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Abstract

The extremal dependence of a random vector describes the tail behaviors of joint
probabilities of the random vector with respect to that of its margins, and has been
often studied by using the tail dependence function of its copula. A tail density ap-
proach is introduced in this paper to analyze extremal dependence of the copulas that
are specified only by densities. The relation between the copula tail densities and reg-
ularly varying densities are established, and the tail densities of Archimedean and t
copulas are derived explicitly. The tail density approach becomes especially effective
for extremal dependence analysis on a vine copula, for which the tail density can be
written recursively in the product form of tail densities of bivariate baseline copulas
and densities of bivariate linking copulas.

Key words and phrases: Tail dependence, regularly varying density, multivariate
extremes, tail risk, vine copula.

1 Introduction

The dependence among multivariate extremes can be described by the relative decay rate

of joint tail probabilities of a random vector with respect to that of tail probabilities of its

margins, which, in turn, can be rephrased precisely by using multivariate regular variation
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[33], or alternatively, tail dependence functions of copulas [29, 24]. In this paper, we develop

a method based on copula tail densities for extremal dependence analysis. Our motivation

is two-fold: (1) Tail estimates of risk measures, such as Value-at-Risk (VaR), of aggregate

dependent losses often boil down to evaluating integrals of tail densities of copulas (see, e.g.,

[3, 4, 2, 6, 5, 17]), and (2) some important copulas, such as the t copula and vine copulas,

are specified only by densities.

Let X = (X1, . . . , Xd) be a random vector with distribution F and continuous, univariate

margins F1, . . . , Fd. Without loss of generality, we may assume that X is non-negative

component-wise. Consider the standard case in which the survival functions F i(x) := 1 −
Fi(x), 1 ≤ i ≤ d, of the margins are right tail equivalent; that is,

F i(x)

F 1(x)
=

1− Fi(x)

1− F1(x)
→ 1, as x→∞, 1 ≤ i ≤ d. (1.1)

The distribution F or random vector X is said to be (multivariate) regularly varying (MRV)

with intensity measure ν if

lim
t→∞

P(X ∈ tB)

P(X1 > t)
= ν(B), ∀ relatively compact sets B ⊂ Rd

+\{0}, (1.2)

satisfying that ν(∂B) = 0. The extremal dependence information of X is encoded in the

intensity measure ν, which is a Radon measure with homogeneous property ν(tB) = t−αν(B),

for all relatively compact subsets B that are bounded away from the origin, where α > 0 is

known as the tail index. Observe from (1.1) and (1.2) that for any MRV random vector X,

and 1 ≤ i ≤ d,

lim
t→∞

P(Xi > ts)

P(Xi > t)
= ν((s,∞]× Rd−1

) = s−αν((1,∞]× Rd−1
), ∀ s > 0.

That is, univariate (non-degenerate) margins have regularly varying right tails. In general,

a Borel-measurable function g : R+ 7→ R+ is regularly varying with tail index α ∈ R if and

only if

g(x) = x−αL(x), x ≥ 0, (1.3)

where L(t) is a slowly varying function with L(xt)/L(t) → 1 as t → ∞ for any x > 0.

The detailed discussions on univariate and multivariate regular variations can be found in

[33]. The extension of MRV beyond the non-negative orthant can be done by using the tail

probability of ||X||, where ||·|| denotes a norm on Rd, in place of the marginal tail probability

in (1.2) (see [33], Section 6.5.5). The case that the limit in (1.1) is any non-zero constant

can be easily converted into the standard tail equivalent case by properly rescaling margins.
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If the limit in (1.1) is zero or infinity, then some margins have heavier tails than others.

One way to overcome this problem is to standardize the margins via marginal monotone

transforms, such as the copula method.

A copula C is a multivariate distribution with uniformly distributed margins on [0, 1].

Sklar’s theorem (see, e.g., [23], Section 1.6) states that every multivariate distribution F

with margins F1, . . . , Fd can be written as F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for some

d-dimensional copula C. In fact, in the case of continuous margins, C is unique and

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F−1

d (ud))

where F−1
i (ui) denotes the quantile function of the i-th margin, 1 ≤ i ≤ d. Let (U1, . . . , Ud)

denote a random vector with Ui, 1 ≤ i ≤ d, being uniformly distributed on [0, 1]. The

survival copula Ĉ is defined as follows:

Ĉ(u1, . . . , un) = P(1− U1 ≤ u1, . . . , 1− Un ≤ un) = C(1− u1, . . . , 1− un) (1.4)

where C is the joint survival function of C. The lower and upper tail dependence functions,

introduced in [21, 26, 32, 24], are defined as follows,

bL(w;C) := lim
u→0+

C(uwi, 1 ≤ i ≤ d)

u
,

bU(w;C) := lim
u→0+

C(1− uwi, 1 ≤ i ≤ d)

u
, ∀w = (w1, . . . , wd) ∈ Rd

+ (1.5)

provided that the limits exist. The tail dependence functions are also called the tail copulas

in other works (see, e.g., [34, 16]). Obviously, bL(w; Ĉ) = bU(w;C), and thus the results

on upper tail dependence can be easily translated into the similar results for lower tail

dependence. There exists a close relation between the tail dependence functions of a copula

C and its extreme value copulas [24]. The upper extreme value copula CUEV is given by

CUEV(u1, . . . , ud) := lim
n→∞

Cn(u
1/n
1 , . . . , u

1/n
d ) = exp{−aU(− log u1, . . . ,− log ud;C)},

where aU is known as the upper exponent function, and if exists, it is related to the upper

tail dependence function as follows, for w = (w1, . . . , wd) ∈ Rd
+,

aU(w;C) := lim
u→0+

P(Ui > 1− uwi,∃ i ∈ {1, . . . , d})
u

=
∑

∅6=S⊆{1,...,d}

(−1)|S|−1bUS (wS), (1.6)

and here bUS (wS) denotes the upper tail dependence function of the margin CS of C with

indexes in S. Note that if the exponent function aU(·;C) exists for a d-dimensional copula

C, then the exponent function of any multivariate margin CS(ui, i ∈ S) of C,

aU(wS;CS) = aU((wS, 0Sc);C), ∅ 6= S ⊂ {1, . . . , d}
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also exists, where 0Sc is the |Sc|-dimensional vector of zeros. Therefore, the existence of

the exponent function aU(·;C) guarantees that the upper tail dependence function bU(·;CS)

of any multivariate margin CS(ui, i ∈ S) of C exists. There are close connections between

these tail dependence functions and classical notions in multivariate extreme value theory;

for example, the upper exponent function is the so called stable tail dependence function

(see, e.g., [9], page 257, or [12], section 6.1.5).

