
How to Speed-up Fault-Tolerant Clock Generation
in VLSI Systems-on-Chip via Pipelining

Matthias Függer
TU Wien, ECS Group

Vienna (Austria)
fuegger@ecs.tuwien.ac.at

Andreas Dielacher
RUAG Space

Vienna (Austria)
andreas.dielacher@space.at

Ulrich Schmid
TU Wien, ECS Group

Vienna (Austria)
s@ecs.tuwien.ac.at

Abstract—Fault-tolerant clocking schemes become in-
evitable when it comes to highly-reliable chip designs. Be-
cause of the additional hardware overhead, existing solutions
are considerably slower than their non-reliable counterparts.
In this paper1, we demonstrate that pipelining is a viable
approach to speed up the distributed fault-tolerant DARTS
clock generation approach introduced in (Függer, Schmid,
Fuchs, Kempf, EDCC’06), where a distributed Byzantine fault-
tolerant tick generation algorithm has been used to replace
the traditional quartz oscillator and highly balanced clock
tree in VLSI Systems-on-Chip (SoCs). We provide a pipelined
version of the original DARTS algorithm, termed pDARTS,
together with a novel modeling and analysis framework
for hardware-implemented asynchronous fault-tolerant dis-
tributed algorithms, which is employed for rigorously analyz-
ing its correctness & performance. Our results, which have also
been confirmed by the experimental evaluation of an FPGA
prototype implementation, reveal that pipelining indeed allows
to entirely remove the adverse effect of large interconnect
delays on the achievable clock frequency, and demonstrate
again that methods and results from distributed algorithms
research can successfully be applied in the VLSI context.

Keywords-Fault-tolerant distributed algorithms, VLSI,
clock synchronization, pipelining, modeling approaches.

I. MOTIVATION

Modern very-large scale integration (VLSI) circuits, in
particular, systems-on-chip (SoCs), have much in common
with the loosely-coupled distributed systems that have
been studied by the fault-tolerant distributed algorithms
community for decades (see [2], [3] for an overview on
commonalities). It is hence tempting to try and employ
distributed algorithms results and methods in this new
application domain. Recent work e.g. on scheduling of
DRAM memory requests [4] and hardware-implemented
transactional memory in multicores [5], fault-tolerant clock
generation in SoCs [6], and self-stabilizing microprocessors
[7] confirm that this is indeed feasible and quite promising.
Conversely, results and methods from VLSI design have
also been applied successfully in the distributed algorithms
context. Examples are error-correcting codes, which allow
to efficiently cope with Byzantine adversaries [8] and bear
interesting relations to fault-tolerant consensus [9], and

1A Brief Announcement [1] of this work was presented at PODC’09.
This work is supported by the Austrian Science Foundation (FWF) projects
P21694 (FATAL), P17757 (Theta) and P20529 (PSRTS).

pipelining, the most important paradigm for concurrency
in VLSI design, which is also a well-known technique
for speeding up synchronous distributed algorithms [10,
Ch. 6.2.2], [11]–[13].

This paper extends and integrates techniques from both
distributed algorithms and VLSI design for developing and
proving correct a pipelined version of the DARTS fault-
tolerant clock generation approach for SoCs introduced
in [6]: Fault-tolerant clocking schemes become inevitable
when it comes to highly-reliable SoC designs. In contrast
to the classical non fault-tolerant approach, which uses a
quartz oscillator and a clock tree for disseminating the clock
signal throughout the chip, DARTS employs a Byzantine
fault-tolerant distributed tick generation algorithm. The lat-
ter is a variant of Srikanth & Toueg’s consistent broad-
casting primitive [14] introduced in [15], which has been
adapted to the particular needs of a VLSI implementation
[6], [16]. Clearly fault-tolerance does not come for free.
Since the frequency of an ensemble of DARTS clocks is
solely determined by the end-to-end delays along certain
paths (which depend on the chip’s physical dimensions
and hence cannot be made arbitrarily small), the maximum
clock frequency is limited. For example, our first FPGA
prototype implementation ran at about 24 MHz; our recent
space-hardened 180 nm CMOS DARTS ASIC runs at about
55 MHz.

Fortunately, pipelining comes as a rescue for speeding-
up the clock frequency here; first estimates predict a clock
frequency of 100 MHz for our current 180 nm CMOS
implementation.

The purpose of this paper is actually two-fold: First,
the pDARTS algorithm demonstrates that pipelining is not
only effective for speeding-up synchronous distributed al-
gorithms, but also for fault-tolerant asynchronous ones in
systems with large bandwidth×delay products. Note that
the latter shows a clear rising trend in modern distributed
systems, since the bandwidth provided by state-of-the-art
computer networks and processors — as well as by VLSI
data paths and circuits — has tremendously increased, while
the spatial distances between nodes — including inter-chip
and on-chip communication — remain essentially the same.
In the asynchronous context, pipelining exploits the fact
that any FIFO data transmission/processing path in a dis-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357539046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tributed system, ranging from asynchronously (clocklessly)
“computing” logic gates interconnected by simple wires
to multiprocessors nodes (CPU, network processors, DMA
controllers, etc.) interconnected via FIFO network links,
has an inherently pipelined architecture. For example, a
simple message channel [even a wire] with bandwidth 109

messages/s and delay 5 ns is able to “store” 5 messages. A
fault-tolerant distributed algorithm may hence immediately
start phase k (rather than wait for the acknowledgments of
the previous data processing phase k − 1 in a “stop-and-
go fashion”), provided that the acknowledgments for phase
k − X − 1 (for some integer X > 0) have already been
received from sufficiently many correct processes.

And second, the new modeling framework used for the
correctness proof and performance analysis of pDARTS
shows how to cope with the quite special situation of
fault-tolerant distributed algorithms developed for VLSI
circuits: Such algorithms are made up of a typically large
number of simple building blocks (a multiplication is al-
ready non-trivial here) consisting of logic gates, intercon-
nected by simple wires carrying boolean signals, which
“compute” asynchronously, continuously and concurrently.
Our modeling framework, which is based on continuous
time and FIFO channels with delay, facilitates “switching”
between different — but consistent — views (state, transition
and counting view) of the same signal. In sharp contrast to
existing modeling frameworks capable of expressing timed
executions,2 these features allow to express the properties
of fault-tolerant distributed algorithms designed for a di-
rect implementation in “partially synchronous”3 logic in a
natural and simple way.
Detailed contributions: (i) We adapt the Byzantine fault-
tolerant distributed tick generation algorithm introduced in
[15] for pipelined execution, and make it suitable for a
direct implementation in asynchronous digital logic. Like
the original DARTS [6], the resulting pipelined pDARTS
algorithm achieves this by enforcing certain atomic actions
(“interlocking”) via relative timing assumptions, and by
replacing multi-bit messages by up/down signal transitions
only. (ii) We introduce the relevant parts of our novel mod-
eling and analysis framework for fault-tolerant distributed
algorithms designed for a direct implementation in VLSI.
(iii) We present the cornerstones4 of the correctness proof
of the pDARTS algorithm, and the worst case bounds
for performance metrics like synchronization precision and
minimum/maximum clock frequency. Since our “system-
level proof” rests on fundamental properties of simple basic
building blocks only, it effectively reduces the complex

2Our framework is substantially different from existing modeling frame-
works for asynchronous VLSI circuits (“trace theory”), which are time-free
and hence cannot deal with failures [17].

