 0).

When applying the above lemma for studying the non-negativity property (4.5), the following
theorem, given in [21], will be helpful:

Theorem 4.3 (Tijdeman, 2011). Let real values wj and distinct complex zj (for 1 ≤ j ≤ p) be given,
with all |zj | = 1, zj 6= 1. Assume for each index j there is an index i such that wi = wj , zi zj = 1.
Define sn =

∑p
j=1 wj z

n
j . Then

(4.13) lim inf
n→∞

sn ≤ −(|w1|+ · · ·+ |wp|)/p.

Using Lemma 4.2 in combination with the last theorem, we shall prove the following key lemma:

Lemma 4.4. (I) Assume there are no essential roots different from ζ = 1. Then the non-negativity
property (4.5) is present.
(II) Conversely, assume (4.5), and let all growth parameters λj be real. Then there are no growth
parameters different from 1.

Proof.
Part (I). Assume there are no essential roots different from ζ = 1.
Because q = 1, we see from the expression for µn, given in Lemma 4.2, that µn ≥ 0 as soon

as 1 + E1(γ, n) ≥ 0. Hence, µn ≥ 0 for all sufficiently small γ > 0 and sufficiently large n ≥ 1,
i.e. property (4.5) is present.

Part (II). Assume (4.5) is valid.
Suppose first that c = minj λj < 1. We choose γ = n−3/4 and let n → ∞. The exponential

expressions in (4.12) then satisfy

exp{−λi γ n [1 +Di(γ)]} = exp{−λi n1/4 +O(n−1/2)} ∼ exp{−λi n1/4}.

Assume, without loss of generality, that λq−p+1 = · · · = λq are the (only) growth parameters equal
to c. We split the expression in the right-hand member of (4.12) up into partial sums µ0

n and µ1
n;

the former sum containing the terms with 1 ≤ i ≤ q − p, and the latter containing those with
q − p+ 1 ≤ i ≤ q. For the first partial sum, we have

exp{c n1/4} · µ0
n −→ 0 (for n→∞),
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and for the second one

exp{c n1/4} · µ1
n − sn −→ 0 (for n→∞), where sn = c ·

q∑
i=q−p+1

η ni .

It can be seen that the conditions of Tijdeman’s theorem are fulfilled with zj = ηq−p+j , wj = c.
Hence,

lim sup
n→∞

sn ≤ −|c|.

Because the LMM is irreducible, cf. (2.4), all growth parameters must be different from zero, so that
|c| 6= 0. Therefore, the above implies: exp{c n1/4} · µn = exp{c n1/4} · (µ0

n + µ1
n) < 0 for γ = n−3/4

and infinitely many n ≥ 1 – which contradicts property (4.5). Hence, there are no λj < 1.
Next suppose all λj ≥ 1 and some λj > 1. We shall compare the values µn with the values

µ̃n =
∑q
i=1 λi η

n
i = 1 +

∑q
i=2 λi η

n
i . It can be seen that the conditions of Tijdeman’s theorem are

fulfilled with p = q − 1, wj = λ1+j , zj = η1+j . Therefore, for each ε > 0, there are infinitely many
n ≥ 1 with µ̃n ≤ 1 + ε− (λ2 + · · ·+ λq)/(q − 1) = ε+ α, where α = 1− (λ2 + · · ·+ λq)/(q − 1) < 0.
Hence, µ̃n ≤ α/2 < 0 for infinitely many n ≥ 1.

For γ = n−2, n→∞, we have µn − µ̃n → 0 so that also µn < 0 for infinitely many n ≥ 1. This
contradicts property (4.5), so that there can be no λj > 1. �

4.4 Actual proof of Theorem 3.1

1. Proving Part (I) of Theorem 3.1.
We assume that (3.2) holds, and there are no essential roots different from ζ = 1. By Lemma 4.4,
Part (I), there are γ0 > 0, m ≥ 1 with

µn ≥ 0 (whenever 0 < γ ≤ γ0 and n > m).

