Bounds on the signed distance- k-domination number of graphs

D. A. Mojdeh ${ }^{1,2^{*}}$, B. Samadi ${ }^{2}$ and S. M. Hosseini Moghaddam ${ }^{3}$
${ }^{1}$ Department of Mathematics, University of Tafresh, Tafresh, Iran
${ }^{2}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM) Tehran, Iran, P.O. Box 19395-5746
${ }^{3}$ Shahab Danesh Institute of Higher Education, Qom, Iran
E-mails: damojdeh@ipm.ir, b_samadi61@yahoo.com \& Sm.hosseini1980@yahoo.com

Abstract

Let $G=(V, E)$ be a graph with vertex set $V=V(G)$ of order n and edge set $E=E(G)$. A k-dominating set of G is a subset $S \subseteq V$ such that each vertex in $V \backslash S$ has at least k neighbors in S. If v is a vertex of a graph G, the open k-neighborhood of v, denoted by $N_{k}(v)$, is the set $N_{k}(v)=\{u \in V: u \neq v$ and $d(u, v) \leq k\}$. $N_{k}[v]=$ $N_{k}(v) \cup\{v\}$ is the closed k-neighborhood of v. A function $f: V \rightarrow\{-1,1\}$ is a signed distance- k-dominating function of G, if for every vertex $v \in V, f\left(N_{k}[v]\right)=\sum_{u \in N_{k}[v]} f(u) \geq 1$. The signed distance- k-domination number, denoted by $\gamma_{k, s}(G)$, is the minimum weight of a signed distance- k-dominating function of G. In this paper, we give lower and upper bounds on $\gamma_{k, s}$ of graphs. Also, we determine the signed distance- k-domination number of graph $\gamma_{k, s}(G \vee H)$ (the graph obtained from the disjoint union $G+H$ by adding the edges $\{x y: x \in$ $V(G), y \in V(H)\}$) when $k \geq 2$.

Keywords: Signed distance- k-dominating function; k th power of a graph

1. Introduction

Let $G=(V, E)$ be a graph with vertex set $V=$ $V(G)$ of order n and edge set $E=E(G)$. For a subset $S \subseteq V(G)$, we define $N(S)=N_{G}(S)=$ $\mathrm{U}_{v \in S} N(v)$. If v is a vertex of a graph G, the open k-neighborhood of v, denoted by $N_{k}(v)$, is the set $N_{k}(v)=\{u \in V: u \neq v$ and $d(u, v) \leq k\}$. $N_{k}[v]=N_{k}(v) \cup\{v\}$ is the closed- k-neighborhood of $\quad v . \quad \delta_{k}(G)=\min \left\{\left|N_{k}(v)\right| ; v \in V\right\} \quad$ and $\Delta_{k}(G)=\max \left\{\left|N_{k}(v)\right| ; v \in V\right\}$.

A k-dominating set of G is a subset $S \subseteq V$ such that every vertex in $V \backslash S$ has at least k neighbors in S. The k-domination number $\gamma_{k}(G)$ is the minimum cardinality among the k-dominating sets of G. A subset $S \subseteq V$ is a total dominating set, if for every vertex $u \in V$ there exists a vertex $v \in S$, such that u is adjacent to v. Let G be a graph with no isolated vertex. The total domination number $\gamma_{t}(G)$ is the minimum cardinality among the total dominating sets of G.
A function $\mathrm{f}: \mathrm{V} \rightarrow\{-1,1\}$ is a signed distance-k-dominating function of G, if for every vertex $v \in V, f\left(N_{k}[v]\right)=\sum_{u \in N_{k}[v]} f(u) \geq 1$. The signed distance- k-domination number, denoted by $\gamma_{\mathrm{k}, \mathrm{s}}(\mathrm{G})$, is the minimum weight of a signed

[^0]distance- k-dominating function on G. A signed distance-1-dominating function and signed distance-1-domination number $\gamma_{1, s}(G)$ of a graph G are identified with the usual signed dominating function and signed domination number $\gamma_{s}(G)$ of a graph G [1].
Let $k \geq 2$ be a positive integer. A subset $S \subseteq V(G)$ is a k-packing if for every pair of vertices $u, v \in S, d(u, v)>k$. The k-packing number $\beta_{k}(G)$ is the maximum cardinality of a k packing in G [2]. The joint of simple graphs G and H, written $G \vee H$, is the graph obtained from the disjoint union $G+H$ by adding the edges $\{x y$: $x \in V(G), y \in V(H)\}$ [3]. Let G be a graph of order n with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We construct k th power G^{k} of a graph G, by $V\left(G^{k}\right)=$ $V(G)$ and u and v are adjacent in G^{k} if and only if $0<d_{G}(u, v) \leq k$.

