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An approach to calculate the triplet structure of a simple liquid, that was proposed some years ago
by Barrat, Hansen, and Pastore@Phys. Rev. Lett.58, 2075~1987!# has been tested in the binary case.
This approach is based on a factorization ansatz for the triplet direct correlation functionc(3); the
unknown factor function is determined via the sum rule relatingc(3) and the pair direct correlation
function which is the only input information of the system that is required in this formalism. We
present an efficient and stable numerical algorithm which solves the six~partly coupled! integral
equations for the unknown factor functions. Results are given for the case of a binary hard-sphere
mixture and complemented by computer simulation data. ©2000 American Institute of Physics.
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I. INTRODUCTION

Concepts to calculate the triplet structure in~simple! liq-
uids date back to the beginning of the 1960s; however
that time their implementation in computer programs and
actual calculation of the triplet structure were by far out
reach. One of the simplest approximations of the thr
particle distribution functiong(3) is the Kirkwood superpo-
sition approximation~KSA!1

g~3!~r ,s,t !5g~r !g~s!g~ t !, ~1!

which is only valid in the low density limit. This has bee
demonstrated by Egelstaffet al.2 in an attempt to study ex
perimentally the triplet correlation function for liquid argo
relating this function with the isothermal pressure derivat
of the structure factor. It has been about fifteen years du
which improved computer facilities have made the act
calculation of three-particle correlation functions possible
large variety of studies have been dedicated to this probl
these investigations have been carried out~mostly! within
frameworks based on integral–equation theories and w
supplemented by computer simulation results. The increa
interest in the triplet structure is, however, not only of pure
academic origin: density-functional based approaches
describe freezing phenomena have indeed brought alon
improvement of the results if the~approximate! functional
that describes the property of the solid is expanded up
third order, i.e., including three-particle correlatio
functions.3,4 Among the frameworks proposed during th
past two decades to calculate the triplet structure of a liq
we quote in particular some of those that have been im
3300021-9606/2000/113(8)/3302/8/$17.00
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mented and tested against computer simulation results:
are due to Ashcroft and co-workers,5,4 Attard,6 Barrat,
Hansen, and Pastore,7,8 and Leidl and Wagner.9

However, up to now—and to the best of ou
knowledge—only the theory by Rosenfeld10 has been ex-
tended to the study of the hard-sphere mixture fluid, inclu
ing the calculation of the triplet structure. This method
based on characteristic functions which bear in mind g
metrical features of the spheres. In contrast to other theo
the knowledge of the bulk fluid direct correlation function
not a prerequisite, but it can be derived within the framewo
of the theory together with other properties of the unifo
fluid. This approach has been successfully compared w
extensive simulation results in Ref. 11. Nonetheless, eve
explicit expressions forc(3) for mixtures have been derive
within this theory, no results have been presented so far

This shortage of theories for the calculation ofc(3) in the
mixture case is somewhat surprising, since differences
size and interaction between the two species are expecte
lead to interesting effects in the triplet structure of a bina
mixture. As a matter of fact, inclusion of three-body corr
lation functions should—as in the one-component cas
lead to an improved description of the freezing behavior
binary mixtures.12 Furthermore, it is expected that the tripl
structure might give additional information in cases whe
the pair structure does not appear to have a definite answ13

as in the case of alloys with marked chemical short ran
order with the presence of superstructures.14 In an effort to
fill this gap we have generalized one of the above meth
due to Barrat, Hansen, and Pastore~BHP!7,8 to the binary
2 © 2000 American Institute of Physics
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case along the lines sketched in Ref. 8. With this purpose
have implemented an efficient and accurate numerical a
rithm and have produced data for the triplet structure fo
binary hard sphere mixture. The results obtained within t
framework are complemented by computer simulation
sults. In the BHP approach, a symmetric factorization ans
is made for the triplet direct correlation function in terms
an unknown functiont(r ). This ansatz is justified by the
rotational and translational invariance of the homogene
liquid and by the lowest orderh(2)-bond expansion of the
triplet correlation function, whereh(r ) is the total pair cor-
relation function. The only information about the system th
is required as input is the density derivative of the pair dir
correlation function. The defining relation for the yet u
known factor functiont(r ) is the sum-rule relating the pa
and the triplet direct correlation function: it is an integr
equation which can be solved numerically. In terms of fun
tional derivatives this sum-rule reads

c~n!~1,...,n!5
dc~n21!~1,...,n21!

dr~1!~n!