Corresponding to this m, there exists – by Lemma 4.1 – a value γ1 > 0 such that

µn ≥ 0 (whenever 0 < γ ≤ γ1 and 1 ≤ n ≤ m).

Theorem 2.1 implies the existence of a value γ2 > 0 such that

−γ ∈ int(S) (for all γ with 0 < γ ≤ γ2).

We define γ = min {γ0, γ1, γ2}. Because this γ satisfies condition (2.11), we can apply Theorem 2.2,
so as to conclude that it is a stepsize-coefficient for boundedness. 2

2. Proving Part (II) of Theorem 3.1.
We assume γ0 > 0 is a stepsize-coefficient for boundedness. Because also any γ with 0 < γ ≤ γ0 is
a stepsize-coefficient for boundedness, we see from Theorem 2.2, that µn ≥ 0 for all γ ∈ (0, γ0] and
n ≥ 1.

Property (4.3) is, of course, in force, so that, by Lemma 4.1, condition (3.2) is fulfilled.
To study the growth parameters λj , we first note that any application of method (1.2) to the

scalar, complex test equation u′(t) = z ·u(t), with z = α+iβ and real α, β, can be reformulated as an
application of the method to u′(t) = F (u(t)) in V = R2, with F (v) = Fz(v) = (αv1−βv2, βv1 +αv2)
for v = (v1, v2) ∈ V.

We choose any z in the disk D = {ζ : ζ ∈ C, |ζ+1| ≤ 1}. The corresponding function Fz satisfies
the basic condition (1.5) with τ = 1, V = R2 and ‖ · ‖ equal to the Euclidean norm.

Because γ0 > 0 is a stepsize-coefficient for boundedness, all vectors un ∈ V = R2 generated by
the LMM, with F = Fz and ∆t = γ0 · τ = γ0, stay bounded when n → ∞. Hence, the polynomial
ρδ(ζ), with δ = γ0 z, satisfies the root condition. It follows that γ0 z ∈ S. Consequently, the disk
{ζ : ζ ∈ C with |ζ + γ0| ≤ γ0} = γ0 · D is contained in the stability region S. Theorem 2.1 thus
implies that all growth parameters λj lie on the positive real axis.

Next, we note that property (4.5) is – trivially – in force, so that we can conclude via Lemma
4.4, Part (II), that all λj are equal to 1. This completes the proof. 2
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5 Applications

5.1 Adams-Moulton methods

The well-known k-step Adams-Moulton methods – also called implicit Adams methods – have order
of accuracy k + 1, and are of the form

un = un−1 + ∆t ·
[
b0 F (un) + · · ·+ bk F (un−k)

]
.

The coefficients bj = bk,j are specified e.g. in [5] (Section III-1), [8] (p. 194-199). From (3.1), the
corresponding values τn = τk,n are seen to satisfy

τn = b0 + · · ·+ bn (for 0 ≤ n ≤ k), τn = b0 + · · ·+ bk (for n > k).

Because, for given k, the values τn are constant for n ≥ k, the conditions (3.5), (3.6) can be checked
in a finite number of steps.

Using the material in the literature just mentioned, it can be seen for all k ≥ 1 that b0 > 0, b1 > 0,
so that the value n0, defined in Section 3, equals n0 = 1. Furthermore, it can be seen that

b2 < 0 (for k ≥ 2), τn > 0 (for all n ≥ 1 and 1 ≤ k ≤ 8).

A direct computation shows that τk,4 = − 797
5670 for k = 9; whereas it can be proved that τk+1,4 < τk,4

(for all k ≥ 9). Hence,
τ4 ≤ 0 (for k ≥ 9).

Combining these results with criterion (1.8) and Corollary 3.3 (with n0 = 1) there follows

Theorem 5.1. (I) For k = 1, there exists a stepsize-coefficient for monotonicity;
(II) For 2 ≤ k ≤ 8, there exists no such coefficient, but there is a stepsize-coefficient for bound-

edness;
(III) For all k ≥ 9, there doesn’t even exist a stepsize-coefficient for boundedness.