With the copula approach, the intensity measure ν can be decomposed into the scale

invariant tail dependence and tail index [30].

Theorem 1.1. Let X = (X1, . . . , Xd) be a random vector with distribution F and copula

C, satisfying (1.1).

1. If F is MRV as defined in (1.2) with intensity measure ν, then

bU(w;C) = ν
( d∏
i=1

(w
−1/α
i ,∞]

)
, and aU(w;C) = ν

(( d∏
i=1

[0, w
−1/α
i ]

)c)
.

2. If the limit (1.6) exists and marginal distributions F1, . . . , Fd are regularly varying,

then F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) is MRV.

Proof. (1) The relations between the intensity measure and tail dependence function are

obtained in Theorem 2.3 of [30] with an intensity measure µ that depends on the norm || · ||
on Rd. Note that all the intensity measures corresponding to an MRV distribution F are

equivalent in the sense that any two of them differ only by a constant scaling factor. Clearly

µ in Theorem 2.3 of [30] and ν in (1.2) are related as follows

ν(B) =
µ(B)

µ
(

(1,∞]× Rd−1

+

) , ∀ relatively compact sets B ⊂ Rd

+\{0}, with ν(∂B) = 0.

The relations among ν, bU and aU now follow immediately from Theorem 2.3 of [30].

(2) If the limit (1.6) exists and marginal distributions F1, . . . , Fd are regularly varying

with tail index α, then it follows from the proof of Theorem 2.3 of [30] that

lim
t→∞

P
(
X ∈ t(

∏d
i=1[0, wi])

c
)

P(X1 > t)
= aU((w−α1 , . . . , w−αd );C) (1.7)

exists for all (w1, . . . , wd) ∈ Rd
+\{0}. Define the Radon measure ν(·) on Rd

+\{0} generated

by ν((
∏d

i=1[0, wi])
c) := aU((w−α1 , . . . , w−αd );C). Using the standard approximation procedure

(see, e.g., Lemma 6.1 in [33]), (1.2) follows from (1.7) and thus F is MRV. �
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The tail dependence function and intensity measure are equivalent in extremal depen-

dence analysis in the sense that the Radon measure generated by the tail dependence function

is a marginally rescaled version of the intensity measure. Note, however, that the tail de-

pendence function and intensity measure are cumulative in nature. A notion that describes

extremal dependence locally is the tail density of multivariate regular variation studied in

[13]. Consider again a distribution F with tail equivalent margins (1.1) and a norm || · || on

Rd.

Theorem 1.2. (de Haan and Resnick, [13]) Assume the density f of F exists and the

margins Fi, 1 ≤ i ≤ d, are regularly varying with tail index α > 0. If f(tx)

t−dF 1(t)
→ λ(x) > 0,

as t→∞, on Rd

+\{0} and uniformly on {x > 0 : ||x|| = 1} where λ(·) is bounded, then, for

any x ∈ Rd
+\{0},

lim
t→∞

1− F (tx)

F 1(t)
= ν([0, x]c) =

∫
[0,x]c

λ(y)dy,

with homogeneous property that λ(tx) = t−α−dλ(x) for t > 0.

The tail density λ(·) in Theorem 1.2 is especially tractable for the distributions that are

specified by densities. The goal of this paper is to introduce the tail densities for copulas and

derive explicitly the tail densities of the copulas that are specified only by densities, such

as the t copula, and vine copulas that are built from bivariate linking copulas using local

dependence properties. The rest of this paper is organized as follows. Section 2 introduces

the copula tail density, and discusses its properties and the relation with the tail density of

multivariate regular variation. An application on the asymptotic expressions of VaR in terms

of tail densities is also highlighted in Section 2. Section 3 discusses tail densities for various

copulas, including t and D-vine copulas, and finally, some remarks in Section 4 conclude the

paper.

2 Tail Densities of Copulas

Let C be a copula with lower and upper tail dependence functions (1.5) and density function

c that is continuous on its support. As in [13, 24], we need to impose the uniform convergence

condition to ensure the exchanges of limits. Assume that any partial derivative of order d

or less for the ratios

C(uwi, 1 ≤ i ≤ d)

u
, and

C(1− uwi, 1 ≤ i ≤ d)

u
(2.1)
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converges uniformly on Rd
+\{0} as u → 0. In fact, it is sufficient to assume the uniformity

condition for the first ratio. Note that most copulas that are specified by densities satisfy

this technical condition on uniform convergence.

For w = (w1, . . . , wd) ∈ Rd
+, let Dw = ∂d

∂w1···∂wd
denote the d-order partial differentiation

operator with respect to w1, . . . , wd. Consider the generalized density of the upper tail

dependence function bU(w;C):

∂dbU(w;C)

∂w1 · · · ∂wd
= Dw

(
lim
u→0

C(1− uwi, 1 ≤ i ≤ d)

u

)
, w = (w1, . . . , wd) ∈ Rd

+.

Since C(1−uwi, 1 ≤ i ≤ d) = 1−
∑
∅6=S⊆{1,...,d}(−1)|S|−1CS(1−uwi, i ∈ S), where CS denotes

the margin of C with indexes in S, we have

DwC(1− uwi, 1 ≤ i ≤ d) = (−1)dDwC(1− uwi, 1 ≤ i ≤ d) = udc(1− uwi, 1 ≤ i ≤ d).

Under the uniform convergence assumption (2.1), we can exchange the order of limit and

derivative as follows,

∂dbU(w;C)

∂w1 · · · ∂wd
= lim

u→0

DwC(1− uwi, 1 ≤ i ≤ d)

u

= lim
u→0

ud−1c(1− uwi, 1 ≤ i ≤ d), w = (w1, . . . , wd) ∈ Rd
+. (2.2)

The limiting function limu→0
DwC(1−uwi,1≤i≤d)

u
is called the tail density function for copula C.

