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Abstract

A general mathematical formulation of the n × n proper Orthogonal matrix, that cor-
responds to a rigid rotation in n-dimensional real Euclidean space, is given here. It is
shown that a rigid rotation depends on an angle (principal angle) and on a set of (n−2)
principal axes. The latter, however, can be more conveniently replaced by only 2 Or-
thogonal directions that identify the plane of rotation. The inverse problem, that is, how
to compute these principal rotation parameters from the rotation matrix, is also treated.
In this paper, the Euler Theorem is extended to rotations in n-dimensional spaces by a
constructive proof that establishes the relationship between orientation of the displaced
Orthogonal axes in n dimensions and a minimum sequence of rigid rotations. This
fundamental relationship, which introduces a new decomposition for proper Orthogonal
matrices (those identifying an orientation), can be expressed either by a product or a sum
of the same rotation matrices. A similar decomposition in terms of the Skew-Symmetric
matrices is also given. The extension of the rigid rotation formulation to n-dimensional
complex Euclidean spaces, is also provided. Finally, we introduce the Ortho-Skew real
matrices, which are simultaneously proper Orthogonal and Skew-Symmetric and which
exist in even dimensional spaces only, and the Ortho-Skew-Hermitian complex matri-
ces which are Orthogonal and Skew-Hermitian. The Ortho-Skew and the Ortho-Skew-
Hermitian matrices represent the extension of the scalar imaginary to the matrix field.
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Introduction

The position of a point in the n-dimensional (n-D) space is defined by an n-long vector
whose elements are the coordinates of the point with respect to a reference system of
coordinates. Rigid translation is, therefore, simply described by means of a difference
between two positions, because rigid translation is a phenomenon which is linear with
the position.

The orientation in the n-D space is defined in a non-singular fashion by an n × n
proper Orthogonal matrix C (orientation matrix) containing, as row vectors, the unit-
vectors ĉi (i = 1, . . . , n) identifying the directions of the reference frame axes. Rigid
rotation, however, cannot be described by means of a difference between two orientation
matrices, because rigid rotation is not a phenomenon which is linear with the orientation.
Orientation, however, can also be described by Skew-Symmetric matrix Q [1] and the
Symmetric Cayley Transforms [2, 3] that relate C to Q.

Prior to the detailed developments, let us introduce a heuristic discussion to provide
some qualitative insight and motivation for the mathematical discussions that follow.
Imagine a 1-D being, living in a 1-D universe, clearly, the rotation concept has no
meaning. This being would probably think “Things can go forward or backward only!
What does rotation mean?”. Therefore, in a hypothetical discussion with a 2-D being,
living in a 2-D universe, the latter would probably say “You cannot understand the
rotation concept because you need at least two dimensions ... your universe is too small
to see that rotation can be performed about a point!”. “Rotation about a point?” may
ask a 3-D human being living in our 3-D universe, “Rigid rotations are performed about
an axis! You live in a too small universe to understand this and, therefore, you can’t
see that your point of rotation is only the intersection of your flat universe with an axis
perpendicular to it, namely the rotation axis!”.

Thus, moving from an n-D to an (n + 1)-D space, not only are new kind of motions
introduced, but also the same physical phenomenon may appear as being ruled by dif-
ferent laws. This short story has the purpose to warn us that, if we proceed with the
rigid rotation concept in a four (or higher) dimensional spaces, most likely, we should
be prepared for the truth, the rigid rotational motion is not accomplished by rotating
about a single axis in higher dimensional spaces. As we establish in this paper, the rigid
rotation being performed about a single axis is limited only to the 3-D space. In fact,
when n = 2 the rotation figure is a point, a 0-D figure; when n = 3 the figure becomes a
1-D figure (an axis). Therefore, this qualitative thinking suggests that in the n-D space,
if the hypothesis of a linear rule holds (linear hypothesis), then the figure of rotation
would be (n− 2)-dimensional. This would mean that in the 4-D space, for instance, the
rigid rotation is such that a point would rotate by describing a cone about a plane ...
an infinite plane! What does this mean? Is it possible that a point in a four dimensional
space can move such that it describes a cone about any axis that lies on a plane?

This paper, not only demonstrates that the answer to this question is “yes”, but also
provides the general mathematical operator that accomplishes such rigid rotations in any
dimensional space. In the course of these developments, we introduce the mathematical
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relationship between orientation and rigid rotation concepts, two concepts that coincide
in 2-D and 3-D spaces, only. The general relationship, is nothing but the complete
extension to the n-D space of Euler’s Theorem. Reference [4] contains the original
Eulerian formulation as the n = 3 special case. The generalization is mathematically
established by introducing three new matrix decompositions: two for proper Orthogonal
matrices and one for Skew-Symmetric matrices. Finally, this paper investigates the
common edge between Orthogonal and Skew-Symmetric matrices, and further introduces
the set of the Ortho-Skew and the Ortho-Skew-Hermitian matrices, =e and =o, which
represent the analogous extension to the matrix field of the imaginary unit i =

√−1. It
is shown, for example, that they satisfy the Euler and the Moivre formulae.

Several important studies have been carried out to analyze dynamics in spaces of
dimension higher than three. These developments are motivated by practical needs of
nuclear and sub-nuclear physics, as well as cosmology. However, all these dynamical the-
ories, such as the restricted relativity (4-D space, which uses the Lorentz transformations
to rotate [5]), the projective relativity (5-D space, [6]), and the conformal relativity (6-D
space, [7]), all include a corresponding mathematical tool to describe the time-varying
orientation in n-D.

From a mathematical point of view, a fundamental aspect of the orientation is described
by the Cayley Trasforms, and several new insights that came out later, as embedded
in the Group Theories [5, 8, 9, 10] especially the Orthogonal Special Group SO(n) and
the Lie Group. Other physics studies (as in [11, 12, 13]) have contributed closed form
expressions for orientation useful in modern relativity theories. Finally, even in recent
research, as for instance in [14, 15], attention is still focused on orientation and not
on rigid rotation. Due to the Euler Theorem, which for the n = 3 case establishes
the equivalence of orientation and rotation, a natural confusion has resulted, and many
individuals do not appreciate the distinct nature of Orientation (General Rotation in
the Group Theory) and Rotation concepts. For these reasons, the terminology adopted
in this study does not follow that of the Group Theory. Moreover, the references to
Grassmann Algebra is here minimized in order to be directly understood even by readers
who do not have any knowledge of Exterior Algebra and Differential Forms [9, 10].