The result for k = 2, given in the theorem, is related to earlier results obtained in [11] (Section
5.3.1) and [12] (Section 3.3). The author is not aware of related results in the literature for k ≥ 3.

5.2 Adams-Bashforth methods

The well-known k-step Adams-Bashforth methods – also called explicit Adams methods – have order
of accuracy k, and are of the form

un = un−1 + ∆t ·
[
b1 F (un−1) + · · ·+ bk F (un−k)

]
.

The coefficients bj = bk,j are specified e.g. in [5] (Section III-1), [8] (p. 192-194). From (3.1), the
corresponding values τn = τk,n are seen to satisfy

τ0 = 0, τn = b1 + · · ·+ bn (for 1 ≤ n ≤ k), τn = b1 + · · ·+ bk (for n > k).

We can again check conditions (3.5), (3.6) in a finite number of steps.
Using the material in the literature just mentioned, one easily sees for all k ≥ 1 that b1 > 0, so

that again n0 = 1. Furthermore,

b2 < 0 (for k ≥ 2), τn > 0 (for all n ≥ 1 and k = 1, 2, 3).

In [12], p. 617, it was proved that b1 + b2 < 0 for all k ≥ 4, so that

τ2 ≤ 0 (for k ≥ 4).

The following theorem summarizes the conclusions obtainable from these results, by applying crite-
rion (1.8) and Corollary 3.3 (with n0 = 1):
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Theorem 5.2. (I) For k = 1, there exists a stepsize-coefficient for monotonicity;
(II) For k = 2, 3, there exists no such coefficient, but there is a stepsize-coefficient for bounded-

ness;
(III) For all k ≥ 4, there doesn’t even exist a stepsize-coefficient for boundedness.

Part (II) is related to earlier results for k = 2, 3 obtained in [9] (Section 6.3), [10] (Section 4.2)
and [12] (Theorems 3.3, 4.2). Part (III) amounts to a stronger version of a result for k ≥ 4 in
[12] (Theorem 4.2) – where it was shown that a specific sufficient condition, for the existence of a
stepsize-coefficient, is violated.

5.3 Backward differentiation formulas

The well-known k-step backward differentiation formulas (BDFs), with order of accuracy k, are of
the form

(5.1) un = a1 un−1 + · · ·+ ak un−k + ∆t · b0 F (un).

The coefficients b0 = bk,0 and aj = ak,j are specified e.g. in [2] (Section 7), [5] (Section III-1), [8]
(p. 206-208). When k = 1, we have a1 = b0 = 1 so that a stepsize-coefficient for monotonicity exists;
whereas, when k ≥ 2, we have ak,2 < 0 so that no such stepsize-coefficient exists – see (1.8).

We study the methods below for 2 ≤ k ≤ 6, because, for these values the methods are zero-stable,
without essential roots different from ζ = 1, whereas, for k ≥ 7, the methods fail to be zero-stable.

By (3.1), the values τn = τk,n satisfy

τn = 0 (for n < 0), τ0 = b0, τn = a1 τn−1 + · · ·+ ak τn−k (for n ≥ 1).

Checking conditions (3.5), (3.6) is now less simple than for the Adams methods, because the τn
are not constant from some index on. But, we have limn→∞ τn = 1 – this is obvious from the
representation (4.12), with q = 1 and γ → 0.

From the material in the above references, one sees that τ1 = a1 b0 6= 0, so that n0 = 1 (for
2 ≤ k ≤ 6). Furthermore, one sees that (3.5) holds for k = 2. For k = 3, 4, 5, 6 we used Matlab and
found, also for these values, that condition (3.5) is fulfilled.

It is fair to say that for the last four values of k we have no formal proof of (3.5). But, we have
conclusive numerical evidence: we computed exact values τk, n with the Symbolic Math Toolbox
software of Matlab and found for 3 ≤ k ≤ 6 that τk,n, rounded to 16 decimal digits, equals precisely
1 (for 250 ≤ n ≤ 500), while

min
1≤n<250

τk, n ≥ 237 416 500/282 475 249.