More precisely, the lower and upper tail density functions, denoted by λL(·;C) and λU(·;C)

respectively, are defined as follows:

λL(w;C) := lim
u→0

DwC(uwi, 1 ≤ i ≤ d)

u
, w = (w1, . . . , wd) ∈ Rd

+ (2.3)

λU(w;C) := lim
u→0

DwC(1− uwi; 1 ≤ i ≤ d)

u
, w = (w1, . . . , wd) ∈ Rd

+, (2.4)

provided that the limits exist.

2.1 Properties of Tail Densities

First of all, the following expressions for tail densities are immediate from the uniform

convergence condition (2.1) and exchanging limits as in (2.2).

Proposition 2.1. Let C be a copula with lower and upper tail dependence functions (1.5)

and continuous density function c, satisfying (2.1).

1. λL(w;C) = limu→0 u
d−1c(uwi, 1 ≤ i ≤ d) = ∂dbL(w;C)

∂w1···∂wd
.

6



2. λU(w;C) = limu→0 u
d−1c(1− uwi, 1 ≤ i ≤ d) = ∂dbU (w;C)

∂w1···∂wd
.

Under the assumption (2.1), any partial derivative of order d or less for tail dependence

functions are continuous. In addition, the tail dependence functions are grounded (Propo-

sition 2.1, [24]); that is, these tail dependence functions are equal to zero if some variables

take zero. Thus Proposition 2.1 implies that for any w = (w1, . . . , wd),

bL(w;C) =

∫ w1

0

· · ·
∫ wd

0

λL(x;C)dx, and bU(w;C) =

∫ w1

0

· · ·
∫ wd

0

λU(x;C)dx.

The tail density functions describe the densities of multivariate extremes. Most frequently

used copulas have explicit densities, and using Proposition 2.1, their tail densities can be

obtained from copula densities with relative ease. Observe from (1.4) that λL(w; Ĉ) =

λU(w;C) for any copula C, where Ĉ is the survival copula. Since any result regarding

λU(·;C) can be translated via this duality into a similar result for λL(·;C) and vice versa,

we hereafter only discuss one case in details and state the main results involving the other

case without proof. We also use frequently the simplified notations λL(w) and λU(w), aL(w)

and aU(w), or bL(w) and bU(w) when no confusion arises.

It follows from (1.6) that ∂daU (w)
∂w1···∂wd

= (−1)d−1 ∂dbU (w)
∂w1···∂wd

, which, together with Proposition

2.1, implies that

λU(w) =
∂dbU(w)

∂w1 · · · ∂wd
= (−1)d−1 ∂daU(w)

∂w1 · · · ∂wd
, w = (w1, . . . , wd) ∈ Rd

+. (2.5)

Similarly,

λL(w) =
∂dbL(w)

∂w1 · · · ∂wd
= (−1)d−1 ∂daL(w)

∂w1 · · · ∂wd
, w = (w1, . . . , wd) ∈ Rd

+, (2.6)

where aL(w) =
∑
∅6=S⊆{1,...,d}(−1)|S|−1bLS(wS) and bLS(wS) denotes the lower tail dependence

function of the margin CS of C with indexes in S ⊂ {1, . . . , d}.

Proposition 2.2. Let C be a copula with lower and upper tail dependence functions (1.5)

and continuous density function c, satisfying (2.1).

1. The tail density functions are homogeneous of order 1−d; that is, λU(tw) = t1−dλU(w)

and λL(tw) = t1−dλL(w) for any t > 0 and w = (w1, . . . , wd) ∈ Rd
+.

2. If a d-dimensional tail density (d > 1) is non-zero and differentiable, then it is direc-

tionally decreasing and directionally convex, and it reaches ∞ at the origin and goes

down to zero only at ∞.
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Proof. We prove the results for λU only.

(1) For any number t ≥ 0 and w = (w1, . . . , wd) ∈ Rd
+, we have

λU(tw) = lim
u→0

ud−1c(1− tuwi, 1 ≤ i ≤ d) = lim
u→0

(tu)d−1

td−1
c(1− tuwi, 1 ≤ i ≤ d)

= t1−d lim
v→0

vd−1c(1− vwi, 1 ≤ i ≤ d) = t1−dλU(w).

(2) A direct consequence of the homogeneity property is the Euler representation. Since

λU(·) is differentiable, then the well-known Euler’s homogeneous theorem implies that

(1− d)λU(w) =
d∑
j=1

wj
∂λU

∂wj
, ∀w = (w1, . . . , wd) ∈ Rd

+. (2.7)

That is, for all w ∈ Rd
+, along the ray through w originated from 0, the directional derivative

of λU(w) is non-positive.

It is shown in [24] that the tail dependence function bU(·) is either identically zero or

positive everywhere. We now show that this is also true for λU(·). If λU(w) = 0 for some

w ∈ Rn
+, then λU(tw) = t1−dλU(w) = 0 for any t > 0. Since limt→0 λ

U(tw) = 0, then

λU(x) = 0 for all x ≥ 0. That is, λU(·) is either identically zero or positive everywhere.

For λU(·) > 0, (2.7) implies that λU(·) is strictly directionally decreasing and directionally

convex along all the rays originated from 0. Since d > 1, the homogeneity property implies

that λU(·) reaches ∞ at the origin and goes down to zero only at ∞. �

A copula C is said to be upper (lower) tail dependent if its upper (lower) tail density is

non-zero.

Theorem 2.3. Assume that F is a distribution with tail equivalent, continuous margins Fi,

1 ≤ i ≤ d. If the marginal density fi of Fi, 1 ≤ i ≤ d, is regularly varying with tail index

α + 1, α > 0, and the copula C of F satisfies the condition (2.1), then F is multivariate

regularly varying with tail density λ(·) that is related to the upper tail density λU(·) of C as

follows:

λ(w1, . . . , wd) = αd(w1 · · ·wd)−α−1λU(w−α1 , . . . , w−αd )

= λU(w−α1 , . . . , w−αd )|J(w−α1 , . . . , w−αd )|, (2.8)

where J(w−α1 , . . . , w−αd ) is the Jacobian determinant of the homeomorphic transform yi =

w−αi , 1 ≤ i ≤ d.

Proof. Let c denote the density of copula C, and then the density f of F is given by

f(x) = c(F1(x1), . . . , Fd(xd))
d∏
i=1

fi(xi), x = (x1, . . . , xd) ∈ Rd
+.
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Consider

f(tx) = c(F1(tx1), . . . , Fd(txd))
d∏
i=1

fi(txi), t > 0, x = (x1, . . . , xd) ∈ Rd
+. (2.9)

Because of the regularly varying property of the tail equivalent margins, for sufficiently large

t > 0, we have

fi(txi) = t−α−1(x−α−1
i Li(txi)) ≈ t−α−1L1(t)x−α−1

i , 1 ≤ i ≤ d.