Since the rigid rotation concept is strictly related to the concept of the n-D vector
cross-product, as presented and used in [17], the first-and-next section re-introduces its
definition and emphasizes some of its properties that will be extensively used in this
paper.

n-Dimensional Vector Cross-Product

Reference [16] has presented a new technique to estimate optimally the spacecraft at-
titude. This led the development of a new nonsingular and general method [17] to
compute the eigenvectors of any matrix. This is accomplished by extending the 3 × 3
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Skew-Symmetric matrix ṽ ‡

ṽ =




0 −v(3) +v(2)
+v(3) 0 −v(1)
−v(2) +v(1) 0


 (1)

which performs the vector cross product in 3-D space, to any n-D space. The n × n
Skew-Symmetric matrix Ṽ , which generalizes ṽ in the n-D space, is built using (n− 2)
vectors vk, k = 1, . . . , (n− 2), that can be arranged to form the n× (n− 2) matrix

V = [v1
... v2

... · · · ... vn−2].

The elements of the Skew-Symmetric matrix Ṽ are computed as follows
{

Ṽ (i, j) = (−1)i+jdet[V (ij)] = −Ṽ (j, i) for 1 ≤ i < j ≤ n

Ṽ (i, i) = 0 for 1 ≤ i ≤ n
(2)

where the (n − 2) × (n − 2) square matrix V (ij) is the matrix obtained by deleting the
ith and the jth rows from the matrix V . Let vn−1 be any n-long non-zero vector such
that V Tvn−1 6= 0(n−2),n, then matrix Ṽ is such that the product Ṽ vn−1 = vn, which
represents the extension to n-D space of the vector cross product, outputs a vector
vn which is a null vector of matrix V T and Orthogonal to the vector vn−1, that is,

[V
... vn−1]

Tvn = 0(n−1),n, where [V
... vn−1] denotes the n× (n− 1) matrix formed with

V and vn−1.

Note that the formulation provided by equation (2) can also be seen as an exterior
product (see [9, 10] for its definition in the Grassman algebra) which uses the Levi-Civita
tensor εk1,k2,···, kn . In an Orthogonal n-D space the components of the Levi-Civita tensor
are zero if at least two indices are equal and ±1 if all the n indices are distinct. In
particular εk1,k2,...,kn = +1 if the index sequence (k1, k2, . . . , kn) is an even permutation
of (1, 2, . . . , n), and εk1,k2,...,kn = −1, otherwise. For instance, in an 4-D space and in
tensor notation, we write the following three exterior products§





Gi,j = εi,j,k,` vk v` (matrix that coincides with our Ṽ )
Gi = εi,j,k,` vj vk v` (vector called the vector product)
G = εi,j,k,` vi vj vk v` (scalar called the mixed product or determinant)

(3)

Let us examine some of the properties of the n × n Skew-Symmetric matrix given by
equation (2), when the (n − 2) vectors vi are unit vectors and mutually Orthogonal.

Let C = [ ĉ1
... ĉ2

... · · · ... ĉn ] be an n × n proper Orthogonal matrix [CTC = In, and
det(C) = +1] which we decompose as

C = [ A
... P ] where:





A = [ â1
... â2

... · · · ... ân−2 ] ≡ [ ĉ1
... ĉ2

... · · · ... ĉn−2 ]

P = [ p̂1
... p̂2 ] ≡ [ ĉn−1

... ĉn ]
(4)

‡In some texts, as in [15], ṽ is indicated by [v×] or −[[v]].

§Where sums are performed over repeated indices.
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Hence ATA = In−2, P TP = I2, and ATP = 0(n−2),2. From this equations and CCT = In

it follows that
AAT + PP T = In (5)

We construct the n×n Skew-Symmetric matrix Ã from A according to equation (2). It
follows that ÃA = 0n,(n−2) and the relationship

Ã P = Ã [p̂1
... p̂2] = [p̂2

... − p̂1] = P J2, (6)

where J2 =

[
0 −1
1 0

]
is the 2 × 2 symplectic matrix (J2J

T
2 = I2, J2J2 = −I2).

Premultiplying equation (6) by Ã and postmultiplying by P T we obtain ÃÃPP T =
ÃPJ2P

T = PJ2J2P
T = −PP T that, together equation (5), implies (ÃÃ + In)PP T =

(ÃÃ + In)(In − AAT) = 0n, which, finally, leads to the relationship

ÃÃ + In = AAT, (7)

that will be used later.

The n×n Skew-Symmetric matrix Ã and the Symmetric matrix AAT are both invariant
with respect to the Orthogonal transformation

B = AH (8)

where H is an (n − 2) × (n − 2) Orthogonal matrix (HHT = In−2). The matrix H
transforms the (n− 2) mutually Orthogonal unit vectors â1, â2, . . . , ân−2, into another
set of (n − 2) Orthogonal unit vectors spanning the same subspace. Therefore, the
Symmetric matrix

AAT = BBT

depends only on the subspace spanned by these (n−2) vectors and, not on the choice of
orthonormal basis spanning that space. We note also from equation (5) that AAT can
depend only on ân−1 and ân, which are the columns of P . This implies that matrix AAT

can be built using any set of (n− 2) unit-vectors Orthogonal to the plane identified by
the two directions, p̂1 and p̂2, of matrix P . If AAT = BBT, then equation (7) implies

ÃÃ = B̃B̃ (9)

Therefore, ÃÃ is also independent of Orthogonal transformations performed in the null
space of matrix P and defined by equation (8). Equation (7) allows us to write ÃÃÃ =
−Ã while equation (9) allows us to write B̃ÃÃ = B̃B̃B̃ = −B̃. Subtracting these two
equations we obtain (Ã − B̃)(ÃÃ + In) = (Ã − B̃)AAT = 0n that must hold for any A
and B matrices. This implies that