5
dnbFex

dr~1!~1!¯dr~1!~n!
. ~2!

The results presented forc̃(3)(k,k8) using the BHP
theory for long-range potentials~such as Coulombic sys
tems! and soft spheres seem to fit the simulation resu
Khein and Ashcroft outlined the unique specification oft(r )
according to the sum rule above4 and made an extension o
the BHP theory generating a directly symmetric ink-space
c(3) function.15 The same unambiguity in the determinatio
of t(r ) is remarked by Likoset al.3 to use the BHP ansatz o
c(3) in the study of the freezing transition in the classic
one-component plasma. In this case the results presente
vor the ansatz against other theories. Concerning the free
transition of a hard-sphere system within the framework
the extended modified weighted-density approximation,16 it
is concluded that the factorization ansatz does not predic
stabilization of the expected solid phase.

The extension of the BHP approach to the case o
binary mixture is formally straightforward and has been o
lined by Barrat, Hansen, and Pastore.8 However, the com-
plexity of the expressions and, in particular, their numeri
solution increase drastically as the number of compone
increases. In the binary case the six-factor functionstab

abg(r )
are determined in six, partly coupled, sets of integral eq
tions. In the original work on the one-component case
single integral equation was solved by minimizing a suita
defined functional with a steepest descent method. Since
method turned out to be unsuitable for our work~in particu-
lar with respect to the numerical stability! we present in this
study the generalized minimal residual algorithm for nonl
ear systems of equations17 ~GMRESNL! introduced some
years ago by Fries and Cosnard18 in the field of liquid state
theory. It is a Newton–Raphson-type algorithm and has b
applied for the solution of complex integral equations pro
lems dealing with molecular liquids~see for instance Ref
19!.
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The rest of this article is organized as follows. In th
next section we briefly outline the formalism of the gener
ized BHP framework and discuss the numerical method
have used to solve the coupled integral-equations. In Sec
we present results for the model system. The article clo
with concluding remarks.

II. THE THEORY

A. The formalism

As an alternative to the KSA factorization ofg(3), Jack-
son and Feenberg20 proposed ak-space factorization of the
triplet structure factor,Sabg

(3) (k,k8) of the type@Sab
(2)(k) being

the structure factor#

Sabg
~3! ~k,k8!5(

e

1

Xe
2 Seg

~2!~ uk1k8u!Sae
~2!~k!Seb

~2!~k8!, ~3!

which via the triplet Ornstein–Zernike~OZ! relation trans-
lates into a neglect of the triplet direct correlation functio

c~3!~r ,r 8!50.

This is known as the convolution approximation~CA!. A
first-order correction for this approximation uses ah(2)-bond
expansion ofc(3) to get

c~3!~r ,r 8!'h~2!~r !h~2!~r 8!h~2!~ ur2r 8u!. ~4!

With this in mind, several years ago, Barrat, Hansen, a
Pastore7,8 proposed the following ansatz for the direct tripl
correlation functionc(3)(r ,r 8) of a homogeneous liquid

c~3!~r ,r 8!5t~r !t~r 8!t~ ur2r 8u!, ~5!

with an unknown functiont(r ). The expression above read
in k-space

c̃~3!~k,k8!5
1

2p3 E t̃ ~k9! t̃ ~ uk2k9u! t̃ ~ uk81k9u!dk9,

~6!

where a tilde denotes a Fourier transform.
Now t(r ) can be determined via the sum-rule, Eq.~2!,

]c~2!~r !

