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ABSTRACT 
In addition to the wide range of applications of stochastic 

resonance in the field of signal processing, the phenomenon 

has also been investigated as an effective tool for enhancing 

vibrational energy harvesting. This paper proposes a 

hypothetical method for achieving stochastic resonance and 

increasing the available energy from external ambient 

vibration. In order to illustrate this proposal, a bistable 

mechanical system is proposed to study the feasibility by 

theoretical analysis. The amount of available energy and the 

energy consumed to produce the small-scale additional force is 

analyzed through numerical simulations. It is shown that the 

proposed method can significantly enhance the harvested 

vibrational energy. 

NOMENCLATURE 
B  Magnetic flux density.  

c
r  Location vector . 

s
r  Location vector of the permanent magnet. 

/c s
r  Vector to the point of interest. 

/c s
r Distance between the permanent magnets 

0
P  Permeability of free space. 

s
v  Volume of the source magnet. 

s
v  Volume of the source magnet. 

c
v  Volume of the target magnet. 

v  Volume of magnets. 

s
m  Magnetic moment of the source magnet. 

c
m  Magnetic moment of the target magnet. 

s
M  Magnetization amplitudes of the source magnet. 

c
M  Magnetization amplitudes of the target magnet. 

f
M Magnetization amplitudes of the top fixed magnet. 

c
k  Stiffness of the cantilever.  

F  Restoring force.  

h  Distance between the magnetic end mass and the 

permanent magnets in the x-direction. 

d  Distance between the magnetic end mass and the 

permanent magnets in the y-direction. 

m  Magnetic end mass of the bistable mechanism. 

c  Damping of the cantilever. 

c  Non-dimensional damping of the cantilever. 

k Linear stiffness of the bistable mechanism. 

3
k  Nonlinear stiffness of the bistable mechanism. 
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x  Displacement of the magnetic end mass. 

t   Time. 

N   External excitation. 

G   Non-dimensional displacement of the magnetic end mass. 

W  Non-dimensional time. 

Q   Non-dimensional external excitation. 

J   Non-dimensional additional excitation. 

a
J  Non-dimensional constant force. 

C   Constant value. 

U  Non-dimensional potential. 

P   Non-dimensional net power. 

E   Non-dimensional net energy. 

INTRODUCTION 
Vibrational energy has become a potential power supply 

source for small-scale electronics over the past few years. In 

the existing literature most researchers have focused on 

methods for increasing the bandwidth of vibration based 

devices. These techniques cover resonance frequency tuning, 

multimodal energy harvesting, frequency up-conversion, and 

nonlinear oscillations [1-7].  

Stochastic resonance, as a method which is widely adopted 

in the field of signals analysis, is also one way to improve the 

performance for a nonlinear bistable oscillator with two 

potential wells. Daqaq [8] demonstrated that under Gaussian 

white noise excitations, bistabilities in the potential do not 

provide any enhancement over the traditional linear resonant 

generators which have a single-well potential. However, 

McInnes et al. firstly and theoretically exploited the possibility 

of enhancing the performance of a bistable mechanism with 

stochastic resonance. It was found that by adding periodic 

modulating forcing to a vibrationally excited bistable 

mechanism, the power available from the device could be 

enhanced over that of without periodic forcing [9]. On this 

basis, the possibility that stochastic resonance can occur in 

vibrating systems has been proved through experimental study 

by Hu et al [10]. Here the small-scale periodic forcing should 

match the transition frequency between the two potential wells 

known as the Kramer’s rate [11]. However, the noise density, as 

a necessary parameter for obtaining the value of the Kramers 

rate, is difficult to measure in practical situations.  

In this paper, a theory for a new method is proposed in this 

paper to achieve stochastic resonance by adding a small-scale 

excitation.  

METHODOLOGY 

Energy Harvesting Device 
A conceptually bistable mechanism is designed to study 

the vibrational energy harvesting using the theory of stochastic 

resonance [11]. As illustrated in Fig. 1, the mechanism consists 

of a piezoelectric beam with a magnetic end mass, two identical 

fixed permanent magnets and two electromagnets, in 

conjunction with a small permanent magnet.  

 

FIGURE 1. SCHEMATIC OF THE BISTABLE VIBRATIONAL 
ENERGY HARVESTER 

In order to study the interaction between the magnetic end 

mass and the fixed magnets, a dipole model is used here [12]. 

