
Copyright 2003 Psychonomic Society, Inc. 194

Behavior Research Methods, Instruments, & Computers
2003, 35 (2), 194-201

More people use Web browsers than any other class of
desktop software. This situation creates a previously unpar-
alleled level of user experience in a software niche. It also
creates unique challenges as a Web site or application be-
comes a hybrid of the design of the site and of the browser.
This paper introduces a system for assessing user behav-
ior within this environment, aimed at optimizing the
process of usability testing and enabling basic research in
this area.

Usability testing has arisen in the last 10 years as a bene-
ficial practice in software development (Dumas, 2002).
Key attributes of a usability test include the recruitment of
representative users and the assignment of top priority
tasks. Additional attributes commonly associated with us-
ability testing are the collection of verbal protocols and the
use of surveying techniques to assess user satisfaction.

Tools for Web site usability testing need to log actions
both within the site and within the browser. Uzilla is an in-
strumented browser and data server that permits both ef-
ficient testing and precise logging. By automating the pre-
sentation of instructions and surveys and providing
extensive analysis tools, it facilitates the broad use of us-
ability testing.

Uzilla works in the laboratory, at a user’s desktop, and
within the rapidly growing practice of remote usability
testing, a technique that will be reviewed later in this paper.

An application server and database drive a Web applica-
tion for test design, data aggregation, and reporting. By log-
ging URLs visited, Uzilla eliminates the need to hand-code
video to segment user observation by page, as was re-
ported in a recent Web study (Goldberg, Stimson, Lewen-
stein, Scott, & Wichansky, 2002). Uzilla efficiently stores
the rapid data accumulation in a format convenient for
analysis.

The results generated from a single test include quanti-
tative and qualitative measurements. Several techniques
for problem identification have been implemented, in-
cluding error page detection and measures of nonoptimal-
ity. However, the results must be analyzed by a skilled us-
ability analyst familiar with the Web site studied to identify
which behavior and survey feedback raises problems. The
quantitative results are particularly useful in summative,
or late stage, software development, whereas the identifi-
cation of errors and survey feedback may be useful with
early prototypes.

The Uzilla architecture enables comparisons across
tests of product design iterations. Iterative testing and the
monitoring of improvement has the potential to greatly aid
the evolution of Web applications. Iterative testing may
also provide a methodology for assessing rate of learning
and memorability, two recognized but typically difficult
to measure aspects of software usability.

Finally, Uzilla enables experimentation in browser-
based interface design and behavior. The availability of
browser instrumentation has already made significant
contributions to the understanding of Web behavior, the
design of Web sites, and even the design of browsers.

In the following, the Uzilla application will be described,
and a case study will be presented showing its use in an ex-
perimental evaluation of design alternatives. Uzilla then
will be compared with other methods of facilitating Web
usability testing, and a brief survey of testing methodology
and related research will be offered.

The case study mentioned in this paper was conducted by Kranti
Dugiraala, Pallavi Dharwada, Andy Edmonds, Jonathan Johnson,
Deepthi Nalanagula, and Sajay Sadasivan under the supervision of An-
drew Duchowski. Thanks Leo Gugerty, Steve Davis, Rick Tyrrell for
valuable feedback on this work. Uzilla.net is available from Uzilla, LLC
as a hosted service, licensed on a per project basis. A 50% academic dis-
count is available from the prices posted on www.uzilla.net. No cost li-
censing is available for student projects and classroom use. Correspon-
dence should be addressed to A. Edmonds, 110 Gregory St., Clemson,
SC 29631(e-mail: andy@uzilla.net).

Uzilla:
A new tool for Web usability testing

ANDY EDMONDS
Clemson University, Clemson, South Carolina

Web usability testing and research presents challenges for accurate data collection. An instrumented
browser solution, Uzilla, is compared with existing solutions, and its contributions to usability testing
practice are noted. Uzilla implements a client–server architecture based on the open source Mozilla
browser. Instrumentation of the browser facilitates the evaluation of Web sites and applications inside
and outside of the laboratory. An integrated data collection and analysis server application decreases
the effort required to understand test results and facilitates iterative testing.