Due to Karamata’s theorem (see Theorem 2.1 in [33]), the margin Fi, 1 ≤ i ≤ d, is regularly

varying with tail index α and

Fi(txi) ≈ 1− α−1(txi)fi(txi) ≈ 1− α−1t−αL1(t)x−αi , 1 ≤ i ≤ d.

Plug these tail estimates into (2.9) with u = α−1t−αL1(t)→ 0 as t→∞, and we have

f(tx)

t−dF 1(t)
=

αdt−dud(
∏d

i=1 x
−α−1
i )c(1− ux−α1 , . . . , 1− ux−αd )

t−du

= αd
( d∏
i=1

x−α−1
i

)
ud−1c(1− ux−α1 , . . . , 1− ux−αd ),

which, via (2.1) and (2.2), converges uniformly on Rd
+\{0} as t→∞ or equivalently u→ 0.

By Theorem 1.2, F is regularly varying with intensity measure ν and tail density λ, and for

any x ∈ Rd

+\{0},

lim
t→∞

1− F (tx)

F 1(t)
= ν([0, x]c) =

∫
[0,x]c

λ(y)dy.

Since ν is a Radon measure, we have that ν((x,∞]) =
∫

(x,∞]
λ(y)dy. It follows from Theorem

1.1 that for any w = (w1, . . . , wd) ∈ Rd
+,

bU(w−α1 , . . . , w−αd ) =

∫
(w,∞]

λ(y)dy,

By taking the derivatives on both sides with respect to w1, . . . , wd, (2.8) follows from Propo-

sition 2.1. �

Remark 2.4. 1. It was shown in [13] that the condition in Theorem 1.2 implies that
f(tx)

t−dF 1(t)
converges, as t → ∞, uniformly on {x : ||x|| > δ} for any small δ > 0, where

|| · || denotes any norm on Rd
+. In contrast, the assumption in Theorem 2.3 is slightly

stronger and implies that f(tx)

t−dF 1(t)
converges, as t→∞, uniformly on Rd

+\{0}.
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2. It follows from Karamata’s theorem that the regularly varying property of the density

fi on [0,∞) implies that the marginal distribution Fi is regularly varying. Conversely,

however, the regularly varying property of a marginal distribution Fi on [0,∞) implies

that the density fi is regularly varying if fi is monotone on [0,∞) (see Proposition

2.5 in [33]). In fact, it can be easily seen that if fi is asymptotically monotone in a

left neighborhood of∞, then the regularly varying property of a marginal distribution

Fi ensures the regular variation of the density fi. Therefore, the regularly varying

assumption on marginal densities imposed in Theorem 2.3 is slightly stronger than the

regularly varying condition on the margins Fi.

The tail densities of Archimedean copulas follow immediately from Proposition 2.1, and

the tail dependence functions of Archimedean copulas. The expressions of these tail depen-

dence functions were derived in [18, 6, 10] (also see Propositions 2.5 and 3.3 in [24]).

Proposition 2.5. Let C(u;φ) = φ(
∑d

i=1 φ
−1(ui)) be an Archimedean copula with strict

generator φ−1, where φ is regularly varying at ∞ with tail index θ > 0. The lower tail

dependence function and lower tail density of C are given by

bL(w) =
( d∑
j=1

w
−1/θ
j

)−θ
, λL(w) =

d∏
i=2

(
1 +

i− 1

θ

)( d∏
i=1

wi

)−1−1/θ( d∑
i=1

w
−1/θ
i

)−θ−d
.

Proposition 2.6. Let C(u;φ) = φ(
∑d

i=1 φ
−1(ui)) be an Archimedean copula where the

generator φ−1 is regularly varying at 1 with tail index β > 1. The upper exponent function

and upper tail density of C are given by

aU(w) =
( d∑
j=1

wβj
)1/β

, λU(w) =
d∏
i=2

((i− 1)β − 1)
( d∏
i=1

wi

)β−1( d∑
i=1

wβi

)−d+1/β

.

Note that the extremal behavior of Archimedean copulas can be deduced from their

stochastic representation as the survival copulas of l1-symmetric distributions, and the ex-

tremal behavior of the radial part (or scale mixing) of the representation is determined by

its so called Williamson d-transform [31, 15]. An example involving a copula with upper tail

dependence is given by the Gumbel copula.

Example 2.7. Consider the bivariate Gumbel copula C(u1, u2; δ) = exp{−[(− lnu1)δ +

(− lnu2)δ]
1
δ }, δ > 1. The Gumbel copula is an Archimedean copula with the Laplace trans-

form φ(s) = exp{−s1/δ} and generator φ−1(t) = (− log t)δ, which is regularly varying at 1

with tail index δ > 1. It follows from Proposition 2.6 that the upper tail density function

λU(w) = lim
u→0

uc(1− uw1, 1− uw2) = (δ − 1)wδ−1
1 wδ−1

2 (wδ1 + wδ2)
1
δ
−2,

for any δ > 1. �
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An example of the copulas with lower tail dependence is the Clayton copula.

Example 2.8. Consider a bivariate Clayton copula C(u, v; θ) = (u−δ + v−δ − 1)−
1
δ , δ > 0.

This is an Archimedean copula with Laplace transform φ(s) = (1+s)−1/δ, which is regularly

varying at ∞ with tail index 1/δ. Therefore the lower tail density function is given via

Proposition 2.5 by

λ(w) = (1 + δ)(w1w2)−δ−1(w−δ1 + w−δ2 )−
1
δ
−2,

for any δ > 0. �

2.2 Approximation of Tail Risk Measures via Tail Densities

The asymptotic analysis of VaR for aggregated dependent losses usually boils down to eval-

uations of integrals of tail densities of underlying copulas over some upper subsets in Rd.

Such an asymptotic analysis was initiated in [35, 3] for aggregated dependent losses with

Archimedean copula structure, and VaR estimates were further studied in [2, 6, 5] for loss

variables with general copula structures. The tail estimate of VaR under Archimedean de-

pendence was applied in [17] to study the sub- and superadditivity properties of VaR. The

tail estimates of VaR for aggregated dependent losses with general multivariate regularly

varying distribution can be expressed in terms of the intensity measure ν(·) [14], which, via

Theorems 1.2 and 2.3, can be further expressed as integrals of tail densities of underlying

copulas over certain upper subsets in Rd. The asymptotic analysis of tail conditional expec-

tation for dependent losses shares a similar idea (see [25]); that is, tail risks can often be

expressed as integrals of tail densities.