2. Lower bounds on $\boldsymbol{\gamma}_{\boldsymbol{k}, \boldsymbol{s}}(\boldsymbol{G})$

Observation 1. Let G be a graph of order n, and k be a positive integer. Then $\gamma_{k, s}(G)=\gamma_{s}\left(G^{k}\right)$.

Proof: Let f be a signed distance- k-dominating function of G. It is easy to see that for every $v \in V(G), N_{k}[v]=N_{G^{k}}[v]$. Hence $f\left(N_{G^{k}}[v]\right)=$ $f\left(N_{k}[v]\right)$. Therefore f is a signed distance- k dominating function of G if and only if f is a signed
distance dominating set of G^{k}. Thus $\gamma_{s}\left(G^{k}\right)=$ $\gamma_{k, s}(G)$.

Let G be a graph of order n, and k be a positive integer. $\delta\left(G^{k}\right)=\delta_{k}(G)$ and $\Delta_{k}\left(G^{k}\right)=\Delta_{k}(G)$.

Theorem 2. [4] For any graph G with $\delta \geq 2$, $\gamma_{s}(G) \geq n\left(\frac{\left[\frac{\delta}{2}\right]-\left\lfloor\left.\frac{\Delta}{2} \right\rvert\,+1\right.}{\left[\frac{\delta}{2}\right]+\left\lfloor\frac{\Delta}{2}\right]+1}\right)$.
As an immediate result from Observation 1 and Theorem 2 we have.

Corollary 3. For any graph G with $\delta_{k} \geq 2$, $\gamma_{k, s}(G) \geq n\left(\frac{\left[\frac{\delta_{k}}{2}\right]-\left\lfloor\frac{\Delta_{k}}{2}\right]+1}{\left[\frac{\delta_{k}}{2}\right]+\left\lfloor\frac{\Delta_{k}}{2}\right]+1}\right)$.

Proposition 4. Let G be a graph of order n. Then $2 \gamma_{2}(G)-n \leq \gamma_{s}(G)$.

Proof Let f be a minimum signed dominating function of G. Let $V_{1}=\{u \in V: f(u)=1\}$ and $V_{-1}=\{u \in V: f(u)=-1\}$. If $V_{-1}=\emptyset$, then the proof is clear.

If $v \in V_{-1}$ since $f\left(N_{G}[v]\right) \geq 1$, then v has at least two adjacent in V_{1}. Therefore V_{1} is a 2dominating set for G and $\left|V_{1}\right| \geq \gamma_{2}(G)$. Since $\gamma_{s}(G)=\left|V_{1}\right|-\left|V_{-1}\right|$ and $n=\left|V_{1}\right|+\left|V_{-1}\right|$, then $\gamma_{s}(G)=2\left|V_{1}\right|-n$ and finally we have $\gamma_{s}(G) \geq$ $2 \gamma_{2}(G)-n$.

Proposition 5. Let G be a graph of order n and with no isolated vertex. Then $2 \gamma_{t}(G)-n \leq \gamma_{s}(G)$.

Proof: The proof is similar to the Proposition 4.

3. Upper bounds on $\boldsymbol{\gamma}_{\boldsymbol{k}, \boldsymbol{s}}(\boldsymbol{G})$

Theorem 6. Let k be a positive integer. If G is a simple graph of order n and minimum degree $\delta \geq 2$ and β_{k+1} is a maximum value of $k+1$ packing sets. Then $\gamma_{k, s}(G) \leq n-2 \beta_{k+1}$, and this bound is sharp.

Proof: Let S be a $k+1$-packing set with $|S|=$ β_{k+1}. We define $f: V \rightarrow\{-1,1\}$ by,

$$
f(v)=\left\{\begin{array}{c}
-1 \text { if } v \in S \\
1 \text { if } v \in V-S
\end{array}\right.
$$

It is easy to show that $f(V(G))=n-2 \beta_{k+1}$. Therefore, it is sufficient to show that f is a signed distance- k-dominating function on G. Let v be a vertex in S. Since $\delta \geq 2$, then $\left|N_{k}[v]\right| \geq 3$ since S is a $k+1$-packing set. Hence $N_{k}[v] \cap S=\{v\}$, and $f\left(N_{k}[v]\right) \geq 1$. Now let v be a vertex in $V-S$. There are two cases.