ARTICLES FROM THE SCIP CONFERENCE

http://www.uzilla.net

UZILLA INSTRUMENTED BROWSER AND DATA SERVER 195

Uzilla Specification
Uzilla combines an instrumented browser and a Web

application for usability test design and reporting. The
system uses a traditional three-tier architecture with a
browser client, a Web application server, and a database. The
usability test design application allows the experimenter
to specify instructions, surveys, and task definitions.

Task definition includes specifying instructions, hints,
and surveys. The hinting protocol is derived from the Com-
mon Industry Format (CIF) from NIST (1999a). Surveys
may be used prior to task assignment to assess expecta-
tions or afterward to assess task completion and satisfac-
tion. Although individual task executions may be manu-
ally scored, a text-matching system for the user’s final
pageview in the task enables automatic scoring. Figure 1
shows the task design screen.

Uzilla’s browser is based on the open source Mozilla
browser, the basis for Netscape 7. It utilizes a custom tool-
bar to present usability test instructions and the browser to
conduct surveys (see Figure 2). Extensions to the Mozilla
in JavaScript and XPCOM support logging network,
mouse, and keyboarding events.1

When a test is begun, the browser retrieves the test de-
finition from the application server and walks the user
through an initial survey and subsequent task assign-

ments. Data are logged with every page transition via
HTTP to a Web server and are then transferred to a set of
tables in a database. The transmission of data to a central
repository via the Internet enables remote usability test-
ing. Uzilla could be extended to enable real-time commu-
nication, enabling playback of user activity similar to
screen-sharing programs, but would likely be blocked by
many corporate firewalls.

Uzilla logs user activity, such as typing, scrolling, and
mouse movement. Mouse motion is compressed to vec-
tors with a directional summary for simplified aggrega-
tion, using an open source gesture recognition algorithm
(Optimoz, 2002). For each page view, Uzilla logs the time
of page html content load, the time of asset (e.g., images,
scripts, Flash movies) load completion, and the point at
which the next page is requested. Uzilla effectively collects
data from pages with frames, as well as multiple window-
browsing sessions.

Mouse clicks are logged with an identifying path from
within the document object model (DOM) of the html
page or Mozilla browser interface. For a form submit but-
ton, this might produce a path of “Create Report” of type
submit button in form “selectDate.” For links, the link
text, page location, and the URL are logged, allowing the
discrimination of potentially redundant links on a page.

Figure 1. The task design screen supports the specification of task instructions, hints, completion
criteria, and surveys.

Figure 2. The Uzilla toolbar presents the user’s current task and options.

Your current task is:

Create Your Own Wishlist Complete

Comment

Quit Task

Instructions

196 EDMONDS

The DOM path technique is also used to identify browser
UI operations in the Mozilla cross platform UI. Figure 3
shows the DOM view of the browser toolbar. The high-
lighted row is the back button. Events, captured via
JavaScript and the W3C event model, are distinguished by
the ID of the source element in the DOM. Uzilla has a be-
havior report that analyzes the event stream for any of sev-
eral ways in which a back button may be invoked.

Figure 4 shows a text rendering of a page event trace in
which a user navigates to a search input box on google.com,
types a query, and moves the mouse to click the submit
button. Interactions with a form element are stored with a
string representing the DOM path of the element and rel-
evant identifiers in that path. Interactions with specific
form elements may be identified across a collection of
users by a database query searching for the form element
ID or name.

Report generation follows the requirements of the CIF
from NIST (1999a). The key measures of success rate and
time to complete are computed automatically, along with
performance measures of mouse miles and click count.
Reporting is grouped into task, page, user, survey, and be-
havior functions (see Figure 5). Export facilities are pro-
vided for data transfer to dedicated statistical analysis
software. The reporting module offers typical graphs in ad-
dition to Scalable Vector Graphic visualizations of user
activity.