We illustrate this idea by deriving the tail asymptotics for the value-at-risk VaRp(||X||)
(i.e., 100pth-percentile of ||X||) of a loss vector X, as p → 1, in terms of tail densities,

where || · || denotes any norm on Rd
+ that preserves the component-wise ordering. Consider

a non-negative MRV random loss vector X = (X1, . . . , Xd) with upper tail density λU , joint

distribution F and continuous margins F1, . . . , Fd that are tail equivalent with tail index

α > 0. Consider the following limit:

q||·||(α, λ
U) := lim

t→∞

P(||X|| > t)

F 1(t)
.

This limiting constant depends on the intensity measure ν, which in turn depends on tail

index α, tail density λU and norm || · ||. Let G denote the distribution function of ||X||. As

t→∞,

F 1(t) ≈ [q||·||(α, λ
U)]−1G(t),

11



hence we have t ≈ F
−1

1 ([q||·||(α, λ
U)]−1G(t)) as t→∞. Define u := G(t) for sufficiently large

t. Then G
−1

(u) ≈ F
−1

1 ([q||·||(α, λ
U)]−1u) for sufficiently small u. Since F 1 is regularly varying

at ∞ with tail index α > 0, we have from Proposition 2.6 of [33] that F
−1

1 (t) is regularly

varying at 0, or more precisely, F
−1

1 (uc)/F
−1

1 (u) → c−
1
α as u → 0+ for any c > 0. Thus

F
−1

1 ([q||·||(α, λ
U)]−1u)/F

−1

1 (u)→ q||·||(α, λ
U)

1
α . Therefore, G

−1
(u) ≈ q||·||(α, λ

U)
1
αF

−1

1 (u) for

sufficiently small u, i.e., limu→0+ G
−1

(u)/F
−1

1 (u) = q||·||(α, λ
U)

1
α . Replace u by 1 − p, and

we have,

lim
p→1

VaRp(||X||)
VaRp(X1)

= q||·||(α, λ
U)

1
α . (2.10)

That is, the risk measure VaRp(||X||) for a heavy tailed loss vector X can be approxi-

mated via q||·||(α, λ
U)

1
αVaRp(X1) as p→ 1, where VaRp(X1) measures the marginal risk, and

q||·||(α, λ
U) encodes extremal dependence information among losses X1, . . . , Xd and can be

evaluated in terms of the tail density in the next theorem.

Theorem 2.9. Assume that F is a distribution with tail equivalent, continuous margins Fi,

1 ≤ i ≤ d. If the marginal density fi of Fi, 1 ≤ i ≤ d, is regularly varying with tail index

α + 1, α > 0, and the copula C of F satisfies the condition (2.1), then q||·||(α, λ
U) has the

following representation

q||·||(α, λ
U) = αd

∫
W

λU(w−α1 , . . . , w−αd )(w1 · · ·wd)−α−1dw (2.11)

where W = {w ≥ 0 : ||w|| > 1}.

Proof. It follows from (1.2) that

P(||X|| > t)

P(X1 > t)
=

P(X ∈ tW )

P(X1 > t)
→ ν(W ) = q||·||(α, λ

U), as t→∞,

where W = {w : ||w|| > 1}. On the other hand, it follows from Theorem 2.3 that

ν((x,∞]) = αd
∫

(x,∞]

λU(w−α1 , . . . , w−αd )(w1 · · ·wd)−α−1dw, ∀x ∈ Rd
+. (2.12)

Since || · || preserves the component-wise order, W is an upper subset. The standard approx-

imation and (2.12) lead to

ν(W ) = αd
∫
W

λU(w−α1 , . . . , w−αd )(w1 · · ·wd)−α−1dw

and (2.11) follows. �

Note that under the assumptions of Theorem 2.9, the intensity measure ν(·) is absolutely

continuous with respect to the Lebesgue measure and the tail density λ(·) is the unique

Radon-Nikodym derivative of ν(·) with respect to the Lebesgue measure.
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Example 2.10. Consider a random loss vector (X1, . . . , Xd) which satisfies the assumptions

of Theorem 2.9.

1. Assume that (X1, . . . , Xd) has an Archimedean copula C(u1, . . . , ud) = φ(
∑d

i=1 φ
−1(ui)),

where the generator φ−1 is regularly varying at 1 with tail index β > 1. Then Theorem

2.9 and Proposition 2.6 yield

q||·||(α, λ
U) = αd

d∏
i=2

[(i− 1)β − 1]

∫
W

( d∏
i=1

w−αβ−1
i

)( d∑
i=1

w−αβi

)−d+1/β

dw1 · · · dwd

where W = {w : ||w|| > 1}.

2. Assume that the survival copula of (X1, · · · , Xd) is Archimedean with C(u1, · · · , ud) =

φ(
∑d

i=1 φ
−1(ui)), where the inverse generator φ is regularly varying at ∞ with tail

index θ > 0. Then Theorem 2.9 and Proposition 2.5 yield

q||·||(α, λ
U) = αd

d∏
i=2

(
1 +

i− 1

θ

)∫
W

( d∏
i=1

w
α
θ
−1

i

)( d∑
i=1

w
α
θ
i

)−θ−d
dw1 · · · dwd

where W = {w : ||w|| > 1}. �

Example 2.10 (2) is obtained in [17] for the l1 norm. Also see [2, 3, 6] for the detailed

discussions on tail estimates of aggregated dependent risks.

3 Tail Densities of t and Vine Copulas

In this section, we first derive the tail density of the well-known t copula that is specified

by the density. We also derive the tail densities of D-vine copulas that are built from the

densities of bivariate linking copulas via local dependence properties.

