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An approach to calculate the triplet structure of a simple liquid, that was proposed some years ago
by Barrat, Hansen, and PastgRhys. Rev. Lett58, 2075(1987] has been tested in the binary case.
This approach is based on a factorization ansatz for the triplet direct correlation fuoCtipthe
unknown factor function is determined via the sum rule relagfiy and the pair direct correlation
function which is the only input information of the system that is required in this formalism. We
present an efficient and stable numerical algorithm which solves th@aitly coupled integral
equations for the unknown factor functions. Results are given for the case of a binary hard-sphere
mixture and complemented by computer simulation data.2@0 American Institute of Physics.
[S0021-960600)52332-0

I. INTRODUCTION mented and tested against computer simulation results: they

_ . _ are due to Ashcroft and co-worket$, Attard® Barrat,
Concepts to calculate the triplet structurgsmple lig- Hansen, and Pastofé,and Leidl and Wagnét
uids date back to the beginning of the 1960s; however, at However, up to now—and to the best of our

that time their implementation in computer programs and th?mowledge—only the theory by Rosenf¥lchas been ex-

actual calculation of t_he triplet structl_Jre were by far out Oftended to the study of the hard-sphere mixture fluid, includ-
reach. One of the simplest approximations of the three:

particle distribution functiorg® is the Kirkwood superpo- ing the calculation of the triplet structure. This method is
sition approximatior(KSA)® based on characteristic functions which bear in mind geo-

metrical features of the spheres. In contrast to other theories,
g®(r,s,t)=g(r)g(s)g(t), (1)  the knowledge of the bulk fluid direct correlation function is
not a prerequisite, but it can be derived within the framework
of the theory together with other properties of the uniform

demonstrated by Egelstaét al? in an attempt to study ex- . : .
perimentally the triplet correlation function for liquid argon, fluid. Th's gpproa_lch has be_en successfully compared W't.h
extensive simulation results in Ref. 11. Nonetheless, even if

relating this function with the isothermal pressure derivative™" " ™ ‘ 3) ) _
of the structure factor. It has been about fifteen years during*Plicit expressions foc*™ for mixtures have been derived
which improved computer facilities have made the actualVithin this theory, no results have been presented so far.
calculation of three-particle correlation functions possible. A _ This shortage of theories for the calcu!aﬂom@ inthe
large variety of studies have been dedicated to this problenfliXture case is somewhat surprising, since differences in
these investigations have been carried 6ubstly within ~ Size and interaction between the two species are expected to
frameworks based on integral—equation theories and weread to interesting effects in the triplet structure of a binary
supplemented by computer simulation results. The increase@ixture. As a matter of fact, inclusion of three-body corre-
interest in the triplet structure is, however, not only of purelylation functions should—as in the one-component case—
academic origin: density-functional based approaches thdgad to an improved description of the freezing behavior of
describe freezing phenomena have indeed brought along drinary mixtures:* Furthermore, it is expected that the triplet
improvement of the results if théapproximatg functional ~ structure might give additional information in cases where
that describes the property of the solid is expanded up tthe pair structure does not appear to have a definite afswer
third order, i.e., including three-particle correlation as in the case of alloys with marked chemical short range
functions®* Among the frameworks proposed during the order with the presence of superstructufe an effort to

past two decades to calculate the triplet structure of a liquidfill this gap we have generalized one of the above methods
we quote in particular some of those that have been impledue to Barrat, Hansen, and Past¢BHP)"® to the binary

which is only valid in the low density limit. This has been
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case along the lines sketched in Ref. 8. With this purpose we The rest of this article is organized as follows. In the
have implemented an efficient and accurate numerical algaiext section we briefly outline the formalism of the general-
rithm and have produced data for the triplet structure for azed BHP framework and discuss the numerical method we
binary hard sphere mixture. The results obtained within thisiave used to solve the coupled integral-equations. In Sec. IlI
framework are complemented by computer simulation rewe present results for the model system. The article closes
sults. In the BHP approach, a symmetric factorization ansatwith concluding remarks.