]r
5E c~3!~r ,r 8!dr 8

5t~r !E t~r 8!t~ ur2r 8u!dr 8. ~7!

r is the number-density of the system andc(2)(r ) is the
two-particle direct correlation function, which is the on
information about the system that is required as input in t
framework. In general, this function is well-known thanks
sophisticated liquid state methods that have been develo
during the past years.21

The generalization of the formalism to an-component
system is in principle straightforward and has been outlin
in Ref. 8. In the binary case, to which the present contrib
tion is dedicated to, the factorization ansatz, Eq.~5! now
reads

cabg
~3! ~r ,r 8!5tab

abg~r !tag
abg~r 8!tbg

abg~ ur2r 8u!. ~8!
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A closer analysis and taking into account symmetry relati
shows that we now have four independentc(3)’s, i.e., caaa

(3) ,
caab

(3) , cabb
(3) , andcbbb

(3) and the six unknowntbg
abg are related

via six equations which explicitly read

]caa
~2!~r !

]ra
5taa

aaa~r !E taa
aaa~r 8!taa

aaa~ ur2r 8u!dr 8

5E caaa
~3! ~r ,r 8!dr 8, ~9!

]caa
~2!~r !

]rb
5taa

aab~r !E tab
aab~r 8!tab

aab~ ur2r 8u!dr 8

5E caab
~3! ~r ,r 8!dr 8, ~10!

]cab
~2!~r !

]ra
5tab

aba~r !E taa
aba~r 8!tba

aba~ ur2r 8u!dr 8

5E caba
~3! ~r ,r 8!dr 8, ~11!

]cab
~2!~r !

]rb
5tab

abb~r !E tab
abb~r 8!tbb

abb~ ur2r 8u!dr 8

5E cabb
~3! ~r ,r 8!dr 8, ~12!

]cbb
~2!~r !

]ra
5tbb

bba~r !E tba
bba~r 8!tba

bba~ ur2r 8u!dr 8

5E cbba
~3! ~r ,r 8!dr 8, ~13!
s

n
le
s ]cbb
~2!~r !

]rb
5tbb

bbb~r !E tbb
bbb~r 8!tbb

bbb~ ur2r 8u!dr 8

5E cbbb
~3! ~r ,r 8!dr 8. ~14!

Equations~9! and ~14! are decoupled and can be solved i
dependently~as in the one-component case!, while the re-
maining four equations are coupled in pairs.

Once the set of triplet direct correlation functions h
been determined, one can use them in the calculation of
three particle distribution functionsgabg

(3) (r ,r 8). This is done
by means of the triplet OZ relation@see Eq.~45! in Ref. 8#,
xe being the concentration of speciese

Sabg
~3! ~k,k8!5(

esh
@1/xe

2desdeh1r2c̃esh
~3! ~k,k8!#

3Seg
~2!~ uk1k8u!Sas

~2!~k!Shb
~2!~k8!, ~15!

which also, in terms of total correlation functions, reads22

Sabg
~3! ~k,k8!5dabdagxa1dagxaxbrh̃ab~k8!

1dbgxaxgrh̃ag~k!

1dabxbxgrh̃bg~ uk1k8u!1xaxbxgr2

3E e2 ikr ae2 ik8rb8habg
~3! ~r ,r 8!dr dr 8. ~16!

From these two equations one gets the three particle t
correlation functionhabg

(3) (r ,r 8) by Fourier inversion of
h̃abg
~3! ~k,k8!5(

e
@dgeh̃ae~k!h̃be~k8!1dbeh̃ae~k!h̃ge~2k2k8!1daeh̃be~k8!h̃ge~2k2k8!

1reh̃ae~k!h̃be~k8!h̃ge~2k2k8!#1(
esh

c̃esh
~3! ~k,k8!@dasdbhdge1dbhdgersh̃as~k!