Ã = B̃ (10)

which completes the demonstration of the independence of Ã from the Orthogonal trans-
formations defined in equation (8).
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Equations (5) and (7) imply ÃÃ = −PP T which demonstrates that the matrix Ã could
be constructed using P instead of A and, therefore, using 2 vectors instead of (n − 2).
Without demonstration, this is accomplished by the relationship

{
Ã(i, j) = det[P(ji)] = −Ã(j, i) for 1 ≤ i < j ≤ n

Ã(i, i) = 0 for 1 ≤ i ≤ n
(11)

where the 2 × 2 matrix P(ji) is the matrix obtained by taking only the jth and the ith

rows from the n × 2 matrix P . We highlight here that the matrix Ã, constructed by
equation (11) implies the evaluation of n(n−1)/2 determinants of 2×2 matrices, while,
using equation (2), the computation of n(n − 1)/2 determinants of (n − 2) × (n − 2)
matrices, is required. Therefore, Ã can be built more conveniently using equation (11)
instead of equation (2), when n > 4, while for n = 4, equations (2) and (11) require the
same computational loads. Finally, note that in equation (11) the sign terms (−1)i+j,
which appear in equation (2) and which represent the elements of the Levi-Civita tensor,
disappear.

However, the use of the equation (2) or equation (11) can be completely avoided since
equation (6) can be written in the important simple expression

Ã = P J2 P T (12)

Equation (12) can be demonstrated by post-mupltiplying equation (6) by P T and using
the property AAT + PP T = In, obtaining ÃPP T = Ã (In − AAT) = Ã = P J2 P T. Note

that equation (6) states that the complex unit vectors

√
2

2
(p̂1± ip̂2) are the eigenvectors

of Ã associated with the eigenvalues λ = ∓i. Since ÃA = 0n,(n−2), then the other (n−2)
eigenvectors are the columns of A, all associated with λ = 0.

Equation (12) also represents the matrix expression of the “2-form” (see [9, 10]), or
the exterior product of two vectors (1-form) which, with the notation of Grassmann
Algebra, can be writen as

Ã = [ p̂1 ∧ p̂2 ] = P J2 P T (13)

Rotation Matrix in the n-D space

Let us accept the “linear hypothesis”, that is, the fact that in the n-D space, the rigid
rotation is performed about an (n−2)-D subspace. This implies that the rotation matrix
R has to satisfy the (n− 2) relationships

R âk = âk (14)

(k = 1, ..., n − 2) associated with (n − 2) Orthogonal eigenvectors âk,
¶ all associated

with the eigenvalue λ = +1. In analogy with the well known 3-D case, the remaining
two eigenvalues are complex and they identify the plane of rotation, while the associated
eigenvalues identify the angle of rotation. Therefore, we can write

R

√
2

2
(p̂1 ± ip̂2) = (cos Φ∓ i sin Φ)

√
2

2
(p̂1 ± ip̂2) (15)

¶Which identify the (n− 2)-D subspace of rotation.

6



Matrix R can be expressed in terms of eigenvalues and eigenvectors as R =
n∑

k=1

λkwkw
†
k,

therefore

R =
n−2∑

k=1

âkâ
T

k +
1

2
(cos Φ− i sin Φ)(p̂1 + ip̂2)(p̂

T

1 − ip̂T

2 ) +

+
1

2
(cos Φ + i sin Φ)(p̂1 − ip̂2)(p̂

T

1 + ip̂T

2 )

(16)

which can be written as (A = [ â1
... â2

... · · · ... ân−2 ])

R = AAT + (p̂1p̂
T
1 + p̂2p̂

T
2 ) cos Φ + (p̂2p̂

T
1 − p̂1p̂

T
2 ) sin Φ =

= AAT + PP T cos Φ + PJ2P
T sin Φ

(17)

and, using equation (5), finally we obtain the searched expression

R(P, Φ) = In + (cos Φ− 1)PP T + PJ2P
T sin Φ (18)

which represents, as it will demonstrated in the next section, the closed form expression
of the n×n Orthogonal matrix performing the rigid rotation in the n-D space. Equation
(12) allows us to write

R(P, Φ) = In + PP T (cos Φ− 1) + Ã(P ) sin Φ (19)

and, using equation (7) and equation (9), R(P, Φ) can also be given as R(A, Φ), by the
following two expressions

{
R(A, Φ) = In + ÃÃ(1− cos Φ) + Ã sin Φ

R(A, Φ) = In cos Φ + AAT(1− cos Φ) + Ã sin Φ
(20)

where the first equation explicitly shows the close connection between the n-D vector
cross-product and the rigid rotation matrices, while the second form is the most familiar
with the known formula for the 3-D space.

The proof that R(P, Φ) performs a rigid rotation in n-D is given in the next section.

Proof That R(A, Φ) Performs a Rigid Rotation

Considering the properties ATA = In−2, ÃA = 0n,(n−2), and equation (7), the demon-
stration that the R matrix is Orthogonal, that is, RRT = In, is immediate.

The demonstration that R performs a rigid rotation is accomplished by the two fol-
lowing steps: first, it is demonstrated the rotation, that is, that any vector v describes
a cone about the subspace identified by the (n − 2) principal axes âk, and second, it
is demonstrated the rigidity of the motion, that is, that the distance between any two
vectors v and w, does not change during the rotation.

The rotation is mathematically described by the equation âT
kv = âT

kRv, which can be
written as âT

k(In −R)v = 0, that must hold for any of the (n− 2) directions âk and for
any value of Φ. Substituting the first expression for R given in equation (20), and using
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the property âT
kÃ = 01,n, the rotation (about any of the âk and for any value of Φ) is

demonstrated. This allows us to write
(

n−2∑

k=1

ckâ
T

k

)
v =

(
n−2∑

k=1

ckâ
T

k

)
Rv =

(
n−2∑

k=1

ckâ
T

k

)
v(Φ) (21)

where the ck coefficients can take any values, which completes the demonstration. Equa-
tion (21) implies a vector v coning about an (n−2)-D subspace. For example, this result
tells us that in the 4-D space the matrix R is such that any vector v describes a cone
about the plane, the infinite plane, identified by the two principal axes â1 and â2. In the
n-D space, the vector v describes (n− 2) arcs of cones about (n− 2) Orthogonal direc-
tions and, based on equation (21), about any other direction belonging to the subspace
defined by these directions.