3.1 Tail Density of t Copula

Consider a d-dimensional symmetric t distribution td(ν,Σ) with mean 0 and its density

function:

ft(x; ν,Σ) =
Γ(ν+d

2
)

Γ(ν
2
)(νπ)d/2

|Σ|−
1
2

[
1 +

1

ν
(x>Σ−1x)

]− ν+d
2

(3.1)

where x = (x1, · · · , xd) ∈ Rd, ν > 0 is the degree of freedom, and Σ = (ρij) is a d × d

symmetric dispersion matrix. If a random vector X has the t distribution td(ν,Σ), then

X
d
=
√
R(Z1, . . . , Zd), where (Z1, . . . , Zd) has a multivariate normal distribution N(0,Σ),

13



and the scale variable R, independent of (Z1, . . . , Zd), has an inverse Gamma distribution,

which is known to be regularly varying with tail index ν/2 [11].

The one dimensional marginal t distribution has the density

fi(xi) =
Γ(ν+1

2
)

Γ(ν
2
)(νπ)1/2

(
1 +

x2
i

ν

)− ν+1
2
, xi ∈ R, 1 ≤ i ≤ d. (3.2)

Note that fi has regularly varying tails with tail index ν + 1. Karamata’s theorem (see page

25 of [33]) implies that the margin Fi has a regularly varying right tail with 1 − Fi(xi) ≈
ν−1x−νi L(xi, ν) as xi →∞, where

L(xi, ν) ≈
Γ(ν+1

2
)

Γ(ν
2
)
√
νπ

( 1

x2
i

+
1

ν

)−(ν+1)/2

→
Γ(ν+1

2
)

Γ(ν
2
)
√
νπ
ν(ν+1)/2 =: `, as xi →∞.

The limiting constant ` > 0 is an explicit constant only depending on ν. Set Fi(xi) = 1−uwi
then we have ν−1x−νi ` ≈ uwi as u→ 0. Thus we obtain the following estimates:

F−1
i (1− uwi) ≈ ν−

1
ν `

1
ν (uwi)

− 1
ν , 1 ≤ i ≤ d, for sufficiently small u.

Plug these estimates into the t copula density c(1− uw1, . . . , 1− uwd) with (3.1) and (3.2),

and we obtain that as u→ 0,

c(1− uw1, . . . , 1− uwd) = ft(F
−1
1 (1− uw1), . . . , F−1

d (1− uwd))
d∏
i=1

[fi(F
−1
i (1− uwi))]−1

≈ u1−d|Σ|−
1
2ν(1−d)( ν

2
+1)`d−1 Γ(ν+d

2
)Γd−1(ν

2
)

Γd(ν+1
2

)

[(w−
1
ν )>Σ−1w−

1
ν ]−

ν+d
2∏d

i=1 w
ν+1
ν

i

where w−1/ν = (w
−1/ν
1 , . . . , w

−1/ν
d ). It follows from Proposition 2.1 that the upper tail density

function of a multivariate t copula is given below:

λU(w) = |Σ|−
1
2ν(1−d)( ν

2
+1)`d−1 Γ(ν+d

2
)Γd−1(ν

2
)

Γd(ν+1
2

)

[(w−
1
ν )>Σ−1w−

1
ν ]−

ν+d
2∏d

i=1w
ν+1
ν

i

= |Σ|−
1
2ν1−d Γ(ν+d

2
)

Γ(ν+1
2

)π(d−1)/2

[(w−
1
ν )>Σ−1w−

1
ν ]−

ν+d
2∏d

i=1w
ν+1
ν

i

. (3.3)

To get q||·||(α, λ
U) for a loss vector with multivariate t copula and regularly varying

margins, plug w−αi , 1 ≤ i ≤ d, into the tail density and utilize (2.11) as is shown as follows.

Proposition 3.1. If a non-negative loss vector X = (X1, · · · , Xd) has a t copula with degree

of freedom ν and dispersion matrix Σ and tail equivalent, regularly varying margins with

tail index α > 0, then

VaRp(||X||) ≈ q||·||(ν, λ
U)

1
αVaRp(X1), as p→ 1,

14



where

q||·||(α, λ
U) = |Σ|−

1
2ν1−dαd

Γ(ν+d
2

)

Γ(ν+1
2

)π(d−1)/2

∫
W

[(wα/ν)>Σ−1wα/ν ]−
ν+d
2

d∏
i=1

w
−1+α/ν
i dw.

Here wα/ν = (w
α/ν
1 , . . . , w

α/ν
d ) and W = {w : ||w|| > 1}.

If α = ν, then the tail density of the t copula and (2.8) yield the (upper) tail density of

the truncated multivariate t distribution:

λ(w) = |Σ|−
1
2ν

Γ(ν+d
2

)

Γ(ν+1
2

)π(d−1)/2
(w>Σ−1w)−

ν+d
2 . (3.4)

If a non-negative loss vector X = (X1, · · · , Xd) has the truncated multivariate t distribution

with degree of freedom ν and dispersion matrix Σ, then

VaRp(||X||) ≈ VaRp(X1)

∫
W

λ(w)dw as, p→ 1,

where VaRp(X1) is the VaR of the margin with truncated standard t distribution.

Remark 3.2. The tail dependence function of the t copula was derived in [32] using Euler’s

homogeneity representation. In contrast, the t tail density (3.3) is explicit with nice geometric

interpretation. Define ||w||Σ := w>Σ−1w, w ∈ Rd. Clearly || · ||Σ is a well-defined norm on

Rd. Both tail densities (3.3) and (3.4) share a similar geometric interpretation: the tail

density λ(·) in (3.4) is a decreasing function of ||w||Σ, whereas that tail density λU(·) in (3.3)

depends on ||w−1/ν ||Σ and the Jacobian determinant of the topologically invariant transform

yi = w
−1/ν
i , 1 ≤ i ≤ d. While (3.4) looks simpler than (3.3), λU(·) captures the scale

invariant extremal dependence among multivariate t distributed losses, and, as illustrated in

Proposition 3.1, can be applied to the situations with general heavy-tailed margins.

Example 3.3. Consider the bivariate t distribution with identity dispersion matrix and its

density function: f(t1, t2) = 1
2π

[1 +
(t21+t22)

ν
]−( ν

2
+1), ν > 1, where ν is the degrees of freedom.