1dasdgerhh̃bh~k8!1dasdbhreh̃ge~2k2k8!1dgersrhh̃as~k!h̃bh~k8!1dbhrsreh̃as~k!h̃ge~2k2k8!

1dasrhreh̃bh~k8!h̃ge~2k2k8!1rersrhh̃as~k!h̃bh~k8!h̃ge~2k2k8!#. ~17!
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Now the triplet distribution function is simply given by

gabg
~3! ~r ,r 8!5habg

~3! ~r ,r 8!1hag~r !1hab~r 8!

1hbg~ ur1r 8u!11. ~18!

This represents the BHP approximation for mixture
and the CA is recovered simply by settingc̃seh

(3) (k,k8)50 in
Eq. ~17!.

B. The numerical implementation

Due to the fact that Eqs.~10! and ~11!, and ~12! and
~13!, respectively are coupled, the evaluation of the functio
tab
abg(r ) is now considerably more complex than in the sing
,

s

component case. In their original work, Barrat, Hansen, a
Pastore7,8 used a steepest descent method where a suit
defined functional oft(r ) was minimized to yield a solution
of Eq. ~7!; in fact, the gradients of this functional with re
spect to variations of the functiont(r ) could be written down
explicitly. In principle, one might proceed in the binary ca
along similar lines but the construction of the gradients
now considerably more cumbersome.

We have therefore decided to use a different numer
approach to solve both the two decoupled equations and
two sets of coupled equations for thet-functions. Our nu-
merical scheme is based on the GMRESNL17 as formulated
by Fries and Cosnard18 to solve the OZ equation for molecu
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lar fluids. This method has two attractive features:~i! it turns
out—in particular for the present problem—to be consid
ably more stable than the steepest-descent method, and~ii ! it
does not require the determination of the functional deri

FIG. 1. Pair total distribution functions. Symbols: simulation results, lin
OZ with self-consistent VM closure.

FIG. 2. Density derivatives of the partial pair direct correlation functions
h50.4 ~upper graph!. Zoom of the density derivatives ofcmn

(2)(r ) ~lower
graph!.
-

-

tives to construct the gradient, which in complex syste
like this might represent a formidable task.

We briefly outline the GMRESNL method for th
coupled set of Eqs.~10! and ~11!. Other equations follow
similar lines. Introducing a short-hand notation, these eq
tions can be reduced to the following form, omitting th
r-arguments

Craa
2taa~ tab* tab!50, ~19!

Crab
2tab~ taa* tba!50, ~20!

where the given functionsCraa
andCrab

represent the den
sity derivatives of the partial direct correlation functions, a
the symbol* stands for a convolution. Discretizing the fun
tions on anr-grid and merging the two functionstmn into a
vector t, one searches for the solution of

G@ t#5t2M @ t#50, ~21!

whereG@ t# is a vector functional oft andM stands for the
convolution operators acting in Eqs.~19!–~20!. The

:

t

FIG. 3. ~a!–~c!, tab
abg(r )’s functions of the BHP factorization ansatz.
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directional derivative ofG at some given pointt in the di-
rectionp,Ḡ(t;p), is given by

Ḡ~ t;p!5 lim
e→0

G@ t1ep#2G@ t#
e

5JG@ t#p, ~22!

FIG. 4. cabg
(3) (k,k,x) vs. ks for the isosceles triangle configuration in

hard-sphere binary mixture ath50.4 (x5cosu).

FIG. 5. cabg
(3) (k,k,x) vs, x using both Eqs.~5! and ~4! for h50.4 (x

5cosu).
JG being the Jacobian matrix ofG. We now construct a
sequence oftn , which should tend towards the solutiont;
they are constructed via

tn115tn1dt. ~23!