The rigidity is easily demonstrated since any Orthogonal transformation preserves the
lengths, vTw = vTRTRw = vTw. Thus the distance between v and w does not change
during rotation. This completes the demonstration that R performs a rigid rotation.

Finally, the invariance of matrix Ã, from the Orthogonal transformations B = AH
[see equation (8)], also demonstrates that R(A, Φ) = R(B, Φ). Therefore, the rotation
matrix R does not change if the principal axes are re-oriented in the subspace defined
by the principal axes themselves. This results comes out because the null space of A
coincides with the null space of B and, this null space is nothing else that the plane
of rotation, identified by the n × 2 matrix P . Therefore, this plane of rotation is what
characterize the rigid rotation. In fact, we rotate on a plane in any dimensional space.
Hence, the plane of rotation is the invariant with respect to the dimensional space, which
demonstrates that the rigid rotation is planar in nature.

Inverse Problem

The inverse problem, that is, how to compute the (n− 2) principal axes âk defined by A
(or the principal plane defined by P ) and the principal angle Φ associated with a given
rotation matrix R(A, Φ) = R(P, Φ) can completely be solved by the eigenanalysis of the
matrix R by using equation (14) and equation (15). However, when only the principal
angle Φ is required, the complete eigenanalysis of R is unnecessary. In fact, since the
mathematical operator trace is an invariant with respect to similarity transformations,

it is possible to write that tr[R] =
n∑

i=1

λi = (n− 2) + 2 cos Φ and, therefore,

cos Φ =
tr[R] + 2− n

2
(22)

which allows the computation of the principal angle Φ directly from the matrix R.

Properties of Orthogonal Rotations

Let Rk(Pk, Φk) be a set of m matrices (k = 1, . . . ,m), built with m Orthogonal principal
planes of rotation Pk. In the 3-D space two Orthogonal planes passing through the origin
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will always share a line, while in higher dimensional spaces it is possible that they share
only the point of the origin of the coordinates. For instance, in a 4-D space defined by
the coordinates x, y, z, and w, the planes (x = 0, y = 0) and (z = 0, w = 0) have only
the origin in common. We use here the word Orthogonal with this meaning. Associated
with any two Orthogonal principal planes of rotation, Pi and Pj

P T

i Pj = 02,

and using the expression for the rotation matrix provided by equation (18), it is easy to
see that (Ri − In)(Rj − In) = 0n, (i, j = 1, . . . , m, and i 6= j), which implies

RiRj = Ri + Rj − In. (23)

which demonstrates that the set of the matrices built with Orthogonal planes of rotation
constitutes an Abelian Group, since RiRj = RjRi.

The Orthogonal property of equation (23) can easily be generalized to the product of
m matrices Rk(Pk, Φk) built with Orthogonal planes of rotation Pk to obtain

m∏

k=1

Rk(Pk, Φk) =
m∑

k=1

Rk(Pk, Φk)− (m− 1) In (24)

This equation contains the very unusual property that the product among a set of m
Orthogonal rotation matrices can be expressed by their sum! As a consequence of this,
then the order of the matrix product is not important! It is unusual, in fact, to see that
subsequent rotations, which is described by the product of rotation matrices - a typically
non linear phenomenon - becomes here linear!

FIG. 1. Rigid rotation in 5-D space FIG. 2. Coning in 5-D

Figure 1 shows, for a 5-D space, the rotation of two random directions v̂ and ŵ by
a matrix performing the rigid rotation about three random principal axes (â1, â2, and
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â3) and by a principal angle varying from 0 to 360◦. This figure shows that the distance
v̂Tŵ, as well as the distances v̂Tâk and ŵTâk (k = 1, 2, 3), are all constant during the
rotation. This means, as stated before, that the directions v̂ and ŵ describe a cone

about the (n − 2)-D subspace defined by A = [â1
... â2

... â3] or, equivalently, about the

null space of P = [p̂1
... p̂2]. The angle between the initial positions, v̂0 and ŵ0, with the

positions associated with the angle Φ, that is, v̂Φ = Rv̂0 and ŵΦ = Rŵ0 has a cone-type
typical behavior.

By bending the axes, Figure 2 artistically provides a “way to see” the geometry of
coning about the subspace identified by the three Orthogonal axes â1, â2, and â3.

Orientation Matrices

An orientation matrix C is an n × n proper [det(C)=+1] Orthogonal (CCT = In) ma-
trix. The rows of C describe the directions (the axes) of the oriented frame with respect
to another frame of reference whose orientation is described by the unity matrix In.
In general, an orientation matrix has np complex conjugate eigenvalue pairs λ

(∓)
k =

cos Φk ∓ i sin Φk, (k = 1, . . . , np), and na = n− 2np eigenvalues λk = 1, (k = 1, . . . , na).

Associated with the np complex eigenvalues there are np eigenvectors

[√
2

2
(p̂

(k)
1 ± ip̂

(k)
2 )

]

which identify np proper planes Pk = [p̂
(k)
1

... p̂
(k)
2 ], while associated with the na real

eigenvalues there are na eigenvectors âk describing na proper axes. Therefore, the eige-
nanalysis of an orientation matrix can be expressed as





C

√
2

2
(p̂

(k)
1 ± ip̂

(k)
2 ) = (cos Φk ± i sin Φk)

√
2

2
(p̂

(k)
1 ± ip̂

(k)
2 ) (k = 1, . . . , np)

C âk = âk (k = 1, . . . , na)
(25)

As it is well known, the orientation can be expressed by a Skew-Symmetric matrix Q,
associated to C by the Cayley Transforms‖ (Cayley Conformal Mapping), which consist
of the relationships

C =

{
= (In −Q)(In + Q)−1

= (In + Q)−1(In −Q)
and Q =

{
= (In − C)(In + C)−1

= (In + C)−1(In − C)
(26)

called forward and inverse transformations, respectively. The matrices C and Q, satis-
fying equation (26), have the same eigenvector matrix. In fact, let W be the eigenvector
matrix of C, and ΛC and ΛQ the eigenvalue matrices of C and Q, respectively. Since
C is Orthogonal then W is Orthogonal too, then WW † = In and C = WΛW †. Now,
applying the inverse transformation we have