In Hilbert and Redmiles’s (2000) taxonomy of possible
support systems for event-logging software, Uzilla pro-
vides integrated evaluation support and event stream
transformations through aggregations of task time and
success rate, as well as page reports of mouse, keyboard,
and form details. Future work will add synchronization
with usability lab video systems, administrator notes, and
eye-tracking data.

Hilbert and Redmiles (2000) identified the association
of event traces with system state as a key challenge in the
use of event logging in usability evaluation. On the Web,

this problem is simplified, since the page serves as a use-
ful state indicator. Although not totally sufficient in all
cases to identify the system status, the current page, com-
bined with the recent viewing history and form activity
log, tends to uniquely identify system status.

An important aspect to the use of URLs as indentifiers
of system status and as a level of usability analysis is the
use of dynamic pages whose content may be governed by
URL parameters. Uzilla stores pages and URL parameter
strings in separate database tables, allowing reporting at ei-
ther level. For example, this would allow one to isolate be-
havior for a product page template or for a specific product.

Although sequence analysis is a complex process, lim-
ited support for comparison of user paths with the optimal
is available in Uzilla. Optimal paths are simply a flagged
user test session. A visualization shows the deviation of
observed paths from optimal, thus informing on subopti-
mal behavior. Uzilla could be extended to include form
behavior in the optimality analysis and to allow the spec-
ification of multiple paths as optimal.

Case Study
An experimental study of left versus right navigation

was conducted at Clemson University in late 2002 involv-
ing two similar sites with either right or left navigation.
Uzilla was used to capture the behavior and survey the re-
sponses of 8 participants in a within-subjects design. The
experiment counterbalanced the two site designs with nav-
igation placement, and the protocol emulated a usability
test with users assigned a set of three information-finding
tasks with each site.

Uzilla’s iterative comparison facilities are based on
hereditary relationships in the task definition and were not
sufficient to generate all of the necessary comparisons.
However, the system was easily extended so as to pool the
equivalent experimental conditions and use the built-in re-
porting mechanisms. The data were then extracted for
analysis in a dedicated statistical analysis package.

Figure 3. The Uzilla page report detailing the timing of load events and the onset of
user activity for a particular page.

UZILLA INSTRUMENTED BROWSER AND DATA SERVER 197

Two of the tasks required an average of three page
views, whereas the third required twice as many. For brevity,
only a summary of the lengthier task will be presented.
The time on task and error measures revealed that the
mean time for the left navigation condition was 42 sec,
whereas the right hand navigation required 62 sec. The
measurement of mouse travel distance, referred to as
mouse miles, was used to measure the amount of work re-
quired by the participant in the different designs.

A comparison of the left with the right condition showed
only a small difference in pixel distance traveled but a
large difference in the ratio of horizontal to vertical travel,
with the users spending much more time in horizontal

mouse movement in the right-hand condition. Subjec-
tively, the users showed no preference for either naviga-
tion scheme.

Methods in Usability Measurement
Scientific understanding of usability testing is imma-

ture and inconclusive. Such issues as administrator relia-
bility, participant bias by an administrator, effects of dif-
ferent verbal protocol instructions, and many others are still
being researched and debated. The reader is encouraged to
read Dumas (2002) for a more detailed treatment of the
relevant research. NIST’s CIF format is an attempt to stan-
dardize both the usability process and the reporting of re-

354

356

362

588

578

578

0

0

0

131

36

44

168

182

182

0

0

0

Request

ContentLoad

Network End

0

DUD

0

R

0

0

instrument

ed browse

r<enter>

Unload

vstart

vend

vstart

vend

mousedown

mouseup

key

key

key

0px

0px

0px

0px

0px

0px

0px

0px

0px

0ms

160ms

16233ms

4045ms

4316ms

4887ms

5087ms

7480ms

7621ms

11035ms

12628ms

14190ms

16373ms

’na’

’na’

’na’

’na’

’NAME:q VALUE: ;NAMEf ;’

’NAME:q VALUE: ;NAMEf ;’

’NAME:q VALUE: ;NAMEf ;’

’NAME:q VALUE: ;NAMEf ;’

’NAME:q VALUE: ;NAMEf ;’

x y op op detail depth time Dompath

Figure 4. The event trace for a page showing load timing, mouse move-
ment vectors, keyboarding events, and the page unload.