3By “partially synchronous” designs, we mean clockless designs that,
in contrast to pure asynchronous designs, also depend on some additional
(relative) timing constraints.

4Lacking space does not allow us to include the complete proof in the
paper. The details are provided in the technical report [18], which also
contains an overview of the related work on modeling approaches.

problem of guaranteeing system correctness to the simpler
problem of assuring the correctness of the implementations
of the basic blocks. (iv) We provide a glimpse of the
results of the experimental evaluation of pDARTS in an
FPGA prototype system, which confirm the feasibility and
efficiency of our approach.

II. INFORMAL OVERVIEW

The basic idea of DARTS5 is to replace the common
quartz oscillator and the clock tree that disseminates the
clock in a SoC by a fully distributed GALS-like approach
(globally asynchronous, locally synchronous [19]): Every
functional unit Fui in the SoC has attached a dedicated fault-
tolerant tick generation unit (TG-Alg), which generates
Fui’s local clock signal. To accomplish this, all TG-Algs
communicate with each other over a simple “network” of
clock signals (TG-Net). In contrast to GALS, however,
DARTS ensures that the local clock signals of different Fu’s
are synchronized to each other to within a few clock cycles.
In [20], it was proved that such loose synchrony suffices to
implement metastability-free high-speed communication be-
tween different Fu’s driven by fault-free clocks. Thus SoCs
built atop of DARTS do not need asynchronous communica-
tion mechanisms, i.e., handshaking. Besides fault-tolerance,
DARTS clocks (patented in [21]) provide a number of
additional advantages, making them particularly promising
for critical applications e.g. in the aerospace domain.

Like DARTS, the pipelined pDARTS TG-Alg developed
and analyzed in this paper derives from a simple distributed
algorithm, namely, a synchronizer for the Θ-Model [22],
[23] introduced in [15]. Its pseudo-code description is given
in Figure 1; X is a system parameter determined by the
inherent pipeline depth of the system: If X is chosen well
(see Section V for dimensioning issues), then pDARTS will
generate clock ticks with a frequency that is independent of
the TG-Net delay. Note that, at this level of description,
pDARTS for X = 0 is the same as the original DARTS.

The algorithm assumes a message-driven system (where
nodes make atomic receive-compute-send steps whenever
they receive a message) of n = 3f + 1 nodes (= TG-Alg
instances), at most f of which may behave arbitrarily faulty,
i.e., Byzantine. The nodes are connected by a reliable6

point-to-point message-passing network (= TG-Net): No
spurious messages are ever generated by the network, no
messages are lost or altered, and all messages sent at time t
are received within the interval t+[τ−, τ+], where τ− (resp.
τ+) denotes the (possibly unknown) lower (resp. upper)
bound on the end-to-end delay of messages exchanged
between correct nodes. Let ε = τ+ − τ− be the maximum
uncertainty of the message delay, and Θ = τ+/τ− the
maximum delay ratio.

The algorithm of Figure 1 works as follows: Initially,
every node broadcasts tick(−X), . . . , tick(0). Note that all

5See our project web page ti.tuwien.ac.at/darts for further details.
6This reliable network assumption is not unduly restrictive, since com-

munication failures can be mapped to failures of the sending node.

1: VAR k: integer /* Local clock value */
2: send tick(−X) ... tick(0) to all /* At booting time */
3: k:=0
4: if received tick(`) from at least f +1 distinct nodes with ` > k then
5: send tick(k + 1) ... tick(`) to all [once]
6: k := `
7: if received tick(`) from at least 2f+1 distinct nodes, with ` ≥ k−X

then
8: send tick(k + 1) to all [once]
9: k := k + 1

Figure 1. TG-Alg for pDARTS

+/− counter
GR

−+

+/− counter
GEQ

−+

+/− counter
GR

−+

+/− counter
GEQ

−+

≥ 2f + 1

≥ f + 1

Clocks from n − 1
other TG-Algs

TG-Alg p

clock output bp(t)

Figure 2. Basic architecture of a pDARTS TG-Alg.

correct nodes are assumed to initialize (almost) at the same
time, in the sense that they don’t lose any message due
to late booting. If node p receives f + 1 tick(`) messages
(line 4), it can be sure that at least one of those was
broadcast by a correct node. Therefore, p can safely catch
up and send tick(k + 1), . . . , tick(`). If some correct node
p receives 2f + 1 tick(k − X) messages (line 7) and thus
broadcasts tick(k + 1), one can be sure that all messages
among the 2f+1 ones that were broadcast by correct nodes,
i.e., at least f + 1, will be received within ε by every other
node. Hence, every correct node will execute line 4 and send
tick(k−X) by that time at latest. It follows that tick(k+ 1)
and tick(k −X) occur quite close (within ε) to each other.
This property is called Quasi-Simultaneity (QS), and is a
key property in proving the correctness of the algorithm.

Our detailed analysis will reveal that this indeed suffices
to prove that correct nodes generate a sequence of consec-
utive messages tick(k), k ≥ 1, in a synchronized way (see
Section III-D): If bp(t) denotes the number of tick messages
broadcast so far by the TG-Alg at node p, which is equal
to the value of the variable k (cf. Figure 1), it turns out that
(t2 − t1)αmin ≤ bp(t2) − bp(t1) ≤ (t2 − t1)αmax for any
correct p and t2−t1 sufficiently large (the property is called
“accuracy”); the constants αmin and αmax depend on τ−,
τ+ and X . Moreover, every two correct nodes p, q maintain
|bp(t)− bq(t)| ≤ π (the property is called “precision”), for
a small constant π that depends on Θ and X only.

Comparison with the original DARTS algorithm [6]
reveals that only the progress rule (line 7) was changed in
order to implement pipelining:7 Rather than just waiting for
tick(`) with ` ≥ k, as in the original DARTS algorithm, the
pDARTS algorithm waits for ` ≥ k−X . Our first intuition

7Note that our “top-down approach” for incorporating pipelining is quite
different from the way it is usually done in VLSI design.

was to incorporate X also in the catchup rule (line 4), which
would have considerably reduced the complexity of the low-
level hardware implementation of pDARTS. It turned out,
however, that doing this causes the algorithm to fail.

Since the pDARTS algorithm in Figure 1 looks very
simple, it is tempting to conclude that it is easily imple-
mented in hardware: Node p’s TG-Alg just needs to drive
a boolean-valued clock signal, where it outputs the k-th
signal transition when it sends its tick(k) message; the TG-
Net is formed by feeding all clock signals to all TG-Algs
(e.g., by a bus). In [6], however, it turned out that several
challenging design issues must be solved in order to arrive
at a low-level version of the pDARTS TG-Alg as depicted
in Figure 2. The major building blocks of a single TG-Alg
are 2(n−1) custom +/− counters, two for each of the n−1
other TG-Algs q in the system. The two +/− counters for
remote TG-Alg q at local TG-Alg p are responsible for
maintaining `q − kq > 0 (resp. `q − kq ≥ −X), which
are required to implement line 4 (resp. line 7) in Figure 1.
Herein, `q denotes the number of tick-messages seen from
q at the +/− counter so far, whereas kq denotes the
number of already perceived tick-messages from the own
TG-Alg p. The status signals GR (resp. GEQ) signal when
the corresponding inequality holds. In addition, a “≥ f+1”
(resp. “≥ 2f+1”) threshold circuit implements the rules in
line 4 (resp. line 7). Finally, there is a device (shown as an
OR-gate in Figure 2), responsible for generating every local
clock tick exactly once from the outputs of the threshold
gates. These local ticks are not only broadcast to all n− 1
remote TG-Algs via remote links, but are also fed back to
each of the 2(n− 1) +/− counters locally.