It follows from (3.3) and (3.4) that

λU(w1, w2) =
1

2
π−

1
2

Γ(ν
2
)

Γ(ν+1
2

)

(w
− 2
ν

1 + w
− 2
ν

2 )
−(1+ ν

2
)

(w1w2)1+ 1
ν

,

λ(w1, w2) =
1

2
π−

1
2ν2 Γ(ν

2
)

Γ(ν+1
2

)
(w2

1 + w2
2)−(1+ ν

2
),

for any w1 > 0 and w2 > 0. �
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3.2 Tail Densities of Vine Copulas

A vine copula is a copula constructed from a set of d(d − 1)/2 bivariate copulas by using

successive mixing according to a tree structure on finite indexes 1, . . . , d. The crucial as-

sumption for vine copulas is that given a subset S of variables, where ∅ 6= S ⊂ {1, . . . , d}, the

conditional copula that links neighboring variables of S does not depend on the conditioning

variables in S. Depending on the types of trees, various vine copulas can be constructed.

For example, one boundary case of D-vines are constructed on 1-ary trees and the other

boundary case of C-vines are constructed on full (d− 1)-ary trees. The details of these and

other regular vines can be found in [7, 8, 27, 28]. For reasons of simpler notation to show

main ideas, we discuss only D-vines here in details, but similar results hold for other vine

copulas.

Let C be the d-dimensional copula of a random vector (U1, . . . , Ud) with density c and

uniform margins. We simplify the notations for margins and conditional distributions as

follows: Let S and S ′ be two subsets of {1, . . . , d}.

1. For any x = (x1, . . . , xd) ∈ Rd, denote the S-margin of x by xS := (xj, j ∈ S).

2. Denote the S-marginal density by cS := cS(uj, j ∈ S) of C with indexes in S.

3. Denote the conditional distribution of Uk conditioning on Uj, j ∈ S, by Ck|S :=

Ck|S(uk|uS) = P(Uk ≤ uk | Uj = uj, j ∈ S), k /∈ S.

4. Denote the conditional density of Uk, k ∈ S ′ conditioning on Uj, j ∈ S, by cS′|S :=

cS∪S′/cS.

Let {Kij, 1 ≤ i < j ≤ d} be a set of bivariate linking copulas that constitute basic

building blocks. We assume that the density of Kij, denoted by kij, is continuous, and all

Kijs satisfy the uniform convergence properties (2.1). A D-vine copula C of uniform random

vector (U1, . . . , Ud) is constructed recursively in terms of densities as follows.

1. Level 1 (baseline): For any i = 1, . . . , d−1, the bivariate margin of (Ui, Ui+1) is specified

by Ci,i+1 with density ci,i+1 = ki,i+1.

2. Level 2: For i = 1, . . . , d − 2, the conditional distribution of (Ui, Ui+2) given the

common neighbor Ui+1 is constructed via copula Ki,i+2. The marginal distribution of

(Ui, Ui+1, Ui+2) is specified by the density

c{i,i+1,i+2} = ci,i+1ci+1,i+2ki,i+2

(
Ci|i+1, Ci+2|i+1

)
.
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3. Level l (l = 2, . . . , d− 1): Conditioning on (Uj, i+ 1 ≤ j ≤ i+ l − 1), i = 1, . . . , d− l,
the conditional distribution of (Ui, Ui+l) is constructed via copula Ki,i+l. The marginal

distribution of (Uj, i ≤ j ≤ i + l) is specified by the density c{i,...,i+l} via the following

expression:

c{i,...,i+l}
c{i+1,...,i+l−1}

=
c{i,...,i+l−1}

c{i+1,...,i+l−1}

c{i+1,...,i+l}

c{i+1,...,i+l−1}
ki,i+l

(
Ci|{i+1,...,i+l−1}, Ci+l|{i+1,...,i+l−1}

)
.

For a D-vine, the linking copula Kij appears at level (j − i). A C-vine, in standard form, is

constructed similarly with bivariate linking copulas Kij, i < j, at level i. See, for example,

[1] for graphical illustrations and a short introduction to D-vines vs. C-vines. A regular

vine is more flexible but still has d − l linking copulas at level l, 1 ≤ l ≤ d − 1. It is

evident that at each level of the construction, the conditional distribution of (Ui, Ui+l) given

(Uj, i+ 1 ≤ j ≤ i+ l − 1) has the following simple form:

C{i,i+l}|{i+1,...,i+l−1} = Ki,i+l

(
Ci|{i+1,...,i+l−1}, Ci+l|{i+1,...,i+l−1}

)
, (3.5)

with conditional density

c{i,i+l}|{i+1,...,i+l−1} = ci|{i+1,...,i+l−1}ci+l|{i+1,...,i+l−1}

ki,i+l
(
Ci|{i+1,...,i+l−1}, Ci+l|{i+1,...,i+l−1}

)
, (3.6)

in which the linking copula Ki,i+l does not depend on conditioning variables ui+1, . . . , ui+l−1.

This property of the linking copulas simplifies the dependence structure of vine copulas,

leading to recursive expressions for their distributions. Since all the bivariate linking copulas

satisfy the uniform convergence properties (2.1), then by induction, the d-dimensional D-vine

copula C satisfies (2.1).

To obtain the tail densities for vine copulas, we define the lower and upper conditional

tail dependence functions, denoted by tLS′|S and tUS′|S respectively, as follows, for any S, S ′ ⊆
{1, . . . , d}, and all w = (w1, . . . , wd) ∈ Rd

+\{0},

tLS′|S(wS′ | wS) = lim
u↓0

CS′|S(uwi, i ∈ S ′ | uwj, j ∈ S),

tUS′|S(wS′ | wS) = lim
u↓0

CS′|S(1− uwi, i ∈ S ′ | 1− uwj, j ∈ S). (3.7)

Under the uniform convergence assumption (2.1), these limiting functions exist.

Theorem 3.4. Let λLS(wS) and λUS (wS), S ⊆ {1, . . . , d}, denote respectively the lower and

upper tail densities of CS for a d-dimensional D-vine copula C. Assume that all bivariate

linking copulas Kijs have continuous densities and satisfy the uniform convergence properties

(2.1).
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1. If the baseline linking copulas Ki,i+1s are all lower tail dependent, then

λL{1,...,d}(w)

λL{2,...,d−1}(w{2,...,d−1})
=
λL{1,...,d−1}(w{1,...,d−1})

λL{2,...,d−1}(w{2,...,d−1})

λL{2,...,d}(w{2,...,d})

λL{2,...,d−1}(w{2,...,d−1})

k1,d

(
tL1|2,...,d−1(w1|w{2,...,d−1}), t

L
d|2,...,d−1(wd|w{2,...,d−1})

)
. (3.8)

2. If the baseline linking copulas Ki,i+1s are all upper tail dependent, then

λU{1,...,d}(w)

λU{2,...,d−1}(w{2,...,d−1})
=
λU{1,...,d−1}(w{1,...,d−1})

λU{2,...,d−1}(w{2,...,d−1})

λU{2,...,d}(w{2,...,d})

λU{2,...,d−1}(w{2,...,d−1})

k1,d

(
1− tU1|2,...,d−1(w1|w{2,...,d−1}), 1− tUd|2,...,d−1(wd|w{2,...,d−1})

)
.