Figure 5. The Uzilla.net analysis homepage groups data analysis functions by task, page, user, survey, and be-
haviors.

198 EDMONDS

sults. It provides a set of measurements that enable a us-
ability professional to determine a general measure of the
usability of a system. In this case, quantitative data is very
helpful. In formative evaluations, where a skilled admin-
istrator may vary the questioning of a participant accord-
ing to his or her individual experience with a system, quan-
titative measures, such as time on task, may be less useful.

Uzilla reports traditional measures of usability, as pro-
posed in the CIF, of task success, task time, and subjective
measures of satisfaction. An optimal path feature provides
the basis for measuring deviations in terms of time, num-
ber of page views, number of clicks, and mouse miles. A
related protocol for administrator scoring of user behavior
has recently been proposed by Faulkner (2002) as a method-
ology for improving the scoring process and increasing
the reliability of test-logging processes.

Quantitative measures collected in a robust and auto-
mated way, as with Uzilla, may also extend the use of
baseline and iterative usability evaluation. Dumas (2002)
examined the use of subjective surveys employed over the
course of a product’s development to chart progress to-
ward usability goals. Uzilla enables the comparison of
performance measures across product versions. This is es-
pecially critical in Web sites and applications, where
changes often occur much more rapidly due to volatile
content and the ease of updating a Web server.

Performance measures also serve well in competitive
evaluations in which designs are pitted against one an-
other. Such investigations are challenging due to the need
to test more participants. Uzilla’s automation may provide
the opportunity to empirically investigate alternate de-
signs by reducing the overall time required. Another com-
plication in competitive evaluations occurs when a com-
parison is desired between a site and an actual competitor
in the marketplace and it is impossible to use site instru-
mentation methods. Instrumenting the browser enables
testing of any site on the Internet.

The common practice of testing small numbers of users
(fewer than 10, typically) is generally regarded as suffi-
cient to reveal the key problems, with additional tests re-
sulting in diminishing returns (Virzi, 1992). Although this
result is not unequivocal (Dumas, 2002), there are addi-
tional motivations for testing more users beyond increas-
ing the percentage of problems revealed. Problem sever-
ity ratings are dependent on the skill of the tester, and
evaluating problems is an intuitive process. Through the
testing of additional participants, more reliable problem
frequency measures may be obtained. This is compatible
with the measure recommended by Rubin (1994), in which
expert estimations of severity are multiplied by the num-
ber of users who experienced the problem.

Remote usability testing. In remote usability testing,
participants are typically at their own workstations. In
some scenarios, a voice connection is made to a test ad-
ministrator; usability professionals have also reported
using screen-sharing programs to view a remote partici-
pant’s screen (Hammontree, Weiler, & Nayak, 1994).
Tullis, Fleischman, McNulty, Cianchette, and Bergel (2002)
compared two tests in lab and remote settings with sam-

ples of 8 lab users and 29 remote users in Experiment 1
and 8 and 88, respectively, in Experiment 2. With only
limited instrumentation, they discovered that both meth-
ods revealed the same core problems and resulted in sim-
ilar task time and success measures. Each protocol re-
vealed some problems that the other did not, with the lab
testing revealing more unique problems in Experiment 1,
given a sample that was five times larger in the remote
test, and with remote testing producing more unique prob-
lems in Experiment 2 with an 11 times larger sample size.

The technological solution used by Tullis et al. (2002)
did not allow them to circumvent browser security re-
strictions, preventing recording of the page paths and in-
trapage activity. Because of this, their comparison may
have underevaluated the potential of remote testing. The
problems that were uniquely identified were summarized
as, “We saw evidence of certain kinds of user behaviors in
the lab (e.g., excessive scrolling, failure to see certain el-
ements on the screen at first) that were less likely to be cap-
tured in the remote tests” (p. 5). Excessive scrolling is
recorded in Uzilla, and a failure to see a critical element
might be identified through mousing behavior.