In order to circumvent the circuit from producing
glitches, a commonly used modification is applied: The
circuit is made to operate in two alternating phases (even,
odd). The signal GR, for example, was split into two signals
GRe and GRo, tied to even and odd ticks, respectively:
GRe is true iff the inequality `q − kq > 0 holds and
kq ∈ Neven := 2N, whereas GRo is true iff the inequality
`q − kq > 0 holds and kq ∈ Nodd := 2N + 1. The
associated threshold circuit is also duplicated, providing one
for the GRe signals and one for the GRo signals. The same
splitting is done for the signals GEQ and their threshold
circuits. Finally, all their outputs are combined to generate
p’s odd and even ticks.

III. FORMALIZATION

It has been highlighted in the previous section that even
the simple distributed algorithm presented in Figure 1 makes
use of design elements that are not available or too costly
at the hardware implementation level. Correctness proofs
and performance analyses using standard distributed com-
puting models would hence suffer from a substantial “proof
gap” w.r.t. the actual implementation, which considerably
diminishes their value: Although the high-level algorithm
has been proved correct, it is likely that the implementation
does not match the algorithm. Consequently, we base our

formal analysis on a more low-level model for specifying
the building blocks and analyzing the execution of fault-
tolerant distributed algorithms that are implemented directly
in asynchronous digital logic. Note that our framework is
substantially different from existing modeling frameworks
for asynchronous VLSI circuits like trace theory, which are
time-free and hence cannot deal with failures [17], and is
also different from the framework used for the correctness
proof and performance analysis [6] of the original DARTS.

VLSI distributed algorithms typically have a hierarchical
structure: For example, the top-level of pDARTS is made up
of n TG-Algs interconnected via the signal wires making
up the TG-Net. Every TG-Alg can be further partitioned
into several building blocks (like the +/− counters), which
are interconnected in some non-regular way. Our model
abstracts from these internals by considering modules,
which possess input and output ports (boolean signals). A
module’s behavior specifies how the signals on the input
and output ports are related. Modules differ from timed
automatons [24] primarily in that they continuously compute
their outputs, based on the history of their inputs.

Compound modules consist of multiple sub-modules and
their interconnect, which specifies how sub-module ports are
connected to each other and to the module’s input/output
ports. The interconnect specification itself assumes zero
delays; modeling non-zero interconnect delays, e.g., for real
wires, requires intermediate channels: A channel possesses
a single input port and a single output port, and its be-
havior specifies delayed FIFO delivery of input port signal
transitions at the output port. Modules that are not further
refined are called basic modules. Basic modules are zero-
delay boolean functions (AND, OR, . . .) and channels.

Clearly, the behavior of a (non-faulty) composite mod-
ule is determined by the behavior of its constituent sub-
modules; the behavior of a basic module must be given a
priori. An execution of a system is specified by the behav-
iors of each of its signals, and is typically modeled as a
set of event traces (see below). Correctness proofs establish
properties of the behaviors of higher-level modules, based
on the assumption that (1) the system and failure model
holds, and (2) that the implementations of the basic modules
indeed satisfy their behavioral specification.

A. Signals and zero-bit message channels

Since we target implementations using asynchronous cir-
cuits, our formal framework will be based on a continuous
notion of real-time t ∈ R+

0 . We assume that the system
initialization (reset) occurs at time t = 0.

A signal S may be either represented (i) by its event
trace, (ii) by its status, or (iii) by its counting function.
These representations are consistent, in a well-defined way,
and can hence be used interchangeably.
(i) Event trace: The representation of S by an event trace,
denoted by Ŝ, is specified by a relation Ŝ ⊆ R+

0 × {0, 1},
where event (t, 1) ∈ Ŝ (resp. (t, 0) ∈ Ŝ) means that S takes
on value 1 (resp. 0) at real-time t. In order to enforce a

unique initial value, we require either (0, 1) ∈ Ŝ or (0, 0) ∈
Ŝ. We further demand non-simultaneity of contradicting
events for any single signal, i.e., ((t, x) ∈ Ŝ) ∧ ((t, y) ∈
Ŝ) ⇒ (x = y). Let pre(Ŝ, t) := {(t′, v′) ∈ Ŝ | t′ ≤ t}
denote the prefix of Ŝ until time t. In this paper, we will
restrict our attention to event traces where only finitely
many alternating events (i.e., with different value) can occur
in any finite time interval. Due to this restriction,

last-val(Ŝ, t) := v′ s.t. ∃(t′, v′) ∈ pre(Ŝ, t) :

∀(t′′, v′′) ∈ pre(Ŝ, t) : (t′′ ≥ t′)⇒ (v′′ = v′)

is always well-defined. This definition still allows arbitrarily
many idempotent events to occur in a prefix.
(ii) Status: Since idempotent events do not change the
state of a signal, they are often irrelevant. Idempotent
events can be abstracted away by considering the signal
S’s status representation, denoted by S̃, which is a function
S̃ : R+

0 → {0, 1} from time t to the boolean value of
S at time t. Obviously, signals may be composed out of
already defined signals by using arbitrary boolean pred-
icates, e.g., Ã := B̃ ∧ C̃, with signals B̃, C̃ defined as
Ã(t) := B̃(t) ∧ C̃(t).

One can easily switch between the two representations of
S: If given the event trace Ŝ of S, the equivalent status rep-
resentation S̃ of S can be obtained by S̃(t) := last-val(Ŝ, t).
Given S̃, one cannot regenerate the “original” event trace
Ŝ, since all idempotent events have been lost. Still, most
of the time, it suffices to obtain some event trace Ŝ′ that
has the same status representation as Ŝ. Such an event trace
can simply be obtained from S̃ by Ŝ := {(t, S̃(t)) | t ≥ 0};
here Ŝ contains continuum-many events.
(iii) Counting function: Finally, signal S can be repre-
sented by the number of non-idempotent events that occur
during]0, t], denoted as the counting function S(t). For ex-
ample, if Ŝ = {(0, 0), (1, 1), (1.5, 1), (2, 0)}, then S(0) = 0
and S(2) = 2. Sometimes, we will also employ generalized
counting functions S′(t) that have an initial value other than
0: We define S′(t) := S(t)+S0, where S(t) is the standard
counting function of S and S0 an arbitrary offset.

It is again easy to switch between the counting function
representation of S and the other representations: S(t) can
be obtained from Ŝ by just counting the non-idempotent
events in Ŝ (excluding the initial event), and getting Ŝ from
S(t) [for some given initial event (0, I), I ∈ {0, 1}] is
accomplished via Ŝ := {(t, [I + S(t)] mod 2) | t ≥ 0}.
Switching between the status representation and the count-
ing function can be done transitively via the corresponding
event trace representation, or directly via S̃(0) := 0,
S̃(t) := [I + S(t)] mod 2 for t > 0.