Q = (In − C)(In + C)−1 = (WInW
† −WΛCW †)(WInW

† + WΛCW †)−1 =
= [W (In − ΛC)W †][W (In + ΛC)W †]−1 = W (In − ΛC)(In + ΛC)−1W † = WΛQW †

‖The sign adopted here is such that in 3-D the orientation matrix C coincide with a matrix performing
the rigid rotation about the principal axis by the principal angle, while usually, the coincidence with
the transpose is adopted.
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which demonstrates that: 1) C and Q have the same eigenvector matrix, and 2) that
their eigenvalues are related by the bilinear transformation

λ(C) =
1− λ(Q)

1 + λ(Q)
⇐⇒ λ(Q) =

1− λ(C)

1 + λ(C)

These equations imply the eigenvalue associations

λ(C) = cos Φ± i sin Φ ⇐⇒ λ(Q) = ∓i tan
(

Φ

2

)

Actually, Cayley Transforms are nothing else than a bilinear transformation between
real matrices.

The eigenanalysis of the Skew-Symmetric orientation matrix Q can, therefore, be writ-
ten as





Q

√
2

2
(p̂

(k)
1 ± ip̂

(k)
2 ) = ∓i tan

(
Φk

2

) √
2

2
(p̂

(k)
1 ± ip̂

(k)
2 ) (k = 1, . . . , np)

Q âk = 0 (k = 1, . . . , na)
(27)

The important difference between C and Q consists in the fact that Q may become

singular, which occurs when one (or more) of its eigenvalues λ
(Q)
k = ∓i tan

(
Φk

2

)
becomes

infinite.

The eigenanalysis of equations (25) and (27) allows us to provide an expression of C
and Q in terms of their eigenvalues and eigenvectors





C =
n∑

k=1

λ
(C)
k ŵkŵ

†
k =

na∑

k=1

âkâ
T

k +
np∑

k=1

Pk(I2 cos Φk + J2 sin Φk) P T

k

Q =
n∑

k=1

λ
(Q)
k ŵkŵ

†
k =

np∑

k=1

PkJ2P
T

k tan
(

Φk

2

)
=

np∑

k=1

Ãk(Pk) tan
(

Φk

2

) (28)

Equation (18) allows us to write
np∑

k=1

Pk(I2 cos Φk + J2 sin Φk) P T

k =
np∑

k=1

Rk(Pk, Φk) −

np In +
np∑

k=1

PkP
T

k and, since
np∑

k=1

PkP
T

k +
na∑

k=1

âkâ
T

k = In, we obtain





C =
np∑

k=1

Rk(Pk, Φk)− (np − 1) In

Q =
np∑

k=1

Sk(Pk, Φk)

(29)

where the matrices




Rk(Pk, Φk) = In + (cos Φk − 1)PkP
T
k + PkJ2P

T
k sin Φk

Sk(Pk, Φk) = PkJ2P
T
k tan

(
Φk

2

) (30)
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represents the n × n Skew-Symmetric rotation matrix associated with the Orthogonal
rotation matrix Rk(Pk, Φk). Matrices Sk(Pk, Φk) have one pure imaginary eigenvalue pair

λ
(Q)
k = ∓i tan

(
Φk

2

)
and a set of (n− 2) eigenvalues λ = 0. Equation (29) demonstrates

that the general rotation, as the planar rotation, depends on the parameters associated
with its complex eigenvalues/eigenvectors only. Finally, equation (29) allows us to extend
the Euler’s Theorem to any n-D space.

The relationships between Rk(Pk, Φk) and Sk(Pk, Φk) are the classic Cayley Transforms

Rk =

{
= (In − Sk)(In + Sk)

−1

= (In + Sk)
−1(In − Sk)

Sk =

{
= (In −Rk)(In + Rk)

−1

= (In + Rk)
−1(In −Rk)

(31)

which remember that C stands to Q (for general rotation) as Rk stands to Sk (for planar
rotation), and the exponential relationships

Rk = e[Φk/ tan(Φk/2)] Sk ⇐⇒ Sk =
tan(Φk/2)

Φk

ln(Rk) (32)

Extension to the n-D Spaces of the Euler’s Theorem

Equation (29) tells us that the Euler’s Theorem (any orientation can be achieved by only
one rigid rotation∗∗) is a property that holds in the 2-D and 3-D spaces, only, because
np = 1. However, this coincidence between geometrical displacement (orientation) and
rigid rotation operator (matrix) has also caused the use of orientation and rigid rotation
expressions, without any distinction. These two concepts start differing from one another
in dimensional spaces greater than three.

Several publications exist which claim to extend the Euler’s Theorem to n-D spaces
(see, for instance, [14]), however, most of them actually generalize the dynamics in
the n-D spaces by providing the expression of the angular velocity. Unfortunately, the
dynamics problem deal with the orientation of a proper reference frame as a function of
time. On the contrary, Euler’s Theorem is a geometrical property and, therefore, it can
be considered as a static problem. Even in Group Theory, the so called rotation group
actually identify the orientation group of which the set of the rigid rotation matrices is
only a subset. For all these reasons, the confusion between the concepts of orientation
and rigid rotation still holds.

As already stated, the n-D rigid rotation is performed about an (n − 2)-D figure
identified by the space spanned by the A matrix. This figure has two perpendicular
Orthogonal directions which identify the plane of rotation (matrix P ). Therefore, any
direction belonging to the space spanned by A is not affected by the rotation itself. This
implies that only two Orthogonal directions (axes of the reference frame) can be taken

∗∗In Ref. [4], the original latin presentation states that “Quomodocunque sphaera circa centrum
suum conuertatur, semper assignari potest diameter, cuius directio in situ translato conueniat cum situ
initiali.”
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to the final orientation at each subsequent rotation. Therefore, in the most common
case that there is no axis already at its final position, a number of

⌊
n

2

⌋
=

{
= (n− 1)/2 if n is odd
= n/2 if n is even

(33)

rigid rotations are needed in order to reach a given orientation, where the function
bxc rounds x to the nearest integer towards zero. This result can also be derived by
analyzing the eigenvalues of the orientation and the rigid rotation matrices. In fact, in
the n-D space the orientation is identified by a matrix which has, in the most general
case, n/2 complex conjugate eigenvalue pairs if n is even, or (n−1)/2 complex conjugate
eigenvalue pairs and the eigenvalue λ = 1 if n is odd. An n-D rotation matrix has one
complex conjugate eigenvalue pair (λ(R) = cos Φ ∓ i sin Φ) associated with the plane
of rotation (matrix P ), and (n − 2) eigenvalues λ = 1, associated with the principal
axes (matrix A). Now, a multiplication between two n-D rotation matrices (subsequent
rotations) outputs a matrix which has, in general, two complex conjugate eigenvalue
pairs and (n − 4) eigenvalues λ = 1. This implies that, in order to fill the eigenvalue
matrix with complex conjugate eigenvalue pairs, bn/2c subsequent rotations are needed.