is made for the triplet direct correlation function in terms of

an unknown functiort(r). This ansatz is justified by the

rotational and translational invariance of the homogeneou

liquid and by the lowest orden(®-bond expansion c?f the fl. THE THEORY

triplet correlation function, wher(r) is the total pair cor- A. The formalism

relation function. The only information about the system that ¢ an alternative to the KSA factorization of®), Jack-

is required as input is the density derivative of the pair directyy, anq Feenbef proposed &-space factorization of the

correlation functior_1. The .defining relation for. the yet un- triplet structure factorsfﬁ)y(k,k’) of the type[SffB)(k) being
known factor functiort(r) is the sum-rule relating the pair o siructure factdr

and the triplet direct correlation function: it is an integral
equation which can be solved numerically. In terms of func- <3 (kK _2
tional derivatives this sum-rule reads sy (KK =

€

1
XESSKW+kw>S£<ms§ﬂkw,<a

which via the triplet Ornstein—Zernik@0Z) relation trans-
lates into a neglect of the triplet direct correlation function,

c®(r,r")=0.

sc"1(1,..n—1)
spM(n)

_ 8"BFe

- 5p(1)(1). . '5p(1)(n) :

c™(1,..n)=

(2 This is known as the convolution approximati@@A). A
first-order correction for this approximation usek&@-bond

_ expansion o£® to get
The results presented f&)(k,k’) using the BHP

theory for long-range potentialésuch as Coulombic sys- c®(r,r)=~h@(r)h@(r" )h@(|r-r’|). 4
temg and soft spheres seem to fit the simulation results.  \yjith this in mind, several years ago, Barrat, Hansen, and

Khein and Ashcroft outlined the unique specificatiot@f)  pastoré® proposed the following ansatz for the direct triplet
according to the sum rule abdvand made an extension of correlation functionc®(r,r’) of a homogeneous liquid

the BHP theory generating a directly symmetrickispace

¢® function® The same unambiguity in the determination ~ ¢>(r,r")=t(Nt(r"Ht(Jr—r’|), 5

of t(r) is remarked by Likot "_’"-3 to use the BHP ansatz of yith an unknown functiori(r). The expression above reads
c® in the study of the freezing transition in the classicaljp k-space

one-component plasma. In this case the results presented fa- L
vor the ansatz against other theories. Concerning the freezing (s N ~ T PINT L Ly ”
transition of a hard-sphere system within the framework of e(kk) = FJ tK (k=K E(lk’ kK",
the extended modified weighted-density approximatfoit, (6)
is concluded that the factorization ansatz does not predict thgare a tilde denotes a Fourier transform.

stabilization of the expected solid phase.

The extension of the BHP approach to the case of a
binary mixture is formally straightforward and has been out- ac'?(r) B @(r 1 dr
lined by Barrat, Hansen, and Past8relowever, the com- ap _f corrhdr
plexity of the expressions and, in particular, their numerical
solution increase drastically as the number of components :t(r)J t(r)t(|r—r'ydr’. 7)
increases. In the binary case the six-factor functitﬁﬁé‘(r)

are determined 'in' six, partly coupled, sets of integral equay, is the number-density of the system ao®(r) is the
tions. In the original work on the one-component case awo-particle direct correlation function, which is the only
single integral equation was solved by minimizing a suitablyinformation about the system that is required as input in this
defined functional with a SteepeSt descent method. Since thf%mework_ In generaL this function is well-known thanks to
method turned out to be unsuitable for our waitk particu-  sophisticated liquid state methods that have been developed
lar with respect to the numerical stabilitwe present in this during the past years.

study the generalized minimal residual algorithm for nonlin-  The generalization of the formalism toracomponent

ear systems of equatiolls(GMRESNL) introduced some  system is in principle straightforward and has been outlined
years ago by Fries and Cosnéréh the field of liquid state in Ref. 8. In the binary case, to which the present contribu-

theory. Itis a Newton—Raphson-type algorithm and has beefion is dedicated to, the factorization ansatz, E8). now
applied for the solution of complex integral equations prob-reads

lems dealing with molecular liquidésee for instance Ref. 3 5 p p
19). Capy (1) =top (N L (fr=r7]). 8