A threefold representation of signals may look counter-
productive in a modeling approach, which typically aims at
unification (i.e., deriving properties form as few concepts
as possible). However, the benefit of equipping the sys-
tem model with three different representations of a signal
becomes clear when considering behavioral specifications,

correctness proofs and performance property proofs of real-
world designs. Consider a Muller C-Element [25], for exam-
ple, a component extensively used in asynchronous designs,
with input signals a, b and output y. It can be specified
by using both status and event representations (whereas a
specification in e.g., status only would be lengthy):

(0, 0) ∈ ŷ and

(t, 1) ∈ ŷ ⇔ ã(t) ∧ b̃(t), (t, 0) ∈ ŷ ⇔ ¬ã(t) ∧ ¬b̃(t).

A combinatorial element, like an AND with inputs a, b and
output y can easily be specified by status representations:

ỹ(t) = ã(t) ∧ b̃(t).

A specification via events would be lengthy and distracting.
Finally, the counting function representation is useful when
specifying the behaviour of queueing systems (consult the
Diff-gate specification in Section III-C for an example).

A channel models a reliable FIFO channel for signal
transitions with finite delay. Since signal transitions must
be alternating, only the occurrence time but no data can be
conveyed over a single channel. Formally, the semantics of a
channel C is as follows: Let Cs be the channel’s single input
port [which will be connected to an output port of a single
sender module], and Cr be its single output port [which will
be connected to the input ports of some receiver module(s)].
There exists a continuous and strongly monotonically in-
creasing delivery function f : R+

0 → R+
0 for C, which maps

sending time t to delivery time f(t). We assume that the
channel delay is within

[
τ−C , τ

+
C

]
, i.e., f(t)− t ∈

[
τ−C , τ

+
C

]
.

From the properties of f , it follows immediately that f
is a bijection from R+

0 to its codomain f(R+
0). More

specifically, f maps every closed interval [t1, t2] bijectively
to the closed interval [f(t1), f(t2)]. Clearly, the inverse
function f−1 of f also exists and has the same properties. In
addition, we will assume that the channel output has some
well-defined initial state (is initialized to) I ∈ {0, 1}, which
is I = 0 if not specified otherwise. Given f , the channel’s
behavior in terms of event traces is

(0, I) ∈ Ĉr ∧ @(t, v) ∈ Ĉr with v ∈ {0, 1}, t ∈ [0, f(0)[

and (f(t), x) ∈ Ĉr ⇔ (t, x) ∈ Ĉs.

Since f carries over the total order of the events (t, x) in
Ĉs to the events (f(t), x) in Ĉr [called matching events in
the sequel], it follows that Ĉr is an event trace. In terms of
states, the channel behavior can be defined as

∀t ∈ [0, f(0)[: C̃r(t) := C̃r(0) = I and

∀t ≥ 0 : C̃r(f(t)) := C̃s(t).

B. pDARTS System Model

The pDARTS system consists of a set P of n ∈ N top-
level modules. These top-level modules will interchangeably
be called node/TG-Alg and are usually denoted by letters
p, q etc. Every node p has exactly one output port with the
counting function bp(t) (the number of broadcast messages),

and one input port per remote node q ∈ P \ {p} with
the counting function rremp,q (t) (the number of received
messages). We assume a fully connected system, i.e., from
every node p to every node q ∈ P \ {p}, there is a
channel 〈REM, p, q〉 with input bp(t), output rremq,p (t), and
delay in [τ−rem, τ

+
rem]. Figure 3 shows the resulting outbound

channels of node p. Let tp,boot denote the time when correct
node p completes booting (starts executing its TG-Alg). We
require that tp,boot ∈ [0, B] for some constant B, where
B ≤ τ−rem. Due to this assumption, messages sent by p may
not get lost at any correct node q because of late booting.

The following notation will be used throughout the
paper: For any k ≥ 1, we say that node p sends tick k,
at time tp,k, if the kth event (without counting idempotent
events) occurs at tp,k. The time when the first (resp. the
last) correct node sends tick k is denoted by tfirst,k (resp.
tlast,k). Analogously, we say that p receives tick k from q
at time t, if rremp,q (t) = rremp,q (t→) + 1 = k, where t→ it the
time immediately before the reception takes place.

We partition our system into multiple fault-containment
regions (FCRs), i.e., sets of modules that are potentially
affected by a single fault like a particle hit and thus cannot
be assumed to fail independently. More specifically, we
define FCR p to consist of the single node p together with
all its outgoing channels, as depicted in Figure 3. If FCR p
is correct, then each of its sub-modules behaves as specified
in Section III-C. If FCR p is faulty, any of its sub-modules
may behave arbitrarily (Byzantine).8 Since every FCR is
associated with exactly one node, we will use these terms
interchangeably as well. Throughout the paper, let C be the
set of correct FCRs, and F , with f := |F |, the set of faulty
FCRs. Clearly P = C ∪ F and C ∩ F = ∅, i.e., C and F
partition P . We will prove in Section IV that correct nodes
behave as specified in Section III-D in the presence of up to
f Byzantine faulty FCRs, provided that the total number of
nodes is n ≥ 3f+2. This is slightly more than the required
lower bound of n ≥ 3f + 1 for clock synchronization [32],
but facilitates a considerably better precision and accuracy.9

C. Specifications of TG-Alg basic modules

The internal architecture of a single TG-Alg, as described
in Section II, is obtained by expressing and refining Figure 2
in terms of our formal model. Due to space limitations, we

8Since hardware faults easily lead to Byzantine failures [26], we assume
this failure semantics here: The adverse power of Byzantine failures in our
context lies in the ability of faulty nodes to generate wrong clock ticks
(early or even spurious) that are perceived inconsistently at different remote
nodes. Such failures can be the consequence of manufacturing defects or
electrostatic breakdown [27], particle hits [28], or electromagnetic noise
[29], which may affect any module in a TG-Alg. Due to different wire
lengths and signal-level detection thresholds, such faults typically propa-
gate differently to different receivers. We allow faulty nodes to create even
metastability [30], but must assume that metastability cannot propagate
beyond FCRs; we have already convincing evidence [31] that this is
ensured by the elastic pipelines in the +/− counters with high probability.

9This follows from counting only remote messages when calculating
the f + 1 and 2f + 1 thresholds; including self-reception would lead
to τ−rem = τ−loc in Theorem 2, which spoils the achievable worst-case
precision considerably.

FCR p

node p bp(t)

〈REM, p, q〉 node qr
rem
q,p (t)

〈REM, p, r〉 node rr
rem
r,p (t)

...

〈REM, p, s〉 node sr
rem
s,p (t)

Figure 3. Fault-containment region FCR p.

pair of +/− counters for q

remote pipe rrem,GEQ
p,q (t)

remote pipe r
rem,GR
p,q (t)

d
GEQ
p,q (t)

d
GR
p,q (t)

local piper
loc,GEQ
p,q (t)

local piper
loc,GR
p,q (t)

ePGEQ,o
p,q (t) ePGEQ,e

p,q (t) ePGR,o
p,q (t) ePGR,e

p,q (t)

rremp,q (t) rlocp,q(t)

Figure 4. Architecture of a pair of +/− counters at p corresponding to q

will only present the formalization of the +/− counters
here, which turned out to be the most intricate component.