Equation (29) and the property given in equation (24) demonstrate that the n × n
orientation matrix C can be decomposed by a set of np Orthogonal rigid rotation matrices
Rk(Pk, Φk), whose expression is given in equation (18), that is, by the relationship

C =
np∏

k=1

Rk(Pk, Φk) =
np∑

k=1

Rk(Pk, Φk)− (np − 1) In (34)

This equation implies that the orientation C can be described by np! different sequences
of Orthogonal rotations, where the Orthogonality is expressed by (i, j = 1, . . . , np, i 6= j)

(Ri − In) (Rj − In) = 0n =⇒ Ri Rj = Ri + Rj − In (35)

The second of equation (29) shows how to decompose the orientation expressed by
Q by the sum of a set of np Skew-Symmetric matrices Sk(Pk, Φk). In this case the
Orthogonality property is

Si(Pi, Φi) Sj(Pj, Φj) = 0n (36)

Equation (34) is, therefore, nothing else that the mathematical expression of the gener-
alized Euler’s Theorem to the n-D spaces. This Theorem can be expressed as follows:

THE GENERALIZED EULER’S THEOREM: Regardless of the way a coordi-
nate system is re-oriented from its original orientation, in the n-dimensional space, it is
always possible to find a minimum sequence of np ≤ bn/2c rigid rotations, where np is
the number of complex eigenvalue pairs of the re-orientation matrix, performed on a set
of np Orthogonal planes, which ends the initial orientation to the final orientation.

The expression for C given in equation (34) and the expression for Q given in the
second of equation (29), represent also two new matrix decompositions of the proper
Orthogonal and of the Skew-Symmetric matrices, respectively. In particular, equation
(34) highlights the important fact that subsequent rigid rotations, typically a non linear
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phenomenon, becomes linear when the rotations matrices constitute an Orthogonal set.
In fact, in this case subsequent rigid Orthogonal rotations can be expressed by the sum
instead of the product!

For sake of clarity, an example in 4-D space of the decomposition introduced by equa-
tion (34), is given in the following.

Numerical Example of Orientation Decomposition

Consider the proper Orthogonal orientation matrix

C =




0.1003 0.2496 −0.8894 −0.3697
0.9593 −0.0238 −0.0153 0.2810

−0.1172 −0.8638 −0.3828 0.3059
−0.2366 0.4370 −0.2495 0.8311


 (37)

the eigenanalysis of C yields the eigenvalues (cos Φk ∓ i sin Φk) and the eigenvectors√
2

2
(p̂

(k)
1 ± ip̂

(k)
2 ) where





{
cos Φ1 = −0.7123
sin Φ1 = +0.7019

√
2

2
(p̂

(1)
1 ± ip̂

(1)
2 ) =





0.2923
−0.5417
−0.2923

0.1888




± i





−0.4168
0.0499

−0.5629
−0.0832





{
cos Φ2 = +0.9747
sin Φ2 = +0.2235

√
2

2
(p̂

(2)
1 ± ip̂

(2)
2 ) =





−0.4368
−0.4462

0.3036
−0.1339




± i





−0.2237
0.0704
0.0739
0.6630





(38)

Associated with the eigenvalues, the principal angles
{

Φ1 = ATAN2(sin Φ1, cos Φ1) = 2.3635
Φ2 = ATAN2(sin Φ2, cos Φ2) = 0.2254

(39)

are introduced, and associated with the eigenvectors, the principal (rotation) planes

P1 = [p̂
(1)
1

... p̂
(1)
2 ] and P2 = [p̂

(2)
1

... p̂
(2)
2 ], are given

P1 =




0.4134 −0.5894
−0.7661 0.0706
−0.4134 −0.7961

0.2669 −0.1177


 and P2 =




−0.6177 −0.3164
−0.6310 0.0995

0.4294 0.1045
−0.1893 0.9376


 (40)

Now, using equation (18), the rigid rotation matrices

R1(P1, Φ1) =




0.1125 0.3170 −0.9128 −0.2314
0.9100 −0.0135 0.0024 0.4144

−0.1088 −0.8947 −0.3779 0.2119
−0.3840 0.3143 −0.1547 0.8543


 (41)
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and

R2(P2, Φ2) =




0.9878 −0.0674 0.0235 −0.1383
0.0493 0.9897 −0.0177 −0.1334

−0.0084 0.0309 0.9951 0.0940
0.1474 0.1226 −0.0948 0.9769


 (42)

are obtained. It is easy to see that C = R1R2 = R2R1 = R1 + R2 − I4.