Tullis et al.’s (2002) study suggests that remote testing
can be a fruitful way to do usability valuation and that the
potential for increased sample sizes can produce more ro-
bust results. Their results also suggest that comment data
is critical. Ebling and John (2000) analyzed the source of
usability problem identifications from quantitative versus
protocol data in a single usability test. Protocol data was
found to contribute uniquely and to the greatest extent to
problem identification, although quantitative measures
replicated Tullis et al.’s finding of a high detection rate for
major issues. Effective solicitation of user comments or
verbal protocol in remote testing is a key challenge for its
success.

Future extensions of Uzilla may add the capability to
record participant verbalizations and synchronize them
with the browser event stream. In its current form, com-
bining Uzilla with lab technology or telephony is the best
approach to capturing verbalizations. Uzilla does provide
a comment option for users to type free form impressions.
Participant note-taking is way to capture critical user pro-
tocol data. This is enabled in a related protocol, termed
desktop usability testing, in which a test administrator
brings the lab to the user with Uzilla. This preserves many
of the benefits in remote testing that lead to a greater num-
ber of participants and increases the external validity of
the situation by testing the user in his or her natural envi-
ronment.

Uzilla addresses remote and desktop testing through a
downloadable installer or auto-run CD that requires no in-
stallation process. The system does not address sampling
site approaches in which site visitors are recruited to par-
ticipate in a test protocol motivated with a gift certificate
or prize lottery. This practice is supported by a number of
vendors but is outside the scope of usability testing. A re-
lated nonusability test scenario is pilot-testing of alternate
designs on a selection of live Web site users. Posts on the
ACM CHI mailing list have reported that Google has used

UZILLA INSTRUMENTED BROWSER AND DATA SERVER 199

this technique, much to the chagrin of curious users hop-
ing to see the new version. These types of data collection
are likely to complement, but not replace, more traditional
usability testing protocols.

Instrumentation in Software for Usability
Instrumentation of software products for measuring us-

ability is a long-standing technique (Good, 1985). A key
critique of instrumentation systems has been the lack of
tools for analyzing the extensive accumulated data (Hilbert
& Redmiles, 2000). The use of a relational database with
a well-designed schema for the usability test data allows
extraction of statistics at different granularities. Structured
Query Language (SQL) operations include not only data
selection, but also aggregation operations, such as aver-
aging, computing standard deviations, and computing dif-
ferences. For instance, time on page may be computed in
the database layer by selecting a “time on page” variable
as end time minus start time from the page view table.
Thus, Uzilla provides critical summary statistics, such as
time on task, nonoptimal page views, and aggregations of
survey responses. A key design criterion was to match the
output requirements of the NIST (1999a) CIF.

Although the utility of low-level data, such as key-
presses and mouse vectors, has not generally been pro-
ductive in usability analysis, there are a number of appli-
cations in the Web space for which these data are likely to
provide important information. There is a continuum of
Web sites and applications from brochure-ware to data
entry systems, with the utility of low-level data increasing
as the site is used more frequently. In a call center Web-
based application, for example, every inefficiency in the
system is crucial. Forms in all types of sites are likely to
be improved through careful analysis of keystroke level
data, particularly given the critical importance forms play
in conducting e-commerce and connecting the customer
with a business.

Previously Implemented Systems
Hilbert and Redmiles (2000) have offered a complete

review of event-logging systems for extracting usability
information. The core observation techniques for the Web
are server logs, instrumented sites, proxies, and instru-
mented browsers. Although Web server log f iles may
record data that are useful for capturing Web behavior in
a usability test, the data are high level and are subject to
significant data loss through browser caching mecha-
nisms. Of particular note is the use of the back button to
return to the homepage from an errant first click. The sec-
ond visit to the homepage may not be recorded in the Web
server log, due to browser caching. This problem can be
addressed programmatically by parsing every session trail
and computing missing pages (Hong, Heer, Waterson, &
Landay, 2003); however, popular log file analysis systems
typically do not do this form of analysis.