As shown in Figure 4, the implementation of every pair
of +/− counters comprises two +/− counters. Each +/−
counter consists of two elastic pipelines [25], which can be
seen as shift registers/FIFO buffers for signal transitions.
One is attached to the remote clock signal, the other one is
fed by the local clock signal. They are fitted together at their
ends via a special Diff-Gate, which removes “matching”
transitions as soon as they traveled through the pipelines.
The status signals GEQo, GEQe, GRo, and GRe are
provided by the pipe compare signal generator (PCSG)
circuits, which monitor the last few stages of both pipes.
For simplicity, we did not include the channels arising in
the sub-modules’ interconnect in Figure 4.
Pairs of elastic pipes: Every node p incorporates two pairs
of elastic pipelines for every remote TG-Alg q ∈ P \ {p}.
The pipepair responsible for the GEQ-rule is denoted
(p, q)GEQ, the one for the GR-rule (p, q)GR. Every pair
consists of a remote pipeline that can store up to Srem,geq
(resp. Srem,gr) ticks sent by q, and a local pipeline that
can hold up to Sloc,geq (resp. Sloc,gr) ticks generated by p
locally. The numbers Srem,geq, Srem,gr, Sloc,geq and Sloc,gr
are implementation parameters that have to be chosen
in accordance with the bounds of Section III-D; in the
specifications of this section, they are just assumed to be
unbounded (arbitrary large).

The local pipe of (p, q)GEQ has a single input port
represented by the counting function rlocp,q(t), which is fed
by TG-Alg p’s local clock ticks bp(t) supplied via a (local)
channel 〈LOC, p, q〉, and a single output port represented
by the counting function rloc,GEQp,q (t), which denotes the
number of ticks that arrived at the output of the local pipe
by time t. Similarly, the remote pipe of (p, q)GEQ has
a single input port represented by the counting function
rremp,q (t), which is fed by TG-Alg q’s clock ticks supplied
via the (remote) channel 〈REM, q, p〉, cp. Figure 3, and
a single output port represented by the counting function
rrem,GEQp,q (t), which denotes the number of ticks that arrived
at the output of the remote pipe by time t. The same
description applies to the pipepair (p, q)GR, except that
rrem,GEQp,q (t) and rloc,GEQp,q (t) is replaced by rrem,GRp,q (t)
and rloc,GRp,q (t), respectively. Upon initialization, the remote
pipe of every (p, q)GEQ is prefilled with “virtual” ticks
−X, . . . , 0 (expressed by a counting function with offset

X), while the other pipes are initialized with “virtual” tick
0; we call these ticks “virtual”, since they were never sent.
Behavioral Description: Every pipeline has the behav-
ior of a zero-delay10 channel: rrem,GRp,q (t) := rremp,q (t),
rrem,GEQp,q (t) := rremp,q (t) +X , rloc,GRp,q (t) = rloc,GEQp,q (t) :=
rlocp,q(t), where X ≥ 0 is the pipeline depth parameter. The
initial values are rrem,GEQp,q (tp,boot) = X (to account for
the prefilling) and rrem,GRp,q (tp,boot) = rloc,GRp,q (tp,boot) =
rloc,GEQp,q (tp,boot) := 0.
Diff-Gate: To avoid pipes with infinite capacity, each
pair of pipes is equipped with a special Diff-Gate circuit
that removes matching clock ticks from their outputs, i.e.,
clock ticks contained in both pipes: The Diff-Gate for
(p, q)GEQ has two input ports connected to rrem,GEQp,q (t)
and rloc,GEQp,q (t), and a single output port represented by
the counting function dGEQp,q (t), which gives the largest tick
number that has been removed from both the remote and
local pipe of (p, q)GEQ by time t. [The description of the
Diff-Gate of (p, q)GR is very similar.]
Behavioral Description: Let tGEQrmv,k, k ≥ 0, be the time
when tick k is removed from both the remote output
rrem,GEQp,q (t) and the local output rloc,GEQp,q (t) of (p, q)GEQ,
i.e., dGEQp,q (tGEQrmv,k) = k. Tick k stored in the remote pipeline
actually is tick k+X showing up at the output rrem,GEQp,q (t).
(i) By convention, the remote pipe initially is prefilled with
ticks −X, . . . , 0. Thus ticks 0, . . . , X show up at the output
rrem,GEQp,q (tGEQrem,k) at time tGEQrem,k := tp,boot . Further, by
convention, tick −1 is removed at time tGEQrmv,−1 := tp,boot ,
i.e., dGEQp,q (tp,boot) = −1. (ii) For k ≥ 0, if tick k+1 shows
up at rrem,GEQp,q (tGEQrem,k+1) at time tGEQrem,k+1, and tick k+ 1
shows up at rloc,GEQp,q (tGEQloc,k+1) at time tGEQloc,k+1, and tick k−
1 is removed at time tGEQrmv,k−1, then tick k is removed
at some tGEQrmv,k ∈ max{tGEQrem,k+1, t

GEQ
loc,k+1, t

GEQ
rmv,k−1} +

[τ−Diff , τ
+
Diff].

On top of the above defined signals rlocp,q(t) and dGEQp,q (t),
the size of the local pipe of (p, q)GEQ at time t is defined
as sloc,geqp,q (t) := rlocp,q(t)− dGEQp,q (t). The other pipes’ sizes
srem,geqp,q (t), sloc,grp,q (t) and srem,grp,q (t) are defined similarly.
Pipe Compare Signal Generators (PCSGs): The signals
provided by the pipepairs and their Diff-Gates are con-
nected to the PCSG, which generates four status signals

10Actually, the pipe delays are accounted for in the delays of the other
channels in the signal path, namely, 〈REM, q, p〉 and 〈LOC, p, q〉.

P̃GEQ,op,q (t), P̃GEQ,ep,q (t), P̃GR,op,q (t) and P̃GR,ep,q (t) that char-
acterize the difference of the number of clock ticks stored
in the remote and local pipes by time t. Different signals
are provided for odd and even clock ticks. For example,
P̃GEQ,op,q (t) signals when the number of remote clock ticks
is greater than or equal to the number of local clock ticks,
provided that the last clock tick that entered the local pipe
was odd. All these signals are fed, via dedicated channels
that add some delay, to the threshold modules of the TG-
Alg p. Note that we need P̃GEQ,op,q (t) and P̃GR,op,q (t) to
be valid only if the local pipes contain exactly one tick.
These signals are fed into dedicated channels, all of which
are initialized to 0:

〈
PGEQtoGEQ, o, p, q

〉
with input

P̃GEQ,op,q (t), output G̃EQ
o

p,q(t) and delay [τ−GEQ, τ
+
GEQ],

and
〈
PGRtoGR, o, p, q

〉
with input P̃GR,op,q (t), output

G̃R
o

p,q(t) and delay [τ−GR, τ
+
GR]. [Analogously, P̃GEQ,ep,q (t)

and P̃GR,ep,q (t) and their channels are defined by substituting
Nodd with Neven.]
Threshold modules, tick generation module and inter-
connect: The GR (resp. GEQ) signals from the PCSGs are
fed into the threshold modules, which signal within delay
[τ−TH , τ

+
TH] whether the f + 1 (resp. 2f + 1) threshold has

been reached. The thresholds’ outputs are finally combined
by the tick generation module, which actually produces
every tick exactly once, and broadcasts it via the channels
〈REM, p, q〉 (within delay [τ−rem, τ

+
rem]) to all other TG-

Algs, and to its own +/− counters via the channels
〈LOC, p, q〉 (within delay [τ−loc, τ

+
loc]).