Now t(r) can be determined via the sum-rule, E2),
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A closer analysis and taking into account symmetry relations (;C%Zg(r)
shows that we now have four independeft’s, i.e.,c®®,_ , T=t§§3(r)f P (rEEP(Ir—rhdr’
cgﬁ, CESB)B, andcfgszﬂ and the six unknowmﬁﬁy are related p
via six equations which explicitly read
q plcity fcggﬁ(r,r’)dr’. (14)
8(:(&263(") aaa aaa axa ! !
p a(r) f (r)teg"(Ir=r"]dr : .
Pa Equations(9) and (14) are decoupled and can be solved in-
dependently(as in the one-component casahile the re-
:f c'® (r,r)dr’, (99  maining four equations are coupled in pairs.
Once the set of triplet direct correlation functions has
ac'?(r) been determined, one can use them in the calculation of the
p =t§gﬁ(r)f taP(rtegP(|r—r'dr’ three particle distribution functiong{>,(r,r'). This is done
Pp by means of the triplet OZ relatidisee Eq.(45) in Ref. §],
3) X, being the concentration of species
= cwﬁ(r,r’)dr’, (10
acZ)(r) S (KK ) =2 [1KCSe, 80, p7ES) (kK]
ap :tgﬁa(r)f aﬁa(r )taﬂa(|r_r/|)drr eon
“ x S2)(|k+k'|)S2(K)S(K"), (15)
_ (3) ’
_f Cagalr,r)dr’, 1D which also, in terms of total correlation functions, re&ds
ICat(T) _ g BB/ 11\ gaBp (K,K') = 8 X+ S XaX gpPos(K')
P =tap (1) | tag (rtggl([r—r"Pdr’ aﬁy apOayXa™ OayXaXpPNap
B ~
+ 05, X X,pN 4, (K)
— (3) ’ ’
=|c r,rhdr’, 12 - ,
f appT1") (12 + 8o pX X, PN g ([KHK'[) X X 5X., 07
ﬁc(ﬁzﬁ)(r) ﬂﬁa Bﬁa BBa ’ ’ —ikr 7ik'r'h(3) dr dr’
pe (r) |t (r R (r—r'pdr X | e e Tehi 7 (r,r')drdr’. (16)
_ [ @ (rrydr (13 From these two ((e:guations one gets the three particle total
BBar™> ' correlation functiorh,,(r,r’) by Fourier inversion of
Rk = 2 [y ehaek)Rge(k) + 3K, o —k—k')+ 8uhpe (K )Ry (—k=K')

+pe ae(k)hﬁe(k )hye( k—k’ )]+2 C(e?n(k!k’)[ﬁaoﬁﬁnéye—i_ 6B7]5yepo"ﬁaa'(k)

eon
+ 5&0'576[)7;?1,877(‘(,) + 5ao'5ﬁnpeﬁye( —k— k,)+ 5yep0p7]’ﬁa(r(k)’ﬁ,877(k,) + 5,877p0'peﬁa0'(k)rlye( —k-— k’)

+ 80Py N gy (KN e(— K=K )+ pepop Nao(K)D g (K VR (—k—k")]. (17)

Now the triplet distribution function is simply given by component case. In their original work, Barrat, Hansen, and

3 3 , , Pastoré® used a steepest descent method where a suitably
Gy (1) = Ny (11 ) F Ny (1) + () defined functional of(r) was minimized to yield a solution
+h57(|r+r’|)+1. (18 of Eq. (7); in fact, the gradients of this functional with re-
spect to variations of the functidir) could be written down
‘explicitly. In principle, one might proceed in the binary case
along similar lines but the construction of the gradients is
now considerably more cumbersome.

We have therefore decided to use a different numerical
approach to solve both the two decoupled equations and the
Due to the fact that Eqg.10) and (11), and (12) and two sets of coupled equations for tiidunctions. Our nu-
(13), respectively are coupled, the evaluation of the functionsnerical scheme is based on the GMRESNas formulated
t“ﬁy(r) is now considerably more complex than in the singleby Fries and Cosnat@ito solve the OZ equation for molecu-

This represents the BHP approximation for mixtures
and the CA is recovered simply by settiBf, (k,k’)=0 in
Eqg. (17).