Case 1. $N[v] \cap S \neq \emptyset$. Since S is a $k+1$-packing set in graph G, then $\left|N_{k}[v] \cap S\right|=1$ and let $N_{k}[v] \cap S=\{w\}$. Otherwise let u be a vertex in $N_{k}[v] \cap S$ different from w. This shows that $d(w, u) \leq k+1$. This is a contradiction. Since $\delta \geq 2$ therefore $f\left(N_{k}[v]\right) \geq 1$.

Case 2. $N[v] \cap S=\emptyset$. If $N_{k}[v] \cap S=\emptyset$, then $f\left(N_{k}[v]\right) \geq 1$. Let $\quad N_{k}[v] \cap S \neq \emptyset \quad$ and \quad let $N_{k}[v] \cap S=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$. Since $d\left(s_{i}, s_{j}\right) \geq k+$ 2, there exists a vertex v_{i} on the $v-s_{i}$ path which is distinct from the vertex v_{j} on the $v-s_{j}$ path. Thus there exist at least r distinct vertices in $N_{k}[v]-S$. Suppose v_{i} be a vertex in $N_{k}[v]$ such that v_{i} is adjacent to s_{i} for each $1 \leq i \leq r$.
Therefore, $f\left(N_{k}[v]\right) \geq \sum_{i=1}^{r} \mathrm{f}\left(v-s_{i}\right)+\sum_{i=1}^{r} \mathrm{f}\left(v_{i}\right)+$ $f(v)=1$. And f is a signed $-k$-dominating function on G with weight $|V-S|-|S|=n-2 \beta_{k+1}$. Hence $\gamma_{k, s}(G) \leq n-2 \beta_{k+1}$.

Now, we show that the bound is sharp. The desired graph G will be the union p copies of C_{4}. Then $\gamma_{k, s}(G)=2 p$ and $\beta_{k+1}=p$. Therefore $\gamma_{k, s}(G)=$ $2 p=4 p-2 p=n-2 \beta_{k+1}$. This completes the proof.

Corollary 7. Let k be a positive integer. If G is a simple graph of order n and minimum degree δ ≥ 2 and β_{k+1} is a maximum value of $k+1$ packing sets, then
$\beta_{k+1} \leq \frac{n}{2}\left(1-\frac{\left[\frac{\delta_{k}}{2}\right]-\left\lfloor\left.\frac{\Delta_{k}}{2} \right\rvert\,+1\right.}{\left[\frac{\delta_{k}}{2} \left\lvert\,+\left\lfloor\frac{\Delta_{k}}{2}\right]+1\right.\right.}\right)$.
Proof: By Theorem 6 and Corollary 3 the proof is clear.

Theorem 8. Let G be a connected graph of order n. Let L and S be the sets of vertices degree 1 (leaves) and $N_{G}(L)$ (support vertices) respectively. If D is a maximum 2-packing set in $G-(L \cup S)$, then $\gamma_{s}(G)$ $\leq n-2|D|$, and this bound is sharp.

Proof: We define $f: V(G) \longrightarrow\{-1,1\}$ by, $f(v)=$ $\{-1$ if $v \in D$
$\{1$ if $v \in V-D$.
It is easy to show that $f(V(G))=n-2|D|$. Therefore, it is sufficient to show that f is a signed distance-2-dominating function on G. For each vertex $v \in V(G)$, if v is a vertex in L then $f(N[v])=2 \geq 1$. Let $\quad v \in V-(L \cap D)$, if $N[v] \cap D=\varnothing$ then obviously $f(N[v]) \geq 1$. If $N[v] \cup D \neq \emptyset$, since D is a 2-packing set in $G-(L \cup S)$ then $|N[v] \cap D|=1$, and let $N[v] \cap$ $D=\{w\}$. Otherwise if u be a vertex in $N[v] \cap D$ different from w then $d(u, w) \leq 2$. This is a contradiction. Since $\operatorname{deg}(v) \geq 2$ then $f(N[v]) \geq$ 2. Finally, if $v \in D$, since $\operatorname{deg}(v) \geq 2$ and $N[v] \cap D=\{v\}$ then $f(N[v]) \geq 1$. Therefore f is
a signed dominating function of G with weight $n-2|D|$. Hence $\gamma_{s} \leq n-2|D|$.
Now, we show that the bound is sharp. Let $G=K_{1, n-1}(n \geq 2)$. Then $\gamma_{s}(G)=n$ and $D=\emptyset$. Thus $\gamma_{s}(G)=n-2|D|$.