D. System-level properties
Correct TG-Algs are required to guarantee the properties:

(P) Precision (see Theorem 2): There is a constant π, such
that for every pair of correct nodes p, q ∈ C:

∀t : |bq(t)− bp(t)| ≤ π. (1)

(A) Accuracy (see Theorem 3): There are constants R−,
O−, R+, O+ > 0, such that for every correct node p ∈ C:

O−(t2− t1)−R− ≤ bp(t2)− bp(t1) ≤ O+(t2− t1) +R+.
(2)

(S) Size: There are constants Srem,gr, Sloc,gr and Srem,geq,
Sloc,geq, such that for every pair of correct nodes p, q ∈ C

sloc,grp,q (t) ≤ Sloc,gr, srem,grp,q (t) ≤ Srem,gr,
sloc,geqp,q (t) ≤ Sloc,geq, and srem,geqp,q (t) ≤ Srem,geq.

In the following Section IV, we will sketch the cornerstones
of our proofs, which show that the TG-Algs at correct
nodes indeed satisfy the above properties in all executions
complying to the system and failure model, provided that (a)
the implementations of correct basic modules specified in
Section III-C indeed fulfill their specifications, and (b) ad-
ditional “global” Constraints 1–3, which are relative timing
constraints, hold. Our Theorems 2 and 3 will also establish
numerical values for precision and accuracy, which only
depend on X and the delay parameters introduced in the
specifications of the TG-Alg sub-modules in Section III-C.

IV. CORRECTNESS PROOFS

The first cornerstone of our proofs11 is the “Interlocking
Lemma”, which states that an “old” tick k − 2, k − 4, . . .
is never mixed up with a “recent” tick k when generating
tick k + 1. This property does not come for free, however,
but can be guaranteed to hold only if the following timing
constraint is satisfied (which is easy to enforce via a suitably
defined constraint during place-and-route of a VLSI circuit):

Constraint 1: (Interlocking Constraint). With the ab-
breviations Tmax := τ+

TH + max(τ+
GR, τ

+
GEQ) + τ+

loc,
Tmin := τ−TH + min(τ−GR, τ

−
GEQ) + τ−loc + τ−Diff and

Tmin,dis := τ−TH + min(τ−GR, τ
−
GEQ) + τ−loc, it must hold

that Tmax ≤ Tmin + Tmin,dis.
Lemma 1 (Interlocking): If, for some correct node p and

k′ = k + 1 ≥ 2, bp(t) = k + 1, then
(i) either there exists a set Q of size |Q| ≥ 2f + 1 s.t. for
t′ := t− τ−TH − τ

−
GEQ:

k ∈ Neven ⇒ ∀q ∈ Q : ∃tq ≤ t′ : P̃GEQ,ep,q (tq) ∧ rlocp,q(tq) ≥ k
k ∈ Nodd ⇒ ∀q ∈ Q : ∃tq ≤ t′ : P̃GEQ,op,q (tq) ∧ rlocp,q(tq) ≥ k,

(ii) or there exists a set Q of size |Q| ≥ f + 1 s.t. for
t′ := t− τ−TH − τ

−
GR:

k ∈ Neven ⇒ ∀q ∈ Q : ∃tq ≤ t′ : P̃GR,ep,q (tq) ∧ rlocp,q(tq) ≥ k
k ∈ Nodd ⇒ ∀q ∈ Q : ∃tq ≤ t′ : P̃GR,op,q (tq) ∧ rlocp,q(tq) ≥ k.

This result enables us to prove a minimum duration
between two successive ticks generated by a correct node:

Lemma 2: If correct node p sends tick k ≥ 1 at time
tp,k, it cannot send tick k + 1 before tp,k + Tmin.

The following Lemma 3 in conjunction with an addi-
tional Constraint 2 allows us to exclude the possibility of
queuing effects in a pipepair (p, q)GR corresponding to
correct node q in a correct TG-Alg p. [An analogous lemma
exists for (p, q)GEQ.]

Constraint 2: τ+
Diff ≤ Tmin.

Lemma 3: For any pair of distinct correct nodes p, q and
k ≥ 1: If correct node p sent tick k at tp,k and q sent tick k
at tq,k, then tick k−1 is removed from the local and remote
pipe of pipepair (p, q)GR by time max{tk,p + τ+

loc, tk,q +
τ+
rem}+ τ+

Diff , if Constraint 2 holds.
The following pivotal Theorem 1 and its proof are

a generalization of well-known properties of consistent
broadcasting, cp. [14], [15], [33]. To hold true, the following
additional timing constraint must be satisfied:

Constraint 3: T−first ≥ (X + 1)(τ+
loc + max{τ+

Diff +
τ+
GR, τ

+
GEQ}+ τ+

TH).
Theorem 1: (Synchronization Properties). pDARTS sat-

isfies the properties Unforgeability (U), Progress (P), Quasi-
Simultaneity (QS) and Booting-Simultaneity (BS), if Con-
straints 1, 2, 3 and n ≥ 3f + 2 hold.

11Lacking space does not allow us to present the complete correctness
proof and performance analysis here, which can be found in the technical
report [18].

π := max

8>>>><>>>>:
$
TQS

T−first

%
(X + 1) +

26666666
TQS −

$
TQS

T
−
first

%
T−first

Tmin

37777777
+X + 1,

&
TQS

T−first

’
(X + 1) +

26666666
TQS −

 &
TQS

T
−
first

’
− 1

!
T−first

Tmin

37777777

9>>>>=>>>>;
L(t2 − t1) := max

8>><>>:0,

666664 t2 − t1 −max

TBS(2X + 1),
min {TQS + (X + 1)TP , TBS(k) | k ≥ 2X + 2}

ff
TP

777775+ 1

9>>=>>;

U(t2 − t1) :=

&
t2 − t1
T−first

’
(X + 1)−

26666666
t2 − t1 −

&
t2−t1
T
−
first

’
T−first

Tmin

37777777
+ 1 + π

Figure 5. Precision and (lower and upper) accuracy bounds of pDARTS system.

(U) Unforgeability. If no correct node sends tick k ≥ 1
by time t, then no correct node sends tick k + X + 1 by
time t + T−first or earlier, with T−first := τ−rem + τ−Diff +
τ−GEQ + τ−TH .

(P) Progress. If all correct nodes send tick k ≥ X + 1
by time t, then every correct node sends at least tick k+ 1
by time t+ TP , with

TP := max

τ+
loc + τ+

Diff + max{τ+
GEQ, τ

+
GR},

τ+
loc + τ+

GR,
τ+
rem + τ+

Diff + τ+
GEQ −XTmin

+ τ+
TH

(3)

(QS) Quasi-Simultaneity. If some correct node p sends
tick k ≥ X+2 by time t, then every correct node (including
p) sends at least tick k −X − 1 by time t+ TQS , with

T 1
QS := τ+

rem + τ+
GR + τ+

TH + X(τ+
loc

max{τ+
Diff + τ+

GR, τ
+
GEQ}+ τ+

TH − Tmin) − T−first

T 2
QS := B + (X + 1)(τ+

loc + max{τ+
GEQ, τ

+
GR}+ τ+

TH−
Tmin)− (τ+

loc − τ
−
loc)− T

−
first

TQS := max{T 1
QS , T

2
QS}.

(BS) Booting-Simultaneity. If some correct node sends
tick k ≥ X + 1 by time t, then every correct node sends
at least tick k by time t + TBS(k), with TBS(k) := B +
max{τ+

GEQ, τ
+
GR}−min{τ−GEQ, τ

−
GR}+ τ+

TH − τ
−
TH +(k−

1)(TP − Tmin).
The (QS) bound comprises two bounds, T 2

QS that holds
right after booting, and T 1

QS that holds for larger tick
numbers. T 1

QS itself contains three parts (depicted as shaded
boxes): The 1st (resp. the 3rd) correspond to the longest
(resp. shortest) remote delay; their difference is the uncer-
tainty ε mentioned in the proof idea outlined in Section II.
The 2nd term results from queueing effects in pDARTS.