B. The numerical implementation
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lar fluids. This method has two attractive featur@sit turns
out—in particular for the present problem—to be consider-
ably more stable than the steepest-descent methodjiuitd 1
does not require the determination of the functional deriva- -
I 1;‘5[3 |
ppo
i - | ' ] A - Y i
_ 1 ] 1 | 1 | 1
- 5 1 2 3 4
] r =(r/GBB)
o __ FIG. 3. (a—(c), tfjﬁy(r)’s functions of the BHP factorization ansatz.
8]
Q_? . 32/ 3p, :
[g+] 4 @
80/ — %l | : . o
s oSy /dp, - tives to construct the gradient, which in complex systems
-/ ——— 2 0p, . like this might represent a formidable task.
7 . .
20 R P ac /3p, i We briefly outline the GMRESNL method for the
-r e dcy /dpg i coupled set of Egs(10) and (11). Other equations follow
} | ' similar lines. Introducing a short-hand notation, these equa-
tions can be reduced to the following form, omitting the
r-arguments
3= -
ﬂ| Cpaa_taa(taﬁ*tuﬁ) = 01 (19)
I
- 2f i —
S | C, —tup(tua*ts,)=0 20
= A 5 Pap a,B( aa Ba)_ ' ( )
8% noh
Q L
S b - ) )
'\}\ i where the given functlon@pm and Cﬂa,; represent the den-
‘\"\ sity derivatives of the partial direct correlation functions, and
Um = .5\‘.;&‘2—-:.«:-—' the symbol stands for a convolution. Discretizing the func-
tions on anr-grid and merging the two functiorts,, into a
p . . vectort, one searches for the solution of
0 1 2
F*=(r/cy) G[t]=t—M[t]=0, (21

FIG. 2. Density derivatives of the partial pair direct correlation functions at . .
7=0.4 (upper graph Zoom of the density derivatives af?(r) (lower WhereG[_t] is a vector functl_onal _of andM stands for the
graph. convolution operators acting in Eqs(19—-(20). The
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directional derivative ofG at some given point in the di-
rectionp,G(t;p), is given by
— G[t+ep]—GJt
G(t;p)=Iim —[ pe] 1

e—0

=Ja[t]p, (22
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Jg being the Jacobian matrix d6. We now construct a
sequence of,,, which should tend towards the solution
they are constructed via
th 1=ty + ot (23
In principle 6t can be calculated from the linearized version
of the equationG[t]=0, i.e., Gty 1]=0C[t,]+Ig[tn] 6t
=0, but in practice—in a typical problem we have several
thousand grid points—this tasli.e., the inversion of the
Jacobian becomes impossible.
It is therefore more convenient to expaddin terms of
k orthogonal directiong;, j=1,..k, ie., 5t=2}<:1ajpj,
with

G[t,]

IGIt ]l

Here| - || denotes the norm of the function, which in the
discretized case reduces to the vector modulus. The other
p;’s are determined in a Gram-Schmidt-type orthonormal-
ization procedure. The expansion coefficieatsare opti-
mized so thatlG[t,]+ Jg[t,]5t]| is minimized, i.e.,

Po= (24)

k k
STt + 2, a3s(to)pil=[Cltl+ 2 3Cltn i1l
(25
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The minimization reduces to the solution of a linear set
of equations ina; which can be efficiently dealt with using =(7l6)poy,=0.4. The simulation results to produce the dis-
the QR-decompositioft tribution functions have been obtained from a standard ca-
The accuracy and stability of the algorithm has beennonical Monte Carlo simulation, and the sampling for the
tested initially for simple functiongassuming a simple step Pair and triplet-structure was achieved on a 1100 particle
function for thet's) and then for our model system. Fewe  €nsemble over 400 configurations.
typically set a value of 0.001 and used ten search directions. The pair functiongpair total distribution and direct cor-
The functions were discretized on a grid of 2048 points withrelation functions used to calculatg).(r,r") in the differ-
a mesh size of 0.0@5 whereo is the diameter of the largest ent approximations were calculated using the OZ equation
sphere in the mixture. Numerical convergence was assumetfith a self-consistent closure, implementing virial—