A separate class of systems instrument a Web site with
code that records user activity. WebVIP (NIST, 1999b),
WET (Etgen & Cantor, 1999), and Lucidity (Edmonds,

2001) are noncommercial examples of such systems and
require that a site be instrumented with JavaScript in-
cludes.2 These systems enable accurate observation of
page views, independent of caching, but cannot log browser
UI events such as the back button and the entry or modi-
fication of http addresses in the address bar.

There are several browsers that log interface operations.
They include WebLogger (Reeder, Pirolli, & Card, 2001),
WebTracker (Choo, Detlor, & Turnbull, 2000a), and Ergo-
Browser (Ergosoft Laboratories, n.d.). These systems typ-
ically embed a Microsoft Web browser ActiveX control
inside a custom interface. In contrast, Uzilla uses the
Mozilla browser engine to enable logging of user activity
within the page, as well as browser level operations, such
as the back button.

Proxies intercept requests from a browser, providing the
opportunity to log the page requests and potentially aug-
ment the content with instrumentation. WebQuilt (Hong
& Landay, 2001) is a freely available system of this type.
Proxies enable the testing of sites that a tester may not have
the ability to instrument but require additional computing
resources and may encounter difficulty with JavaScript-
based navigation systems. Finally, all browsers store
bookmarks and history information in the file system, and
research has been conducted using solely these sources
(e.g., Cockburn & McKenzie, 2001). A promising area of
research is to study the way Web browsing is related to
history and bookmark data stores, an inquiry requiring ac-
cess to the browser internal data structures.

Although Uzilla’s data-logging facilities are on par with
previous efforts in this area, a key innovation is the addi-
tion of support for the design and running of usability tests
and an integrated application to help analyze the results.
The thick client, or browser-based, approach does not
offer the ability to sample Web site visitors in the field, as
with a site instrumentation approach, but the likelihood is
that individuals in this scenario would rarely consent to an
hour or longer process, as is typical in usability testing.
The payoff is complete control over the user environment,
browser preference settings, support for testing of any site
on the Internet, integrated support for the testing process,
and the ability to log operations outside of the Web page
but within the browser UI.

Related Work and Research Opportunities
Educational applications.Uzilla may be of use in

human–computer interaction instruction as a way to teach
the process of usability testing. The design application re-
moves legwork by minimizing material preparation time.
The system’s reporting makes task and page summaries
easy to obtain, freeing a test administrator from significant
data aggregation chores. The improved efficiency might
allow students to focus more on the important decisions
and less on the paper trail in usability test preparation.

Browser-based behavior. Much of the published
work on Web-browsing behavior has focused on multisite,
multisession browsing activity (Choo, Detlor, & Turnbull,
2000b). Catledge and Pitkow (1995), with an early browser

200 EDMONDS

instrumentation, found that 40% of all browser UI opera-
tions were back button clicks. In addition to facilitating
replication of previous studies, low-level data will help
characterize search on the page versus learned link seek-
ing. Browser instrumentation is a critical enabler of an un-
derstanding of site navigation triggers—for example,
bookmarks, search engines, and URL entry.

Although Uzilla is focused on protocols in which the user
is given a specific goal to accomplish, aggregated data
from numerous usability tests could provide additional in-
sight into general Web behavior. Normative statistics on
time to execute and error rate with common form ele-
ments could better inform site designers in making design
decisions.

Mousing behavior on the Web is largely unstudied. To
our knowledge, there is only one recent study of mousing
behavior (Lockerd & Mueller, 2001). Important observa-
tion opportunities include keyboard versus mouse naviga-
tion, activity during page views not in path to the eventual
exit, and trends in mouse positioning at page start and while
scrolling. Potentially, the effect of commonalities in site
designs will predict mouse positions and provide infor-
mation on optimal site design. This is also a particularly
fruitful area of investigation, since computational cogni-
tive models are beginning to address motor movement
(Byrne, 2001).