The magnetic flux density at the location  due to a magnet 

located at 

c
r

s
r  can be defined by 
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where 
7

0
4 10P S � u , ,

/c s c s
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/c s
r is the distance 

between two magnets. The magnetic moment of the source 

magnet 
s s s

vm = M . The potential energy of the magnet at  

in the field generated by the magnet at 

c
r

s
r  is defined by  

  (2) cU � �= m B

where . It is assumed that the magnetic end mass 

and the fixed magnets have the same volume . The 

magnetisation amplitudes of the magnetic end mass and the top 

fixed magnet are defined by  and 

c c
vm = M

( , )

c

)
y

v

( ,
b bx b

M M M

f fx fy
M M M . Using Eq. (1) and Eq. (2), to take into 
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account the restoring energy of the cantilever, the potential 

energy of the magnetic end mass can be expressed as   

 � �
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The restoring forces can be obtained from the opposite 

signed value of the derivative of the potential energy with 

respect to x 
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(6) 

The values of d and h can be tunable to adjust the 

parameters of the mechanism. This system is excited by 

external ambient vibration N(t), and the small-scale additional 

excitation is applied to the cantilever by the electromagnets.  

According to Eq. (6), by choosing the corresponding 

magnetisation amplitudes of the permanent magnets 
5

9 10 /
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M M A  � u
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FIGURE 2. RESTORING FORCES VERSUS THE END MASS 
DISPLACEMENT  

The magnetoelastic force function in Fig. 2 suggests that 

the mechanism can be governed by a Duffing equation with 

negative linear stiffness and a hardening cubic term  

  (7) 
3

3 ( )mx cx kx k x N t� � �  �� �

With non-dimensional position coordinate
3

k k xG  , non-

dimensional time t k mW  , non-dimensional damping 

c c mk and non-dimensional external excitation 

3

3
( ) ( )Q t k k N t , the model in Eq. (7) can be re-stated as 

 
3 ( )cG G G Gcc c� � �  Q t  (8) 

where ( )c  indicates differentiation with respect to W . The 

potential of the system can be defined by 

 
21 1

( )
2 4

U 4G G � � G  (9) 

Analysis of the Conditions for Stochastic Resonance  
m  , 

5
8 10 /

fy by
M M A �  � u m  

and with dimensions of length 30mm, width 10 mm and height 

10 mm, and setting d =17� mm and h =52 mm, the 

magnetoelastic force, the magnetic force and cantilever elastic 

force versus the end mass displacement are shown in Fig. 2. 

It is assumed that in addition to the system being excited 

by the ambient vibration force Q(t), a small-scale excitation 

( )tJ  is introduced to change the shape of the system potential 

wells so that it is easier to overcome the potential well barrier 

and allow stochastic resonance. The dynamic model of the 

overall system is defined by 

 
3 ( ) ( )c tG G G G Jcc c� � � �  Q t  (10) 
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It can be seen that the potential of the system originally defined 

by Eq. (9) now includes a time dependent function 

 
2 41 1

( , ) ( )
2 4

U t tG G G J � � � G  (11) 

The additional excitation ( )tJ can also be seen to express the 

asymmetry of the potential well. Considering firstly that a 

constant force 
a

J  is applied to the magnetic end mass, and 

writing the partial differential of the potential with respect to 

G as  

 
3( )

0a
a

dU

d

G
G G J

G
 � � �   (12) 

When Eq. (12) has only two different roots, the boundary value 

of the parameter 
a

J  can be given by 

 
2 3

9
aJ  r  (13) 

Figure 3 shows the potential of the system under the 

condition 2 3 9
a

J  � . It means that the system retains the 

bistable state when the value of 
a

J  is less than 2 3 9 . 
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FIGURE 3. POTENTIAL VERSUS NON-DIMENSIONAL 

DISPLACEMENT WHEN 2 3 / 9
a

J  �  

In the case of the time-variant force it is assumed that the 

additional excitation ( )tJ  can usefully be defined as follows  

 ( ) sgn( )t CJ G c  (14) 

where is a positive constant value. C

There are two kinds of physical meaning for ( )tJ . The first 

and intuitive explanation is of a follower force which is applied 

directly to the mass of the bistable system so that it helps the 

mass jump between the symmetrical potential-wells. The other 

one is that ( )tJ  can be used to modulate the shape of the 

potential wells, leading to asymmetry. Figure 4 illustrates the 

change of the potential wells under the additional force ( )tJ . 

This means that the potential wells change between the two 

different asymmetric shapes. On considering that the mass 

starts to move from the point P1 then the arrows are in this 

direction and it is assumed that the value of ( )tJ  equals 0.16 

from P1 to P2, and then the mass reaches point P2, setting 

( )tJ  equal to 0.16, the mass jumps to the point P3, the 

potential of the mass 
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FIGURE 4. POTENTIAL VERSUS NON-DIMENSIONAL 

DISPLACEMENT OF ( )x t  

changing instantaneously while the displacement undergoes no 

change. Then, following the dotted line, it moves to point P4. 

Setting ( )tJ equals to -0.16, the mass finally returns to the start 

point P1. It is expected that the absolute value of the 

composition of the additional excitation and the noise will be 

less than 2 3 9 , otherwise the systems enters monostability. 