In Theorem 6 the graph G can be a simple disconnected graph of order n and $\delta(G)=1$. Since $H_{1}, H_{2}, \ldots, H_{m}$ are components of G, then $\gamma_{s}(G)=$ $\gamma_{s}\left(H_{1}\right)+\gamma_{s}\left(H_{2}\right)+\ldots+\gamma_{s}\left(H_{m}\right)$. By a similar reason we can prove $\gamma_{S}(G) \leq n-2|D|$, where L and S are the sets of vertices of degree 1 and $N_{G}(L)$ respectively.

But there exists a natural question here. What would happen if $k>1$? We are going to answer this question by concept of k th G^{k} of the graph G. Firstly, we have the following lemma.

Lemma 9. Let G be a simple graph of order n and G^{k} be the $k^{\text {th }}$ power of the graph G. Then $D \subseteq$ $V(G)$ is a maximum set of $t k$-packing vertices if and only if $D \subseteq V\left(G^{k}\right)$ is a maximum set of t packing vertices.

Proof: Since every edge in G^{k} is equal to a path with length $l \leq k$ we have u and v, two vertices in $V\left(G^{k}\right)$ such that there is no path between them with length $l \leq t$ if and only if u and v are two vertices in $V(G)$ such that there is no path between them with length $l \leq t k$. This shows that $D \subseteq V\left(G^{k}\right)$ is a set of t-packing vertices if and only if $D \subseteq V(G)$ is a set of $t k$-packing vertices. Also, it is easy to see that $D \subseteq V\left(G^{k}\right)$ is maximum if and only if $D \subseteq$ $V(G)$ is maximum. This completes the proof.

Theorem 10. Let $k \geq 2$ be a positive integer. If G is a simple graph and each component is order $n \geq 3$, with minimum degree $\delta=1$ and S is a maximum $2 k$-packing set, then $\gamma_{k, S}(G) \leq n-$ $2 \beta_{2 k}$, where $\beta_{2 k}=|S|$, and this bound is sharp.

Proof: Let G^{k} be the k th power of the graph G. By Observation 1 we have $\gamma_{k, s}(G)=\gamma_{s}\left(G^{k}\right)$. Since $n \geq 3$ then $\delta\left(G^{k}\right) \geq 2$. Therefore, by Theorem 6 we have $\gamma_{k, S}(G)=\gamma_{s}\left(G^{k}\right) \leq n-\beta_{2}\left(G^{k}\right)$. Finally by Lemma 9 we have $\gamma_{k, s}(G) \leq n-2 \beta_{2 k}(G)$.

Now we show that the bound is sharp. The desired graph G will be the union t copies of star $K_{1,2}$. Then $\gamma_{k, s}(G)=t, \quad n=3 t$, and $\beta_{2 k}=t$. Therefore $\gamma_{k, s}(G)=t=3 t-2 t=n-2 \beta_{2 k}$. This completes the proof.

Observation 11. Let G and H be two simple graphs. If $k \geq 2$ then

$$
\begin{aligned}
& \gamma_{k, s}(G \bar{\vee} H) \\
& =\left\{\begin{array}{cc|l}
1 & \text { if }|V(G)|+|V(H)| \text { is odd } \\
2 & \text { if }|V(G)|+|V(H)| \text { is even. }
\end{array}\right.
\end{aligned}
$$

Now we show that for any integer k we can find a simple graph G such that $\gamma_{s}(G)=k$.

Theorem 12. For any integer k, there exists a connected graph G with $\gamma_{s}(G)=k$.

Proof: We consider four cases.
Case 1. Let $k<0$. We consider the star $K_{1,2|k|+2}$ with vertices $v_{1}, v_{2}, \ldots, v_{2|k|+2}$ and central vertex v. We add vertices $u_{i}(1 \leq i \leq 2|k|+2)$ be adjacent to v_{i} and v_{i+1} in modulo $2|k|+2$. Then we add edges $v_{i} v_{i+1}(1 \leq i \leq 2|k|+2)$ in modulo $2|k|+2$. Finally, we add vertices $w_{i}(1 \leq i \leq$ $|k|+1$) adjacent to $v_{2 \mathrm{i}-1}$ and $v_{2 \mathrm{i}}$ (when $k=-3, G$ is illustrated in Figure 1).