Theorem 1 eventually leads to our major results:
Theorem 2: (Precision). The pDARTS algorithm ensures

∀t : |bp(t)− bq(t)| ≤ π for all correct p, q, with π defined
in Figure 5.
Note that π depends on the ratio of certain timing parame-
ters only, which typically does not change much when, e.g.,
one migrates the algorithm to a faster VLSI technology.

The following Theorem 3 allows to relate clock time
intervals to real-time intervals, and to make statements about
the local clock frequency. For example, it reveals that the
long-term frequency is within

[
1/TP , (X + 1)/T−first

]
.

Theorem 3: (Accuracy). Given t1 and t2 with t2 > t1 ≥
tp,X+1, the accuracy bp(t2)− bp(t1) of any correct node p
is bounded by the lower and upper bounds L(t2 − t1) ≤
bp(t2)− bp(t1) ≤ U(t2 − t1), defined in Figure 5.
The term min {TQS + (X + 1)TP , TBS(k)} for k ≥ 2X+2
in L(t2 − t1) accounts for the fact that correct nodes may
be synchronized very tightly (within TBS(k)) after booting,
such that TQS+(X+1)TP would be too conservative. How-
ever, when Tmin < TP , typically being the case in SoCs,
the initial synchrony from booting cannot be maintained,
i.e., the constant bound from (QS) will be tighter.

Finally, we have proven that the pipeline sizes Srem,geq,
Srem,gr, Sloc,geq and Sloc,gr at correct TG-Algs are indeed
bounded by some constants, which again depend on the
ratio of certain timing parameters only.12

V. PROTOTYPE IMPLEMENTATION AND MEASUREMENT
RESULTS

Since pDARTS uses the same basic blocks as the original
DARTS VHDL implementation [6], [16], it was reason-
ably easy to build an FPGA prototype implementation of
pDARTS: Recall that the only substantial change was the
doubling of the +/− counters, and the need to initialize all
GEQ-+/− counters to X; the latter was accomplished by
putting X ticks, which correspond to the virtual, received
ticks −X, . . . , 0, into their remote pipes upon reset.

Similar to the first prototype of DARTS, we have syn-
thesized a complete system of 5 pDARTS TG-Algs on
an Altera APEX EP20K1000 FPGA. Although FPGAs are
not particularly suitable for asynchronous designs due to
the fixed structure of the lookup tables and registers, this
prototype nevertheless provides a proof of concept and
clearly demonstrates the feasibility and efficiency of the
pipelined approach.

A comparision of pDARTS with DARTS in terms of
area reveals that, despite the doubling of the +/− counters
in pDARTS, it scales similar to DARTS: In [34], we have

12Detailed results and proofs can be found in the technical report [18].

shown that the threshold modules, which are identical in
DARTS and pDARTS, dominate area consumption.

A. Parameter choices

Recall from Section I and II that the pipelining parameter
X is related to the inherent pipeline depth of the end-to-
end delay paths in the system. Formally, this is expressed
in Constraint 3, which requires T−first ≥ (X + 1)(τ+

loc +
max{τ+

Diff + τ+
GR, τ

+
GEQ} + τ+

TH). It effectively limits X
to a value that allows it to “store” at least X ticks within
the fastest end-to-end delay path, even if the X ticks are
generated as slowly as possible.

On the other hand, from Theorem 3, it follows that the
clock frequency lower bound is Ω(1/TP), with TP given
by (3) in Theorem 1. From the term τ+

rem+τ+
Diff +τ+

GEQ−
XTmin appearing in TP , it is obvious that, by choosing X
sufficiently large, the dependency on a large remote delay
bound τ+

rem can be dropped entirely.
From Theorem 2, it is apparent that the worst case preci-

sion π increases when increasing X . It is important to note,
however, that this is a matter of a “scaling transformation”
and not a sign of reduced real-time synchronization quality:
Since the precision gives the maximum number of ticks two
clocks can be off at the same real-time, the increase of π is
outweight by the decrease of the tick duration. What indeed
increases when increasing X is the maximum size of the
elastic pipelines, however: In order to be able to experiment
with different values of X ∈ {0, 2, 4}, we had to choose
the conservative size of 8 for every elastic pipeline.

B. Measurement results

The above choice of parameters in our FPGA imple-
mentation resulted in a local-loop delay (Tmin) of about
25 ns, which amounts to a maximum local clock frequency
of about 20 MHz.13 In order to be able to demonstrate
the benefits of pipelining in this setting, we enforced a
remote delay of τ−rem = τ+

rem ≈ 125 ns in the TG-Net.
The inherent pipeline depth is hence about 125/25 = 5. As
revealed by the measurement results for X = 0, DARTS
achieves a clock frequency of about 4 MHz in this case.

Figure 6 shows the case X = 2. The repetitive pattern
consisting of a burst of 3 ticks followed by some idle time in
every clock signal is an artefact of our simple initialization
approach, in conjunction with an inherent pipeline depth
larger than 3: On reset, the TG-Alg generates X+1 ticks and
waits until it receives the first tick from sufficiently many
remote TG-Alg to generate the next tick. Further increasing
X fills up the 125ns clock half period with additional ticks.
Figure 7 finally shows the case with the maximum feasible
X = 4; the next possible value X = 6 would already violate
Constraint 3. For X = 4 we can observes that the clocks
run at a frequency of about 20 MHz, which is the maximum
frequency of the local loop. This speed-up by a factor of
X + 1 = 5 confirms that pipelining is able to (completely)

13Our FPGA DARTS prototype achieved about 24 MHz, which is due
to the fact that the sizes of the elastic pipelines were 4 instead of 8.

hide the large remote delay in the system. Interestingly the
initially bursty clock cycles tend to spread out evenly after
some time, cp. our comment after Theorem 3.

VI. CONCLUSIONS AND FUTURE WORK

We demonstrated that pipelining is effective for increas-
ing the clock frequency of a fault-tolerant distributed clock-
ing approach in VLSI circuits with large bandwidth×delay
products. We further introduced a new modeling framework
for low-level distributed algorithms, which was used to
formally prove the algorithms correctness and analyze its
performance. The validity of our results was confirmed by
measurement results obtained in an FPGA prototype system.

ACKNOWLEDGEMENTS

We are grateful to Andreas Steininger and Gottfried
Fuchs for many helpful discussions, and to Markus Fer-
ringer for providing us with the original DARTS FPGA
implementation.

REFERENCES

[1] A. Dielacher, M. Fuegger, and U. Schmid, “Brief announce-
ment: How to speed-up fault-tolerant clock generation in vlsi
systems-on-chip via pipelining,” in Proceedings of the 28th
ACM Symposium on Principles of Distributed Computing
(PODC’09). ACM Press, Aug. 2008, p. 423.