Proof. We prove the lower tail dependence case, and the other case is similar via the duality

property (1.4).

It is shown in Theorem 4.1 of [24] that C and its multivariate margins are lower tail

dependent, and thus λLS(wS) > 0, S ⊆ {1, . . . , d}, and all the lower conditional tail depen-

dence functions are positive. It follows from (3.5) that the lower conditional tail dependence

functions for D-vines are evaluated recursively by:

tL{i,i+l}|{i+1,...,i+l−1}(w{i,i+l} | w{i+1,...,i+l−1}) =

Ki,i+l

(
tLi|{i+1,...,i+l−1}(wi | w{i+1,...,i+l−1}), t

L
i+l|{i+1,...,i+l−1}(wi+l | w{i+1,...,i+l−1})

)
,

for 1 ≤ i ≤ d − l and 2 ≤ l ≤ d − 1. Using (3.6), we have, for any w = (w1, . . . , wd) ∈ Rd
+

and u > 0,

ud−1c{1,...,d}(uw)

ud−3c{2,...,d−1}(uw{2,...,d−1})
=
ud−2c{1,...,d−1}(uw{1,...,d−1})

ud−3c{2,...,d−1}(uw{2,...,d−1})

ud−2c{2,...,d}(uw{2,...,d})

ud−3c{2,...,d−1}(uw{2,...,d−1})

k1,d

(
C1|{2,...,d−1}(uw1 | uw{2,...,d−1}), Cd|{2,...,d−1}(uwd | uw{2,...,d−1})

)
.

Since k1,d is continuous and all the lower conditional tail dependence functions are positive,

(3.8) follows from Proposition 2.1 by taking the limits as u→ 0. �

Remark 3.5. 1. Let S = {2, . . . , d− 1}, and for i /∈ S,

λLi|S(wi | wS) :=
λL{i}∪S(w{i}∪S)

λLS(wS)
, and λL{1,d}|S(w1, wd | wS) :=

λL{1,d}∪S(w{1,d}∪S)

λLS(wS)
.

Note that

λLi|S(wi | wS) =
∂

∂wi
tLi|S(wi|wS), i /∈ S

λL{1,d}|S(w1, wd | wS) =
∂2

∂w1∂wd
tL{1,d}|S(w1, wd|w{1,d}∪S)
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describe the lower conditional tail densities, and (3.8) can be rewritten in terms of

conditional tail densities as follows,

λL{1,d}|S(w1, wd | wS) = λL1|S(w1 | wS)λLd|S(wd | wS)

k1,d

(∫ w1

0

λL1|S(v1 | wS)dv1,

∫ wd

0

λLd|S(vd | wS)dvd

)
,

where indexes 1 and d are the two neighbors of the index subset S in the underlying

1-ary tree of the D-vine. The recursion involves only lower dimensional marginal tail

densities and perhaps their univariate integrals. The tail dependence function for a

d-dimensional D-vine copula obtained in [24] involves (d−2)-dimensional integrations,

and in contrast, the tail density of a d-dimensional D-vine copula obtained here involves

at most one dimensional integrations.

2. If some baseline linking copulas Ki,i+1s are tail independent (e.g., λLi,i+1 = 0 for some i),

then the D-vine copula C is tail independent (i.e., λL(w1, . . . , wd) = 0). As illustrated

in Proposition 4.3 in [24], however, some margins of the D-vine might still be tail

dependent. For example, consider a three-dimensional D-vine copula C with bivariate

linking copulas K1,2, K2,3 and K1,3, where baseline linking copulas K1,2 and K2,3 are

lower tail independent. In this situation, C is lower tail independent, but the margin

C{1,3} can be lower tail dependent if the second level linking copula K1,3 is lower tail

dependent and the conditional tail probabilities of K1,2 and K2,3 are regularly varying

at 0 with same tail index. That is, tail dependence of C{1,3} can emerge from tail

independence of K1,2 and K2,3 with synchronized hidden regular variation tail index.

This issue of hidden regular variation [19, 22, 20] is still unsolved in the context of vine

copulas and other graphical models.

Example 3.6. The lower tail density of the 3-dimensional D-vine is given by:

λL(w1, w2, w3) = λL12(w1, w2) · λL23(w2, w3) · k13(tL1|2(w1|w2), tL3|2(w3|w2)),

where tL1|2(w1|w2) =
∫ w1

0
λL12(v1, w2)dv1, and tL3|2(w3|w2) =

∫ w3

0
λL23(w2, v3)dv3. The lower tail

density of the 4-dimensional D-vine is given by:

λL(w1,w2, w3, w4) = λL12(w1, w2) · λL23(w2, w3) · λL34(w3, w4)

· k13(tL1|2(w1|w2), tL3|2(w3|w2)) · k24(tL2|3(w2|w3), tL4|3(w4|w3))

· k14(tL1|23(w1|w2, w3), tL4|23(w4|w2, w3)).

Again, the lower conditional tail dependence functions are just univariate integrals of bivari-

ate and trivariate tail densities. �
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4 Concluding Remarks

In this paper, we introduced the notion of the tail density of a copula, and established its

basic properties. Coupled with regularly varying margins, the copula tail density is shown to

be equivalent to the tail density of multivariate regular variation developed in [13]. Various

examples involving Archimedean and t copulas are discussed to illustrate our results.

The usefulness of the copula tail density lies in its ability to analyze extremal dependence

properties locally, and such a local extreme value analysis often yields good geometric inter-

pretations, such as in the case of t copulas. When applying the tail density approach to vine

copulas, we obtained the recursive expressions of tail densities for D-vine copulas according

to the underlying tree structure in terms of lower dimensional tail densities. In contrast

to [24], the tail dependence recursions for high dimensional D-vines developed here could

only involve one-dimensional integrations. The tail density approach will be used in our

future research to characterize the multivariate regular variation properties for vine copulas

according to underlying finite tree structures.
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