whenever isothermal compressibility and chemical potential—virial
2) pressure consistency conditions, derived from Verlet's modi-
Jc - fied (VM) approximatior?* The pair distribution functions
n( n ﬂ) . . A B .
ap 26) obtained both from simulation and theory are depicted in
act? € Fig. 1, which illustrates the reliability of the theory used on
ap the pair particle level. Alternatively one might resort to a

parameterized form of the direct correlation function as typi-
where summation is taken over the grid points of the dis-Ca”y done in the pure hard-sphere cisBhis expression
cretized functions. The value @fwa; typically of the order although availablésee for instance Ref. 25 not expected
of 10" for the decoupled equations and not larger thang gjter significantly the results, given the excellent perfor-
10~ * for the coupled case. Depending on the system paramnance of the self-consistent approximation.
eters this was achieved after 10 to 100 iterations. Thus, in the present instance we have calculated
¢ ap, using finite differences,
1. RESULTS

de5(r) _ CAN(petAp) i) (pe—Ape)

with Ap,=0.01(see Fig. 2

We present results for a binary equimolar mixture of (27)
additive hard-spheres with componentand 8 (% _,=0.8,

055=1.0, beingo =ai/ogs) and a packing fractiony
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Insertion of the corresponding derivatives in Eq@—  cally by means of the Hankel-Legendre transform, as al-
(14) leads to the desire¢-functions which are plotted in féady shown in EA3) of Ref. 26. o
Figs. 38-3(c). As can be seen, thefunctions decay When studying the three-particle distribution functions it

smoothly withr, and exhibit the expected core discontinuity. IS €OmMmon to express its ratio with respect to the KSA,

In Fig. 4 we present some results@jf). (k,k’,x) versus
ko for different configurationsx=cos#=0, 1, and —1), r'(r,s,t)=g®(r,s,1)/g®(r)g@(s)g?(1), (28
where 6 represents the angle betwekrandk’ in a given
isosceles triangle configuration of vectdesk’, andk—k’  \which somehow represents the deviation from the ideal be-
(k=Kk"). The trends observed are similar to those obtainegayior.
by Rosenfeldet al.** for the one-component case. The results ofg'}).(r,s,6) for various theories and

We include in Fig. 5 results f&).(k,k’) versus co®,  simulation together with the correspondiir,s,6) ratio
where thek vectors correspond in each case to the first pealgre shown for the different configurations in Figs. 6-11. One
in theh,,z(k) functions. Foﬁ:ffgy(k,k’) two approximations can see that for the configurations near contact the values of
have been compared: the BHP ansatz, Ef), and the g(cf’gy(r,r’) differ considerably from the KSA estimates. In
h()-bond approximation, Eq). If we compare these re- these cases thE-function systematically exhibits a charac-
sults with those of Ref. 8 for the one component case, weeristic shape with a marked maximum. As expected, depar-
observe that similar qualitative trends are followed by thetures from the KSA decrease when the interparticle separa-
two-component mixture. One sees that th&)-bond ap- tion in the triplets is increased, which is clearly illustrated by
proximation agrees qualitatively with the BHP theory, how-ther-dependence of thE(r,s, 8) function. It is to be noticed
ever, much larger discrepancies appear for okhamlues not  that the same features have been observed in the one-
shown here, as was already noticed by Baetaal® component case in a previous work by Bildstein and K&hl.

In order to obtain the three-particle distribution functionsin the present mixture case, for each configuration it can be
gffgy(r,r’), it is necessary to calculate tie€®) by means of seen that the CA and BHP results represent a considerable
Eq. (6) and subsequently insect®) in Eq. (17) to calculate  improvement over the KSA. In general, the BHP theory ex-
h®)_ (r,r"). The first four terms in E¢(17) are directly Fou-  hibits a better agreement with simulation than the CA in

aBy
rier inverted, and the remaining term is calculated numericertain regions, for instance in the neighborhood of the
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30 - T - T - systems like Attard® PY3 or Rosenfeld’s theoly might
r=0.85, 5=0.95 also yield a better description of the three-particle distribu-
L ] g tion function as well as the triplet direct correlation function.
! Work on these issues is planned.
~ 201 ‘\ o Sm _
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