In principle dt can be calculated from the linearized versi
of the equationG@ t#50, i.e., G@ tn11#5G@ tn#1JG@ tn#dt
50, but in practice—in a typical problem we have seve
thousand grid points—this task~i.e., the inversion of the
Jacobian! becomes impossible.

It is therefore more convenient to expanddt in terms of
k orthogonal directionspj , j 51,...,k, i.e., dt5( j 51

k ajpj ,
with

p052
G@ tn#

iG@ tn#i . ~24!

Herei¯i denotes the norm of the function, which in th
discretized case reduces to the vector modulus. The o
pj ’s are determined in a Gram–Schmidt-type orthonorm
ization procedure. The expansion coefficientsaj are opti-
mized so thatiG@ tn#1JG@ tn#dti is minimized, i.e.,

iG@ tn#1(
j 51

k

ajJG~ tn!pj i5iG@ tn#1(
j 51

k

ajḠ@ tn ,pj #i .

~25!

FIG. 6. gaaa
(3) (r aa ,saa ,u) andGaaa(r aa ,saa ,u) for h50.4.
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The minimization reduces to the solution of a linear
of equations inaj which can be efficiently dealt with usin
the QR-decomposition.23

The accuracy and stability of the algorithm has be
tested initially for simple functions~assuming a simple ste
function for thet’s! and then for our model system. Fore we
typically set a value of 0.001 and used ten search directi
The functions were discretized on a grid of 2048 points w
a mesh size of 0.005s, wheres is the diameter of the larges
sphere in the mixture. Numerical convergence was assu
whenever

I ]c~2!

]r
2tn~ tn* tn!I
I ]c~2!

]r I ,e, ~26!

where summation is taken over the grid points of the d
cretized functions. The value ofe was typically of the order
of 10210 for the decoupled equations and not larger th
1024 for the coupled case. Depending on the system par
eters this was achieved after 10 to 100 iterations.

III. RESULTS

We present results for a binary equimolar mixture
additive hard-spheres with componentsa and b ~saa* 50.8,
sbb* 51.0, being s i* 5s i /sbb! and a packing fractionh

FIG. 7. gbbb
(3) (r bb ,sbb ,u) andGbbb(r bb ,sbb ,u) for h50.4.
t

n

s.

ed

-

n
-

f

5(p/6)rsbb
3 50.4. The simulation results to produce the d

tribution functions have been obtained from a standard
nonical Monte Carlo simulation, and the sampling for t
pair and triplet-structure was achieved on a 1100 part
ensemble over 400 configurations.

The pair functions~pair total distribution and direct cor
relation functions! used to calculategabg

(3) (r ,r 8) in the differ-
ent approximations were calculated using the OZ equa
with a self-consistent closure, implementing viria
isothermal compressibility and chemical potential–vir
pressure consistency conditions, derived from Verlet’s mo
fied ~VM ! approximation.24 The pair distribution functions
obtained both from simulation and theory are depicted
Fig. 1, which illustrates the reliability of the theory used o
the pair particle level. Alternatively one might resort to
parameterized form of the direct correlation function as ty
cally done in the pure hard-sphere case.8 This expression
although available~see for instance Ref. 25! is not expected
to alter significantly the results, given the excellent perf
mance of the self-consistent approximation.

Thus, in the present instance we have calcula
]cmn

(2)/]rj using finite differences,

]cmn
~2!~r !

]rj
5

cmn
~2!~r !~rj1Drj!2cmn

~2!~r !~rj2Drj!

2Drj
, ~27!

with Drj50.01 ~see Fig. 2!.

FIG. 8. gbaa
(3) (r ab ,sab ,u) andGbaa(r ab ,sab ,u) for h50.4.
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Insertion of the corresponding derivatives in Eqs.~9!–
~14! leads to the desiredt-functions which are plotted in
Figs. 3~a!–3~c!. As can be seen, thet-functions decay
smoothly withr, and exhibit the expected core discontinui

In Fig. 4 we present some results ofc̃abg
(3) (k,k8,x) versus

ks for different configurations~x5cosu50, 1, and21!,
whereu represents the angle betweenk and k8 in a given
isosceles triangle configuration of vectorsk,k8, and k2k8
(k5k8). The trends observed are similar to those obtain
by Rosenfeldet al.11 for the one-component case.