Browser instrumentation and development has led to
the understanding of revisitation patterns (Tauscher &
Greenberg, 1997) and the development of more robust
history and bookmarking facilities (Cockburn, Green-
berg, Jones, McKenzie, & Moyle, 2003). Other work uses
logging of page activity to infer user interest for personal-
ization (Claypool, Le, Waseda, & Brown, 2001). In addi-
tion to advancing the success and ease of deployment of
usability testing, instrumentation solutions may facilitate
additional insight into Web behavior. Significant work ex-
ists on the nature of Web browsing and searching (Choo,
Detlor, & Turnbull, 2000a) and the use of browser con-
trols (Cockburn & McKenzie, 2001).

Although Uzilla offers support for such investigations,
the Mozilla browser presents additional opportunities for
experimentation in browser UIs, agents for Web brows-
ing, and support for Web-based tasks. Customization is
possible with lighter weight tools than those required for
customizing Microsoft Internet Explorer, and the open
source nature of Mozilla means that a greater amount of
the browser’s functionality is customizable. This enables
the exploration of alternative browser interface designs,
as well as browsing adjuncts. These capabilities can be
augmented with Uzilla’s data-logging system to provide
built-in instrumentation.

The Mozilla codebase is also a robust platform for the
development of nonbrowser applications. The entire in-
terface of Mozilla is constructed in an HTML-like tagset
that includes richer controls than those available in HTML.
Trees, drag and drop, and data binding are notable features
of Mozilla as a platform, with the added benefit of Win-
dows, Macintosh, and Linux compatibility. Uzilla’s DOM-

based event identification would serve well in this sce-
nario, although depending on design, the page-based analy-
sis might not serve to identify system state as well as it
does in browsing tasks. The recent maturation of the XPath
(W3C, 1999) standard provides a longer term, standards-
based approach to identifying elements in a potentially
changing document.

REFERENCES

Byrne, M. D. (2001). A quantitative simulation framework for human
factors engineering: ACT–R/PM. Paper presented at Human. Systems
2001, Houston.

Catledge, L. D., & Pitkow, J. E. (1995). Characterizing browsing
strategies in the World-Wide Web. In Proceedings of the 3rd Interna-
tional World Wide Web Conference (pp. 1065-1073). Darmstadt, Ger-
many.

Choo, C., Detlor, D., & Turnbull, D. (2000a). Web work:Informa-
tion seeking and knowledge work on the World Wide Web. Dordrecht:
Kluwer.

Choo, C., Detlor, B., & Turnbull, D. (2000b). Working the Web: An
empirical model of Web use. In Proceedings of Hawaii International
Conference on Systems Science 33. Maui, HI: IEEE.

Claypool, M., Le, P., Waseda, M., & Brown, D. (2001). Implicit in-
terest indicators. In Proceedings of ACM Intelligent User Interfaces
Conference (IUI) (pp. 33-40). New York: ACM Press.

Cockburn, A., Greenberg, S., Jones, S., McKenzie, B., & Moyle,M.
(2003). Improving Web page revisitation: Analysis, design, and evalu-
ation. Information Technology & Society, 3, 159-183.

Cockburn, A., & McKenzie, B. (2001). What do Web users do? An em-
pirical analysis of Web use. International Journal of Human–
Computer Studies, 54, 903-922.

Dumas, J. (2002). User-based evaluations. In J. Jacko & A. Sears (Eds.),
The human–computer interaction handbook(pp. 1093-1117). NJ: Erl-
baum.

Ebling, M. R., & John, B. E. (2000). On the contributions of different
empirical data in usability testing. In Conference proceedings on de-
signing interactive systems (pp. 289-296). New York: ACM Press.

Edmonds, A. (2001). Lucidity. Retrieved March 3, 2003 from http://
sourceforge.net/projects/lucidity/.

Ergosoft Laboratories (n.d.). ErgoBrowser. Retrieved March 3, 2002
from http://www.ergolabs.com/resources.htm.

Etgen, M., & Cantor, J. (1999). What does getting WET (Web event-
logging tool) mean for Web usability? In Fifth Human Factors and the
Web Conference Proceedings. Retrieved March 3, 2002 from http://zing.
ncsl.nist.gov/hfweb/proceedings/etgen-cantor/.