Corollary 3.3 thus leads to the following result – which we call a conclusion rather than a theorem,
because for 3 ≤ k ≤ 6 we have no formal proof of (3.5), but convincing numerical evidence instead.

Conclusion 5.3. (I) For k = 1 there exists a stepsize-coefficient for monotonicity;
(II) For 2 ≤ k ≤ 6 there exists no such coefficient, but there is a stepsize-coefficient for bounded-

ness.

For k = 2, the statement in Part (II) is related to results in [11] (Section 5.3.1) and [12] (Section
3.3). The author is not aware of related results in the literature for k ≥ 3.

5.4 Extrapolated backward differentiation formulas

The k-step extrapolated backward differentiation formula (EBDF) has the same order of accuracy
and coefficients aj as the corresponding BDF, but it is explicit. It is obtained by replacing, in
the BDF, the value F (un) with the value at the grid point tn = n∆t of the Lagrange interpolat-
ing polynomial which takes on the values F (un−1), . . . , F (un−k) at the grid points tn−1, . . . , tn−k,
cf. e.g. [13].
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For the EBDFs it can be seen, similarly as for the BDFs, that a stepsize-coefficient for mono-
tonicity exists only for k = 1 – and that the values τn = τk,n satisfy again limn→∞ τn = 1 (for
2 ≤ k ≤ 6).

One easily sees that n0 = 1 for 2 ≤ k ≤ 6. Furthermore, it can be seen that condition (3.5)
is fulfilled for k = 2, and that τ2 < 0 for k = 6. For k = 3, 4, 5 we used again Matlab, obtaining
conclusive numerical evidence – similarly as for the BDFs – that condition (3.5) is fulfilled. We thus
arrive at

Conclusion 5.4. (I) For k = 1 there exists a stepsize-coefficient for monotonicity;
(II) For 2 ≤ k ≤ 5 there exists no such coefficient, but there is a stepsize-coefficient for bounded-

ness;
(III) For k = 6 there exists not even a stepsize-coefficient for boundedness.

Part (II) is related to results in [9] (Section 6), [11] (Section 3.2), [12] (Sections 3.2, 4.2) and [16]
(Section 3). Part (III) amounts to a stronger version of a result for k = 6 in [16] (Theorem 3.1) –
where it was shown that a specific sufficient condition, for the existence of a stepsize-coefficient, is
violated.

5.5 Classes of linear multistep methods with two essential roots

We consider general LMMs of the form

(5.2) un = un−2 + ∆t ·
[
b0 F (un) + b1 F (un−1) + · · ·+ bk F (un−k)

]
,

where k ≥ 2 and

(5.3) b0 ≥ 0,

k∑
j=0

bj = 2,
∑

j is odd

bj 6= 1, bk 6= 0 (when k > 2).

The last three of these assumptions guarantee consistency and avoid reducibility.
The growth parameters corresponding to the essential roots ζ1 = 1 and ζ2 = −1, respectively,

are
λ1 = 1 and λ2 = 1−

∑
j is odd

bj

– cf. definition (2.7). By Theorem 3.1, (II), the following condition is thus necessary for the existence
of a stepsize-coefficient for boundedness:

(5.4)
∑

j is odd

bj = 0.

Below we analyse three special cases of the above general method.

Case 1. Milne-Simpson methods
The Milne-Simpson methods are implicit, with order of accuracy p equal to p = 4 (for k = 2)
and p = k + 1 (for k > 2), cf. e.g. [5] (p. 310-311), [8] (p. 201-202). For k = 2, we have
b0 = 1

3 , b1 = 4
3 , b2 = 1

3 – the so-called Milne method.
From the material in the last references, one easily sees that (5.4) is violated, for all k ≥ 2, so

that there is no stepsize-coefficient for boundedness.

Case 2. Nyström methods
The well-known k-step Nyström methods are of the form (5.2), with b0 = 0 and order of accuracy
equal to k, cf. e.g. [5] (p. 309), [8] (p. 199-201). For k = 2, we have b1 = 2, b2 = 0 – the so-called
explicit mid-point rule.

