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HE use of diamond for neural stimulation has been of interest, as the mechanical, chemical and biological stability of the 

material are advantageous [1, 2].  Electrochemically, it is advantageous that diamond electrodes have a wide potential 

window in which safe stimulation can be applied. However, as diamond naturally is an insulating material, a dopant must be 

employed in order to improve its electrical properties [1].  In this paper, the electrochemical properties of B-NCD electrodes 

are compared to those of smooth and porous TiN electrodes. The electrodes are compared using the electrode impedance 

magnitude (|Z|), its charge injection capacity (Qinj), its cathodic charge storage capacity (CSCc) and its capacitance. 

All coatings were applied to a semi-spherical monopolar Ti6Al4V substrate (surface area: 0.06 cm
2
). The TiN coatings were 

deposited using magnetron sputtering and had a thickness of ~4 µm. B-NCD was grown using a pulsed microwave plasma 

enhanced chemical vapor deposition apparatus with linear antenna delivery system [3] operating at low pressures with a CH4-

H2-CO2 chemistry with trimethylboron (TMB) as a boron dopant. 

Electrochemical measurements on three B-NCD electrodes were compared to measurements on a smooth and a porous TiN 

electrode. Measurements were performed in phosphate buffered saline (PBS) at room temperature. EIS was performed using 

Solartron, Model 1294 in conjunction with 1260 Impedance/gain-phase Analyzer (Solartron Analytical, UK). The impedance 

spectrum was measured from 0.1 Hz ± 100 kHz using a current of 5.0 µA. The electrolyte resistance was subtracted from the 

measured impedance. Voltage transient measurements (VTM) and cyclic voltammetry (CV) were performed using a 

VersaSTAT 3 potentio- galvanostat (Princeton applied research, USA). The water window potentials were established for the 

B-NCD electrodes, after which CV measurements were made at sweep rates of 0.05, 0.1, 0.5 and 1.0 V/s. For TiN -0.6 and 

0.9 V vs. Ag|AgCl were used as water window potentials. The CSCc was computed at 0.05 V/s [4]. VTM was performed us-

ing a biphasic cathodic-first current pulse (phase width: 0.2 ms) with a 40 µs interphase. Qinj was reached when the electrode 

potential exceeded the water window potential. The electrode capacitance is computed using the CV and the VTM data [1]. 

Table 1 shows that the porous TiN electrode outperforms the smooth TiN and the B-NCD electrodes at all aspects. The B-

NCD and smooth TiN electrodes show comparable values, especially when it comes to |Z|, Qinj and capacitance. Qinj could 

not be determined for the porous TiN electrodes, due to machine limitations. The typical wide water window was found for 

B-NCD electrodes, from -1.7 to 1.4 V vs. Ag|AgCl [1].  

The properties of the B-NCD electrodes are comparable to those described in literature [1] and in the same range as the prop-

erties of the smooth TiN electrode. However, the porous TiN electrode clearly outperforms both. So is there any future for B-

NCD neural stimulation electrodes? We believe so. Nano-structures may be a means to increase the electrochemical surface 

area and thus further improve the electrochemical properties of the B-NCD electrodes. A diamond coating has been grown on 

a nanostructured polymer substrate before [5], but challenges remain depositing diamond on a porous metal substrate [6]. 

TABLE I.  |Z|, CSCC, QINJ AND CAPACITANCE OF B-NCD, SMOOTH AND POROUS TIN ELECTRODES (MEAN±STANDARD ERROR). 

Electrode 

EIS CV VTM 

|Z| DW���N+]���� |Z| DW���+]���� CSCc (mC/cm2) Capacitance (µF/cm2) Qinj (µC/cm2) Capacitance (µF/cm2) 

B-NCD 212 ± 12 (195 ± 22) ·103 5.1 ± 0.64 40 ± 6 26 ± 1 8.2 ± 0.1 

Smooth TiN 138 92 ·103 0.14 51 27  15.2 ± 0.7 

Porous TiN 0 35 86 23 ·103 - (1.9 ± 0.09) ·103 
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