The additional excitation has to increase to overcome the 

potential barriers. In practice, mainly because of the mechanical 

damping loss, any excess in the input energy cannot be 

completely dissipated by the electrical damper, and it is 

necessary to subtract the energy provided by the additional 

excitation in order to calculate the net energy, so it will 

decrease the net energy that can be harvested from the external 

ambient vibration. However, it is impossible constantly to 

maintain the total below that threshold because the noise 

excitation varies randomly with time. Therefore, a suitable 

value of constant  should be chosen to give optimal 

conditions. 

C
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EHANCEMENT OF ENERGY HARVESTING BY 
STOCHASTIC RESONANCE  

The energy dissipated by the damper can be controlled to 

maximise the capability of the proposed method to achieve 

stochastic resonance and to enhance the harvested energy. 

Equation (10) can be written as 

 
3 2 ( ) ( )c tG G G G G G G G J Gc cc c c c c c� �  � � � Q t  (15) 

Then Eq. (15) can be rewritten as follows 

 

2 2 41 1 1
( )
2 2 4

( ) ( )

d
c

d

t Q t

2G G G G
W
G J G

c c� � �

c c �
 (16) 

Equation (16) describes the conversion of energy in the 

bistable condition. The rate of change of the kinetic energy and 

the potential of the system equals the instantaneous external 

excitation and the additional excitation input [9]. In the left 

hand terms of Eq. (16), 
2

2G c  is the kinetic energy of the 

mass and cantilever, 
2 4

( ) 2 4U G G G � � is the potential of 

the mechanism, and 
2

cG c represents the instantaneous energy 

dissipated by the damper. The energy input of the additional 

small amplitude excitation is expressed by ( )tG Jc  which is 

always non-negative because ( )tJ  is a force that follows the 

magnetic end mass.  is the input energy from the 

external ambient vibration. In order to estimate the net 

harvested power of the mechanism under stochastic resonance, 

the power provided by the additional excitation 

( )Q tG c

(t)J  should 

be subtracted from the total harvested power. Therefore the 

instantaneous net power can be defined by  

 
2( ) ( )P t c tG J Gc � c  (17) 

The net energy during the non-dimensional time period 
0

W  is 

given by 

 
0 2

0
( ( ) )E c t

W
dG J G Wc c �³  (18) 

The parameter values of 0.24c   and 0.19C  are 

chosen to compare the responses of the mechanism under 

conditions with and without the small-scale additional 

excitation. The external ambient force  is provided by 

Gaussian White Noise with a noise density of 0.054.  

( )N t
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FIGURE 5. NON-DIMENSIONAL TOTAL EXCITATION VERSUS 
TIME 
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FIGURE 6. NON-DIMENSIONAL DISPLACEMENT OF ( )x t  

VERSUS NON-DIMENSIONAL TIME 

Figure 5 shows the time domain of the composition of 

forces when both the external excitation and( )Q t ( )tJ are 

applied to the mechanism. The corresponding non-dimensional 

displacement of the mass is shown in Fig. 7. Compared with 

the responses which are shown in Fig. 6, it can be seen that the 

mass fluctuates between the two potential wells in a state of 

stochastic resonance with large amplitude displacements. 

Therefore the energy harvested by the damper is enhanced 

greatly. Figures 8 and 9 show the harvested instantaneous net 

power under conditions with and without the additional 

excitation. The net integrated energy from both cases is shown 

in Fig. 10. Although the total energy consumed by providing an 

additional excitation will reduce the total energy harvested, it is 

found that under the forcing of ( )tJ , the harvested net energy 

from the external ambient force is significantly increased 

compared with the energy generated from that of only ambient 

vibration.  
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FIGURE 7. NON-DIMENSIONAL DISPLACEMENT OF ( )x t  

VERSUS NON-DIMENSIONAL TIME UNDER FORCING OF 
ADDITIONAL EXCITATION 
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FIGURE 8. NON-DIMENSIONAL POWER VERSUS NON-
DIMENSIONAL TIME  
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FIGURE 9. NON-DIMENSIONAL POWER VERSUS NON-
DIMENSIONAL TIME UNDER FORCING OF SMALL-SCALE 

ADDITIONAL EXCITATION 
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FIGURE 10. NON-DIMENSIONAL NET ENERGY VERSUS 
NON-DIMENSIONAL TIME  

Unlike the approach for enhancing the available energy by 

adding a weak periodic excitation, this new method does not 

require an estimation of the frequency, however the specific 

amplitude of the parameter of ( )tJ  must be determined. 

CONCLUSIONS 
A bistable nonlinear harvester system has been designed to 

investigate an enhanced condition for stochastic resonance. By 

means of theoretical analysis and simulation it has been shown 

that the method proposed here can enhance the availability of 

harvestable energy from the external ambient vibration. This is 

a different approach to the method of achieving stochastic 

resonance with an additional periodic force, and it is not 

necessary to estimate the forcing frequency according to the 

noise density using the Kramer's rate. It is therefore easier to 

apply. However, further experimental investigation should be 

carried out to provide support for the simulation results. 
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