The General Exponential Relationship with Orientation

The Generalized Euler Theorem also allows us to extend the exponential relationship,
given in equation (32) and which holds for rigid rotations only, to orientations in n-D
spaces. In fact, equation (32) states that a constant scalar αk, such that Rk = e(αk Sk),
exists for rigid rotation, where

αk =
Φk

tan(Φk/2)
(43)

it is easy to see that it not possible to find a constant scalar α such that C = eα Q.
However, the Generalized Euler Theorem provides us a tool to find the closed-form
expression of a general exponential relationship associated with an orientation matrix
C. In fact, for general rotation identified by the matrix C, which has eigenvector matrix
W , we can write that

C = WΛCW † =
np∏

k=1

Rk =
np∏

k=1

e(αkSk) = e (
∑

k
αkSk ) = eWΛEW †

= eE (44)

where
E = WΛEW † (45)

is the Skew-Symmetric exponential matrix which has the same eigenvector matrix of C
and Q, and which has an eigenvalue matrix ΛE with elements ±iΦk. For the sake of
clarity, in the following equation the involved eigenvalues are summarized





ΛC → λ
(C)
k =

{
= cos Φk ± i sin Φk

= 1
(np for C, 1 for Rk)
(na for C, (n− 2) for Rk)

ΛQ → λQk
=

{
= ±i tan(Φk/2)
= 0

(np for Q, 1 for Sk)
(na for Q, (n− 2) for Sk)

ΛE → λEk
=

{
= ±iΦk

= 0
(np for E)
(na for E)

(46)

Multiple Rigid Rotations Matrices

The rotation matrix has one complex eigenvalue pair and the remaining (n − 2) are
all ones. The product of g ≤ bn/2c Orthogonal rotation matrices output a matrix
which has, in general, g complex eigenvalue pairs (n ≥ g > 1) while the remaining
(n− 2g) eigenvalues are all ones. These matrices perform multiple rigid rotations about
an (n− 2g)-D subspace.
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Let us to see an interesting property of these matrices, by analyzing the projection on

the kth plane (Pk) of a rotated point v =

[ g∏

i=1

Ri

]
v0, where v0 identifies any position

P T

k v = P T

k

[ g∑

i=1

Ri − (g − 1)In

]
v0 = P T

k Rkv0 = (I2 cos Φk + J2 sin Φk)P
T

k v0 (47)

which demonstrates that the projected point belong to a circle. Now, varying the angles
Φi, (i = 1, . . . , g), the vertex of the vector v0 describes an g-D surface. The projections
of this surface on the g Orthogonal planes of rotations are still circles.

Multiple rigid rotation matrices (at least, the orientation matrices) can be seen as
complex rigid rotation matrices. In particular, if n is odd, the orientation matrix can
be seen as a multiple rotation matrix performing the rigid rotation about an axis (a
1-D figure) while, if n is even, the orientation performs a complex rigid rotation about
a point (a 0-D figure). Figure 3 summarizes these properties for all of the multiple rigid
rotation matrices, that is for all the matrices connecting rotation and orientation.

FIG. 3. From Rigid Rotation to Orientation

Rotation in n-D Complex Spaces

In n-D complex spaces, equation (18) can still be used, but the matrix transpose (that
is, P T) must be replaced by the transpose conjugate, getting P †. With this simple
modification, equation (18) assumes the important general form

R(P, Φ) = In + (cos Φ− 1) PP † + PJ2P
† sin Φ (48)

which represents the closed-form expression of the matrix performing the rigid rotation
(on the complex plane defined by P , and by the angle Φ), in any n-D complex space.

Just for example, let us consider a particular 4-D complex space which has three real
Orthogonal axes and one pure imaginary, as that introduced by the restricted relativity
(x1 = x, x2 = y, x3, = z, and x4 = i c t, where c represents the speed light). Choosing
the “space-time” coordinate plane as the rotation plane

P =




1 0
0 0
0 0
0 i


 (49)

16



then, the rigid rotation matrix can be simply obtained using equation (48)

R =




cos Φ 0 0 −i sin Φ
0 1 0 0
0 0 1 0

−i sin Φ 0 0 cos Φ


 (50)

In the complex space, the n× n Skew-Symmetric rotation matrix S(P, Φ), associated
with the rotation matrix R(P, Φ), becomes Skew-Hermitian

S(P, Φ) = P J2 P † tan
(

Φ

2

)
(51)

Analogously, the decompositions provided for n-D real spaces, by means of equation (34)
for C, and by the second of equation (29) for Q, still hold for n-D complex spaces, but
R(P, Φ) and S(P, Φ) must be evaluated by using equations (48) and (51), respectively.

The Ortho-Skew and the Ortho-Skew-Hermitian Matrices

It is known that a proper Orthogonal matrix C has the eigenvalues, λ
(∓)
k = cos Φk ∓

i sin Φk, which all belong to the unit-radius circle. The eigenvalues of the associated
Skew-Symmetric matrix Q consists of pure imaginary pairs λ

(∓)
k = ∓i tan(Φk/2). In

particular, for Symmetricity, when the dimensional space is odd, then C has one eigen-
value λ = 1, while the Q matrix has one eigenvalue λ = 0.

FIG. 4. Eigenvalue existence field of the Ortho-Skew-Hermitian matrices

The intersection between the unit-radius circle with the imaginary axis (see Fig. 4)
represents, therefore, the field of existence of a set of matrices which are both Orthogonal
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and Skew-Symmetric, the Ortho-Skew =e matrices.†† These matrices have to satisfy the
constraints

=T

e=e = =e=T

e = In and =e + =T

e = 0n (52)

which imply =e ∈ SO(n), =e ∈ SU(n), and the fundamental condition

=e=e = −In (53)

the Cayley Transforms of equation (23), and another similar conditions

=e =

{
= (=e − In)(=e + In)−1

= (=e + In)−1(=e − In)
and =e =

{
= (In + =e)(In −=e)

−1

= (In −=e)
−1(In + =e)

(54)

The Ortho-Skew matrices =e have, therefore, only pure imaginary eigenvalue pairs λk =
∓i with algebraic multiplicity equal to n/2. This implies that the =e matrices exist in
the even space only (this is why they are indicated with the subscript e). In this way we
can see the eigenvalues of =e as belonging to the unit-radius circle (=e is Orthogonal,
then det[=e] = +1), and to the imaginary axis (=e is Skew-Symmetric, then tr[=e] = 0).
The eigenanalysis of the =e matrices can be performed by using either equation (25)
and equation (27), with eigenvalues ∓i, only, because they are both Orthogonal and
Skew-Symmetric. This implies that they can be decomposed by both the equation (34)
and the equations (29,30), obtaining [Rk = Rk(Pk, π/2), and Sk = Sk(Pk, π/2)]

=e =
n/2∏

k=1

Rk =
n/2∑

k=1

Rk − (n/2− 1) In =
n/2∑

k=1

Sk =
n/2∑

k=1

PkJ2P
T

k (55)

as it is easy to verify. Equation (55) provides also a general method to construct Ortho-

Skew matrices. Note that the sympletic matrices J2n =

[
0n −In

In 0n

]
constitute only a

particular subset of the Ortho-Skew matrices.