We include in Fig. 5 results forc̃abg
(3) (k,k8) versus cosu,

where thek vectors correspond in each case to the first p
in the h̃ab(k) functions. Forc̃abg

(3) (k,k8) two approximations
have been compared: the BHP ansatz, Eq.~5!, and the
h(2)-bond approximation, Eq.~4!. If we compare these re
sults with those of Ref. 8 for the one component case,
observe that similar qualitative trends are followed by
two-component mixture. One sees that theh(2)-bond ap-
proximation agrees qualitatively with the BHP theory, ho
ever, much larger discrepancies appear for otherk-values not
shown here, as was already noticed by Barratet al.8

In order to obtain the three-particle distribution functio
gabg

(3) (r ,r 8), it is necessary to calculate thec(3) by means of
Eq. ~6! and subsequently insertc(3) in Eq. ~17! to calculate
habg

(3) (r ,r 8). The first four terms in Eq.~17! are directly Fou-
rier inverted, and the remaining term is calculated num

FIG. 9. gabb
(3) (r ab ,sab ,u) andGabb(r ab ,sab ,u) for h50.4.
d

k

e
e

-

i-

cally by means of the Hankel–Legendre transform, as
ready shown in Eq.~A3! of Ref. 26.

When studying the three-particle distribution functions
is common to express its ratio with respect to the KSA,

G~r ,s,t !5g~3!~r ,s,t !/g~2!~r !g~2!~s!g~2!~ t !, ~28!

which somehow represents the deviation from the ideal
havior.

The results ofgabg
(3) (r ,s,u) for various theories and

simulation together with the correspondingG(r ,s,u) ratio
are shown for the different configurations in Figs. 6–11. O
can see that for the configurations near contact the value
gabg

(3) (r ,r 8) differ considerably from the KSA estimates. I
these cases theG-function systematically exhibits a chara
teristic shape with a marked maximum. As expected, dep
tures from the KSA decrease when the interparticle sep
tion in the triplets is increased, which is clearly illustrated
ther-dependence of theG(r ,s,u) function. It is to be noticed
that the same features have been observed in the
component case in a previous work by Bildstein and Kah26

In the present mixture case, for each configuration it can
seen that the CA and BHP results represent a consider
improvement over the KSA. In general, the BHP theory e
hibits a better agreement with simulation than the CA
certain regions, for instance in the neighborhood of

FIG. 10. gaba
(3) (r aa ,sab ,u) andGaba(r aa ,sab ,u) for h50.4.
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G(r ,s,u) maximum for contact triplets. However, it can als
be seen that precisely for these configurations the situatio
reversed at low angles.

IV. CONCLUSION

In this article it has been shown that the BHP theo
represents an improvement in the description of the trip
structure in fluid mixtures, as found already for pure fluids26

The main output of the theory is the direct correlation fun
tion, and it remains to be explored whether the results
nished for the hard sphere mixture improve the description
the freezing phenomena in mixtures, by incorporating ter
in the density expansion on the three-body level. Howev
as far as the triplet distribution is concerned, we note h
that the improvement over the much simpler CA is relativ
small. It will be interesting to see whether the extension
mixtures of other approaches successful in one-compo

FIG. 11. gbab
(3) (r bb ,sab ,u) andGbab(r bb ,sab ,u) for h50.4.
is

t

-
r-
f
s
r,
re

o
nt

systems like Attard’s6 PY3 or Rosenfeld’s theory10 might
also yield a better description of the three-particle distrib
tion function as well as the triplet direct correlation functio
Work on these issues is planned.
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