[2] B. Charron-Bost, S. Dolev, J. Ebergen, and U. Schmid,
“08371 summary – fault-tolerant distributed algorithms on
vlsi chips,” in Fault-Tolerant Distributed Algorithms on VLSI
Chips, ser. Dagstuhl Seminar Proceedings, B. Charron-Bost,
S. Dolev, J. Ebergen, and U. Schmid, Eds., no. 08371.
Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, 2009. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2009/1927

[3] U. Schmid, “Keynote: Distributed algorithms and VLSI,”
in Proceedings of the 10th International Symposium on
Stabilization, Safety, and Security of Distributed Systems
(SSS’08), ser. Lecture Notes in Computer Science, vol. 5340.
Detroit, USA: Springer Verlag, Nov. 2008, p. 3. [Online].
Available: http://www.vmars.tuwien.ac.at/documents/extern/
2467/sss08.pdf

[4] T. Moscibroda and O. Mutlu, “Distributed order schedul-
ing and its application to multi-core dram controllers,” in
Proceedings of the 27th ACM Symposium on Principles of
Distribute d Computing (PODC’08), 2008, pp. 365–374.

[5] C. Ferri, T. Moreshet, R. I. Bahar, L. Benini, and M. Herlihy,
“A hardware/software framework for supporting transactional
memory in a mpsoc environment,” SIGARCH Comput. Ar-
chit. News, vol. 35, no. 1, pp. 47–54, 2007.

[6] M. Fuegger, U. Schmid, G. Fuchs, and G. Kempf, “Fault-
Tolerant Distributed Clock Generation in VLSI Systems-on-
Chip,” in Proceedings of the Sixth European Dependable
Computing Conference (EDCC-6). IEEE Computer Society
Press, Oct. 2006, pp. 87–96.

[7] S. Dolev and Y. Haviv, “Self-stabilizing microprocessors,
analyzing and overcoming soft-errors,” IEEE Transactions
on Computers, vol. 55, no. 4, pp. 385–399, Apr. 2006.

Figure 6. pDARTS with X = 2 (immediately after reset) Figure 7. pDARTS with X = 4 (immediately after reset)

[8] S. Dolev and N. Tzachar, “Brief announcment: Corruption
resilient fountain codes,” in DISC, 2008, pp. 502–503.

[9] R. Friedman, A. Mostefaoui, S. Rajsbaum, and M. Ray-
nal, “Asynchronous agreement and its relation with error-
correcting codes,” IEEE Trans. Comput., vol. 56, no. 7, pp.
865–875, 2007.

[10] N. Santoro, Design and Analysis of Distributed Algorithms,
ser. Wiley Series on Parallel and Distributed Computing.
John Wiley & Sons, 2007.

[11] J. A. Garay, S. Kutten, and D. Peleg, “A sublinear time
distributed algorithm for minimum-weight spanning trees,”
SIAM J. Comput., vol. 27, no. 1, pp. 302–316, 1998.

[12] B. Awerbuch, I. Cidon, and S. Kutten, “Optimal maintenance
of a spanning tree,” J. ACM, vol. 55, no. 4, pp. 1–45, 2008.

[13] A. Bar-Noy, J. Naor, and M. Naor, “One-bit algorithms,”
Distributed Computing, vol. 4, pp. 3–8, 1990.

[14] T. K. Srikanth and S. Toueg, “Optimal clock synchroniza-
tion,” Journal of the ACM, vol. 34, no. 3, pp. 626–645, Jul.
1987.

[15] J. Widder and U. Schmid, “The Theta-Model: Achieving
synchrony without clocks,” Distributed Computing, vol. 22,
no. 1, pp. 29–47, Apr. 2009.

[16] M. Ferringer, G. Fuchs, A. Steininger, and G. Kempf, “VLSI
Implementation of a Fault-Tolerant Distributed Clock Gener-
ation,” IEEE International Symposium on Defect and Fault-
Tolerance in VLSI Systems, pp. 563–571, Oct. 2006.

[17] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibil-
ity of distributed consensus with one faulty process,” Journal
of the ACM, vol. 32, no. 2, pp. 374–382, Apr. 1985.

[18] A. Dielacher, M. Fuegger, and U. Schmid, “How to speed-
up fault-tolerant clock generation in vlsi systems-on-chip
via pipelining,” Technische Universität Wien, Institut für
Technische Informatik, Research Report 15/2009, 2009,
www.vmars.tuwien.ac.at/documents/extern/2571/techreport.pdf.

[19] D. M. Chapiro, “Globally-Asynchronous Locally-
Synchronous Systems,” Ph.D. dissertation, Stanford
University, Oct. 1984.

[20] T. Polzer, T. Handl, and A. Steininger, “A metastability-free
multi-synchronous communication scheme for fault-tolerant
socs,” Technische Universität Wien, Institut für Technische
Informatik, Research Report 10/2009, 2009.

[21] U. Schmid and A. Steininger, “Dezentrale Fehlertolerante
Taktgenerierung in VLSI Chips,” Technische Universität
Wien, Institut für Technische Informatik, Research Report
69/2004, 2004, (Österr. Patentanmeldung A 1223/2004).

[22] G. L. Lann and U. Schmid, “How to implement a time-free
perfect failure detector in partially synchronous systems,”
Technische Universität Wien, Institut für Technische Infor-
matik, Research Report 28/2005, 2005.

[23] J. Widder, G. Le Lann, and U. Schmid, “Failure detection
with booting in partially synchronous systems,” in Proceed-
ings of EDCC-5, ser. LNCS, vol. 3463. Budapest, Hungary:
Springer Verlag, Apr. 2005, pp. 20–37.

[24] N. Lynch, Distributed Algorithms. San Francisco, USA:
Morgan Kaufman Publishers, Inc., 1996.

[25] I. E. Sutherland, “Micropipelines,” Comm. of the ACM,
Turing Award, vol. 32, no. 6, pp. 720–738, Jun. 1989.

[26] J. Grahsl, T. Handl, and A. Steininger, “Exploring the use-
fulness of the gate-level stuck-at fault model for Muller C-
elements,” in Proceedings 20. TuZ’08, Vienna, Austria, Feb.
2008, pp. 165–169.

[27] I. Koren and Z. Koren, “Defect tolerance in VLSI circuits:
Techniques and yield analysis,” Proceedings of the IEEE,
vol. 86, no. 9, pp. 1819–1838, Sep 1998.

[28] R. Baumann, “Soft errors in advanced computer systems,”
IEEE Design & Test of Computers, vol. 22, no. 3, pp. 258–
266, 2005.

[29] M. S. Maza and M. L. Aranda, “Analysis of clock distribution
networks in the presence of crosstalk and groundbounce,” in
Proceedings International IEEE Conference on Electronics,
Circuits, and Systems (ICECS), 2001, pp. 773–776.

[30] L. Lamport, “Buridan’s principle,” SRI International, Tech.
Rep., 1984.

[31] G. Fuchs, M. Fuegger, and A. Steininger, “On the threat of
metastability in an asynchronous fault-tolerant clock gener-
ation scheme,” in 15th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC’09), May 2009.

[32] D. Dolev, J. Y. Halpern, and H. R. Strong, “On the possibility
and impossibility of achieving clock synchronization,” JCSS,
vol. 32, pp. 230–250, 1986.

[33] U. Schmid, “How to model link failures: A perception-based
fault model,” in Proceedings of the International Conference
on Dependable Systems and Networks (DSN’01), Göteborg,
Sweden, Jul. 2001, pp. 57–66.

[34] G. Fuchs, M. Fuegger, U. Schmid, and A. Steininger, “Map-
ping a fault-tolerant distributed algorithm to systems on
chip,” in DSD, Parma, Italy, September 2008, pp. 242–249.