We define $f: V(G) \longrightarrow\{1,-1\}$ by,

$$
f(u)=\left\{\begin{array}{c}
1 \text { if } u \in\left\{v_{1}, v_{2}, \ldots, v_{2|k|+2}\right\} \\
-1 \text { if } \in\left\{u_{1}, u_{2}, \ldots, u_{2|k|+2}\right\} \cup\left\{w_{1}, w_{2}, \ldots, w_{|k|+1}\right\} .
\end{array}\right.
$$

In the following, we prove that f is a signed dominating function of G. By symmetry it is sufficient to show that $f(N[u]) \geq 1$ for $u \in\left\{v, v_{1}\right.$, $\left.u_{1}, w_{1}\right\} . f(N[v])=f(v)+\sum_{i=1}^{2|k|+2} f\left(v_{i}\right)=2|k|+$ $3 \geq 1$.
$f\left(N\left[v_{1}\right]\right)=f(v)+f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{2|k|+2}\right)+$ $f\left(u_{1}\right)+f\left(u_{2|k|+2}\right)+f\left(w_{1}\right)=1 \geq 1$. $f\left(N\left[u_{1}\right]\right)=f\left(u_{1}\right)+f\left(v_{1}\right)+f\left(v_{2}\right)=1 \geq$

1. $f\left(N\left[w_{1}\right]\right)=f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(w_{1}\right)=1 \geq 1$.

Therefore f is a signed dominating function of G with weight
$f(V(G))=1+2|k|+2-|k|-1-2|k|-2=$ $-|k|=k$. Hence $\gamma_{s}(G) \geq k$.

On the other hand, let g be a minimum signed dominating function on G such that $\gamma_{s}(G)=$ $g(V(G))$, we have, $g(V(G))=\sum_{u \in V(G)} g(u)=$ $\sum_{i=1}^{2|k|+2} g\left(N\left[u_{i}\right]\right)+\sum_{i=1}^{|k|+1} g\left(w_{i}\right)+g(v) \geq$ $\sum_{i=1}^{2|k|+2}(1)+\sum_{i=1}^{|k|+1}(-1)-1=|k| \geq k$. Therefore $\gamma_{s}(G)=k$.

Fig. 1. example of Theorem 12 for $k=-3$

Case 2. If $k=0$. We consider the Hajos graph G_{H} (Fig. 2).
We define $f: V(G) \longrightarrow\{1,-1\}$ by,

$$
f(u)=\left\{\begin{array}{c}
1 \text { if } v \in\left\{u_{1}, u_{2}, u_{3}\right\} \\
-1 \text { if } v \in\left\{v_{1}, v_{2}, v_{3}\right\}
\end{array}\right.
$$

It is easy to see that f is a signed dominating function of G_{H}, with weight 0 . Therefore $\gamma_{s}\left(G_{H}\right) \leq$ 0 . On the other hand, let g be a minimum signed dominating function of G_{H} such that $\gamma_{s}\left(G_{H}\right)=$ $g\left(V\left(G_{H}\right)\right)$. We have, $\gamma_{s}\left(G_{H}\right)=g\left(V\left(G_{H}\right)\right)=$ $\sum_{\mathrm{u} \in \mathrm{V}\left(G_{H}\right)} g(u)=g\left(N\left[u_{1}\right]\right)+g\left(v_{3}\right) \geq 1-1=$ 0 . Therefore, $\gamma_{S}\left(G_{H}\right) \geq 0$. Hence $\gamma_{s}\left(G_{H}\right)=0$.

Fig. 2. Hajous graph
Case 3. If $k=1$. Obviously for the complete graph $K_{2 n+1}$ we have $\gamma_{s}\left(K_{2 n+1}\right)=1$.

Case 4. If $k \geq 2$. We consider the star $K_{1, k-1}$. It is easy to see that $\gamma_{s}\left(K_{1, k-1}\right)=k$. This completes the proof.

References

[1] Xing, H., Sun, L. \& Chen, X. (2006). On signed distance- k -domination in graphs. Czechoslovak Mathematical Journal, 56(1), 229-238
[2] Haynes, T. W., Hedetniemi, S. T. \& Slater, P. J. (1998). Fundamentals of Domination in Graphs. New York, Marcel Dekker.
[3] West, D. B. (2001). Introduction to Graph Theory (Second Edition). USA: Prentice Hall.
[4] Haas, R. \& Wexler, T. B. (2002). Bounds on the signed domination number of a graph. Electronic Notes in Discrete Mathematics, 11, 742-750.

[^0]: *Corresponding author
 Received: 5 November 2011 / Accepted: 9 January 2012