Faulkner, L. L. (2002). Quantifying and analyzing human behavior
during usability testing: Cross user analysis and the optimal path test
method. Manuscript submitted for publication.

Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N., &
Wichansky, A. M. (2002). Eye tracking in Web search tasks: Design
implications. In Proceedings of the Eye Tracking Research and Ap-
plications Symposium (ETRA) (pp. 51-58). New York: ACM Press.

Good, M. (1985). The use of logging data in the design of a new text ed-
itor. In Proceedings of CHI ‘85 Human Factors in Computing Systems
(pp. 93-97). New York: ACM Press. New York.

Hammontree, M., Weiler, P., & Nayak, M. (1994). Remote usability
testing. Interact, 1, 21-24.

Hilbert, D., & Redmiles, D. (2000). Extracting usability information
from user interface events. ACM Computing Surveys, 32, 384-421.

Hong, J. I., Heer, J., Waterson, S., & Landay, J. A. (2003). WebQuilt:
A proxy-based approach to remote Web usability testing. ACM Trans-
actions on Information Systems, 19, 263-285.

Hong, J. I., & Landay, J. A. (2001). WebQuilt: A framework for cap-
turing and visualizing the Web experience. In Proceedings of the Tenth
International World Wide Web Conference (WWW10) (pp. 718-724).
Hong Kong: Retrieved March 3, 2002 from http://www10.org/cdrom/.

Lockerd, A., & Mueller, F. (2001). Cheese: Tracking mouse move-
ments on Websites: A tool for user modeling. In Computer Human In-

http://sourceforge.net/projects/lucidity/
http://sourceforge.net/projects/lucidity/
http://www.ergolabs.com/resources.htm
http://zing.ncsl.nist.gov/hfweb/proceedings/etgen-cantor/
http://zing.ncsl.nist.gov/hfweb/proceedings/etgen-cantor/
http://www10.org/cdrom/

UZILLA INSTRUMENTED BROWSER AND DATA SERVER 201

teraction Conference Proceedings (pp. 279-280). New York: ACM
Press.

NIST (1999a). The IUSR project: Industry usability report. Retrieved
March 3, 2002 from http://zing.ncsl.nist.gov/iusr/documents/White
Paper.html.

NIST (1999b). WebVIP: Overview . Retrieved March 3, 2002 from
http://zing.ncsl.nist.gov/WebTools/WebVIP/overview.html.

Optimoz (2002). CVS tag 0.3.4. Retrieved March 3, 2002 from http://
optimoz.mozdev.org/gestures/.

Reeder, R. W., Pirolli, P., & Card, S. K. (2001). WebLogger: A data
collection tool for Web-use studies (UIR Technical Reports UIR-R-
2000-6). Xerox PARC.

Rubin, J. (1994). Handbook of usability testing. New York: Wiley.
Tauscher, L. & Greenberg, S. (1997). How people revisit Web pages:

Empirical findings and implications for the design of history systems.
International Journal of Human–Computer Studies, 47, 97-137.

Tullis, T., Fleischman, S., McNulty, M., Cianchette, C., &
Bergel, M. (2002). An empirical comparison of lab and remote us-

ability testing of Web sites. Paper presented at the Usability Profes-
sionals Conference, Orlando, FL.

Virzi, R. A. (1992). Refining the test phase of usability evaluation: How
many subjects is enough? Human Factors, 34, 457-468.

W3C (1999). XPath. Retrieved March 03, 2003 from http://www.w3.
org/TR/xpath.

NOTES

1. Accuracy is limited by PC keyboard refresh and variance in the syn-
chronization of presentation technology and screen refresh.

2. JavaScript includes circumvent the page-caching issue by adding an
additional http transaction for every page load.

(Manuscript received November 22, 2002;
revision accepted for publication March 1, 2003.)

http://zing.ncsl.nist.gov/iusr/documents/WhitePaper.html
http://zing.ncsl.nist.gov/iusr/documents/WhitePaper.html
http://zing.ncsl.nist.gov/WebTools/WebVIP/overview.html
http://optimoz.mozdev.org/gestures/
http://optimoz.mozdev.org/gestures/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