From the material in the last references, one easily sees that (5.4) is again violated, for all k ≥ 2,
so that there is once more no stepsize-coefficient for boundedness.
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Case 3. The general two-step method of type (5.2)
For k = 2, the above general method reads

(5.5) un = un−2 + ∆t ·
[
b0 F (un) + b1 F (un−1) + b2 F (un−2)

]
,

and assumption (5.3) reduces to

(5.6) b0 ≥ 0, b0 + b1 + b2 = 2, b1 6= 1.

In view of condition (5.4), a stepsize-coefficient for boundedness may thus exist only when b1 = 0.
For b1 = 0, method (5.5) reduces to un = un−2+∆t · [b0 F (un) + b2 F (un−2)] , which is essentially

the same as the one-step method

(5.7) un = un−1 + ∆t ·
[
b0
2
F (un) +

b2
2
F (un−1)

]
,

carried out with twice the original stepsize. There exists a stepsize-coefficient for boundedness,
corresponding to the original two-step method (5.5), if and only if such stepsize-coefficient exists for
the one-step method (5.7). According to Corollary 3.3, the latter method has certainly a stepsize-
coefficient for boundedness when τn > 0 (for all n ≥ 1). One easily sees that the values τn of method
(5.7) satisfy

τn =
b0 + b2

2
= 1 (for n ≥ 1),

so that a stepsize-coefficient for boundedness exists.
In view of the above, we have

Theorem 5.5.
(I) For all Milne-Simpson methods with k ≥ 2, there is no stepsize-coefficient for boundedness.
(II) For all Nyström methods with k ≥ 2, there is no stepsize-coefficient for boundedness.
(III) For method (5.5), with coefficients satisfying (5.6), there exists a stepsize-coefficient for bound-
edness if and only if: b1 = 0.

We note that Part (I) amounts to a stronger version of a result in [12] (Remark 4.3) – where it
was stated that a specific sufficient condition, for the existence of a stepsize-coefficient, is violated.

We illustrate Part (III) of the theorem with three typical examples, viz

(5.8) un = un−2 + ∆t ·
[
F (un) + F (un−2)

]
,

(5.9) un = un−2 + ∆t ·
[
3F (un)− F (un−2)

]
,

(5.10) un = un−2 + ∆t ·
[
2
3 F (un) + 2

3 F (un−1) + 2
3 F (un−2)

]
.

For the first of these methods there exists a stepsize-coefficient for monotonicity, cf. criterion
(1.8).

For the second method, condition (1.8) is violated, so that no stepsize-coefficient exists for
monotonicity; but by Theorem 5.5 there exists still a stepsize-coefficient for boundedness.

For method (5.10), there doesn’t even exist a stepsize-coefficient for boundedness. It is worth
noting that this method has still the property of being A-stable (i.e. all z ∈ C with Re z ≤ 0 belong
to the stability region S), cf. e.g. [6].
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6 Conclusions

In this paper, we have analysed under what conditions general linear multistep methods can have a
stepsize-coefficient for boundedness. For methods, with just one growth parameter equal to 1, this
analysis has lead to a simple condition that is necessary and sufficient for the existence of a such a
stepsize-coefficient.

Moreover, we have obtained two, still more simple, conditions – one being sufficient and one
necessary for a stepsize-coefficient to exist.

We have applied the conditions, found in the paper, in a systematic study of stepsize-coefficients
for the following six classes of linear k-step methods: Adams-Moulton, Adams-Bashforth, Backward
Differentiation (BD), Extrapolated Backward Differentiation (EBD), Milne-Simpson and Nyström
methods. In the table below, the restrictions on k are displayed which have turned out to be neces-
sary and sufficient for the existence of a stepsize-coefficient for boundedness. The table supplements
earlier results, for these methods, given in the literature.

Adams-Moulton Adams-Bashforth BD EBD Milne-Simpson Nyström
k ≤ 8 k ≤ 3 k ≤ 6 k ≤ 5 none none
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