It is possible, however, to extend the Ortho-Skew matrix set to odd spaces, getting the
Ortho-Skew-Hermitian matrix set

=o =
(n−1)/2∑

k=1

PkJ2P
†
k ± ipp† (56)

where Pk = [ p̂
(k)
1

... p̂
(k)
2 ] contains the two Orthogonal directions identifying the k-th

plane (that can be real or complex), and where the unit-vector p is Orthogonal to all
the Pk planes, p†Pk = 01,2, and k = 1, . . . , (n− 1)/2.

If n is even, then an (n + 1)-D Ortho-Skew-Hermitian matrix =o can also be built,
for instance, by an n-D Ortho-Skew matrix =e. In fact, an (n + 1) × (n + 1) Ortho-
Skew-Hermitian matrix can be obtained by inserting a zero column and a zero row in
the Ortho-Skew matrix =e at position m (where m = 1, . . . , n + 1), and by inserting

††Name suggested to me by Dr. John L. Junkins.
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the imaginary unit ±i in the position =o(m, m). For instance, for m = n, =o can be
obtained as

=o =

[
=e 0n,1

01,n ± i

]
(57)

where 0n,1 and 01,n are a column and a row zero vectors with n elements, respectively.
Matrix =o is no more either real and Skew-Symmetric, but it is Orthogonal and Skew-
Hermitian, since it satisfies the conditions

=†o=o = =o=†o = In and =o + =†o = 0n (58)

and the fundamental condition of (52) still holds as

=o=o = −In (59)

.

Extension of the Imaginary Unit to the Matrix Field

The Ortho-Skew matrices =e are real. This matrix set, together with the Ortho-Skew-
Hermitian matrix set =o, can be considered the extension to the matrix field of the
imaginary number i =

√−1. In fact, these matrices, since now identified by = (that is,
either =e and =o), satisfy most of the known complex identities. They are:

(1) First of all, subsequent powers of i and = follow an identical structure

i k =





+i (for k = 1 + 4m)
−1 (for k = 2 + 4m)
−i (for k = 3 + 4m)
+1 (for k = 4m)

=⇒ = k =





+= (for k = 1 + 4m)
−In (for k = 2 + 4m)
−= (for k = 3 + 4m)
+In (for k = 4m)

(60)

where m can be any integer number.

(2) The = matrices satisfy the Euler’s formula (where eInϑ = Ineϑ)

eϑ+i ϕ = eϑ (cos ϕ + i sin ϕ) =⇒ eInϑ+=ϕ = eInϑ (In cos ϕ + = sin ϕ) (61)

(3) In particular, when ϑ = 0, equation (61) implies a similarity associated with the
trigonometric functions

{
2 cos ϕ = ei ϕ + e−i ϕ

2 i sin ϕ = ei ϕ − e−i ϕ =⇒
{

2 In cos ϕ = e=ϕ + e−=ϕ

2= sin ϕ = e=ϕ − e−=ϕ (62)

(4) The polar expression of the complex number z = a + i b is

z = ξ (cos ϕ + i sin ϕ) where:





ξ =
√

a2 + b2

a = ξ cos ϕ
b = ξ sin ϕ

(63)

and, analogously, the polar expression of the real matrix Z = In a + = b is

Z = Ξ (In cos ϕ + = sin ϕ) where:





Ξ = In ϑ + =ϕ
ϑ = a cos b + b sin b
ϕ = −a sin b + b cos b

(64)
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(5) The similarity for polar expression implies a similarity for the Moivre Formula

zk/j = ξk/j

[
cos

(
kϕ

j

)
+ i sin

(
kϕ

j

)]
(65)

where k and j can be any integer number, to a real matrix form, getting

Zk/j = Ξk/j

[
In cos

(
kϕ

j

)
+ = sin

(
kϕ

j

) ]
(66)

where Z = In a + = b. Note that, for k = 1, and j > k, the Moivre formula
computes the roots of z while, for j = 1, and k > j, the Moivre formula computes
the powers of z.

Based on the above, it is possible to complete this study by outlining that

i =
√−1 is the 1× 1 Ortho-Skew-Hermitian matrix.

Conclusions

This paper presents the general mathematical formulation of the rigid rotation matrix for
any n-dimensional real or complex space, and which demonstrates that the rigid rotation
is planar in nature. The rigid rotation is shown to depend on an angle (principal angle),
which identify the amplitude of the rotation, and on a set of 2 principal axes, identifying
the plane of rotation, that is, its spatial orientation. This fact suggests us to replace the
common sentence of rotation about an axis (which holds true in 3-D space only) with
the sentence rotation on a plane, because the plane of rotation is, in fact, an invariant
with respect to the dimensional space. The inverse problem, that is, how to compute
these principal rotation parameters from the rotation matrix, is also treated.

Then, Euler’s Theorem is extended to the n-D spaces, by expressing the orientation
as a product of a minimum set of rigid rotations. This relationship, which shows that
the concepts of rigid rotation and orientation become distinct starting from a 4-D space,
consists of a new decomposition for proper Orthogonal matrices that can be canonically
expressed by either a product or a sum of the same rotation matrix set. A numerical
example of this decomposition for 4-D space is given. Skew-Symmetric matrices, as
representing orientation, can also be similarly decomposed by a sum of a set of Skew-
Symmetric matrices describing rigid rotations on Orthogonal planes. Then the multiple
rigid rotations matrices, which represent the connection path between rigid rotation and
orientation, are introduced and the Skew-Symmetric matrix representing the general
exponential relationship with orientation, is also presented.

Finally, the Ortho-Skew real matrices, which are both Orthogonal and Skew-Symmetric
and which exist in the even dimensional spaces, and the Ortho-Skew-Hermitian matrices,
which are both Orthogonal and Skew-Hermitian and which exist in the odd dimensional
spaces, are introduced. These matrices, which satisfy most of the known complex iden-
tities, represent a striking analogy to the imaginary unit for the matrix field.
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