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Analysis of a Stefan-Like Problem 
in a Biological Tissue Around a 
Cryosurgical Probe 
Analysis of a Stefan-like problem in the in vivo freezing of a biological tissue is present­
ed in cartesian coordinates. The analysis allows the inclusion of blood perfusion, meta­
bolic heat and tissue heat capacity. Solutions are obtained for the temperature distribu­
tions in the frozen and unfrozen regions at different times. A constant freezing rate, in 
accordance with the optimal tissue destruction rate, is assumed. Results indicate the im­
portance of the blood perfusion factor in the problem and allow the prediction of probe 
temperature and heat flux variations for optimal results in tissue destruction. 

Introduction 

Cryosurgery deals with the controlled destruction of biological 
cells due to deep freezing and thawing. Freezing of cells involves 
the removal of pure water from both the intercellular and the ex­
tracellular solutions. The water freezes, as the temperature is 
dropped, into biologically inert foreign ice crystal. The rates of ice 
crystal nucleation and growth are both temperature and vapor 
pressure dependent. Evidence in the literature indicates that the 
rate of cooling at the frozen-unfrozen tissue interface is of prime 
importance in determining the percentage of surviving cells [l].1 

There is also evidence that the rate of thawing influences the de­
struction rate of the cells too, with.the least number of cells surviv­
ing a slow rate of thawing immediately following rapid freezing 
[1-4]. According to Farrant only a small number of cells are de­
stroyed by low temperatures alone [1]. As discussed in the litera­
ture [2-4], at slow cooling rates formation of ice crystals in the ex­
tracellular solutions will occur first. These crystals will cause the 
shrinkage of the cell. At high cooling rates, however, the intercellu­
lar water will freeze before shrinkage will have occurred. 

Two mechanisms are commonly assumed to be involved in the 
destruction of biological cells during the freezing and thawing pro­
cesses. "At a slow cooling rate it is presumed that damage is 
linked to the consequences of a raised concentration of extracel-

1 Numbers in brackets designate References at end of paper. 
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lular solutes interacting on the shrunken cell. As damage is due 
to the uptake of extracellular solutes through a leaky membrane, 
then as the cooling rate becomes faster there will be less time for 
this {phenomenon) to take place and damage will be reduced at 
higher cooling rates" [1]. At higher cooling rates, however, damage 
is correlated with the formation of intercellular ice before shrink­
age occurs thus reducing the number of surviving cells [5, 6]. 

It should be noted that each cell type was found to possess a dif­
ferent survival curve, i.e., number of surviving cells versus cooling 
rate. Thus, a certain cooling rate may not cause formation of inter­
cellular ice in one cell type whereas the opposite might hold for an­
other cell type. An example of this phenomenon might be given by 
observing mouse embryos and red blood cells. Cooling rates larger 
than 2°C/min will cause intercellular ice to form in mouse embryos 
while only at 850°C/min will the same occur in red blood cells. 
Thus, a selective destruction of certain cell types in a tissue might 
be achieved should their particular survival curves be known. 

Cryosurgery has been applied for a number of years to the de­
struction of malignant and other tissues. Cryosurgical devices 
come in various shapes and sizes as reviewed by Barron [7]. As the 
probe is introduced into the tissue and the flow of the cryofluid is 
initiated, a frozen front starts to form. A physician employing this 
technique is faced with two basic difficulties: one is the extent to 
which the frozen front has penetrated, and the second is the possi­
ble percentage of destroyed cells to be expected in the tissue [1]. 

Attempts in the literature were directed at obtaining the loca­
tion of the frozen front by analytical methods. In 1968, Barron 
published a paper dealing with heat transfer problems in cryosur­
gery. Assuming a constant heat flux at the probe surface, he ob­
tained solutions for the ice sphere radius and probe-tip tempera­
ture variations [8]. Barron did not consider the effects of either 

514 / AUGUST 1976 Transactions of the ASME 
Copyright © 1976 by ASMEDownloaded From: https://heattransfer.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357538724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


blood perfusion or heat generation in the tissue. Assuming a con­
stant probe-tip temperature Trezek and Cooper presented in 
spherical coordinates a numerical solution which was quite time 
consuming [9]. In a subsequent paper by the same authors an ap­
proximate analytical solution to the rate of growth of the frozen 
front for the same conditions was presented [10]. In this second 
work the authors assumed that the heat capacity of both the fro­
zen and unfrozen regions are negligible compared to the latent 
heat of fusion. This assumption permits the determination of a 
quasi-steady temperature field. Recently, Warren and co-workers 
presented an approximate integral technique solution to this prob­
lem in cartesian coordinates [11]. They assumed the temperature 
of the cryofluid to be constant with the probe surface temperature 
varying until it reaches that of the cryofluid. The temperature dis­
tribution in the tissue was taken as a second-degree polynomial 
while neglecting the metabolic heat rate, and with the heat capaci­
ty also neglected relative to the latent heat of fusion. 

The purpose of the present paper is to obtain an analytical solu­
tion to the problem of freezing of biological tissues taking into ac­
count heat capacity, blood perfusion, and metabolic heat rate so 
that a large enough cooling rate at the frozen-unfrozen tissue inter­
face be produced. As noted previously, the achievement of this 
minimal cooling rate at the freezing front is of utmost importance 
where maximum destruction rate is desired. The analysis is pre­
sented in cartesian coordinates for simplicity and should, thus, be 
regarded as a first approximation to the solution of the problem. 

A n a l y s i s 
Heat transfer in the living tissue is assumed to be governed by 

the bio-heat equation [12]. In the frozen region diffusion of heat is 
described by the heat equation. For both regions the physical and 
thermophysical properties are assumed homogeneous and con­
stant. The entire tissue is assumed at a constant temperature prior 
to the initiation of the flow of the cryofluid in the probe. This as­
sumption was shown to be valid at the deeper layers of the tissue 
[13] and might further be assumed as a good approximation for 
small volumes of the tissue. 

Difference between deep body temperature and blood stream 
temperature at steady state is assumed constant. The magnitude 
of this difference is directly proportional to the total metabolic 
rate and inversely proportional to the average blood perfusion rate 
[9]. 

As for blood perfusion and volumetric metabolic rates, two as­
sumptions were tried. One was that both these quantities remain 
constant throughout the cooling period and then drop to zero when 
freezing commences. The constancy of blood perfusion rate prior 
to freezing was observed by Rothenberg [14]. He claims that due to 
the high rate of cooling applied during cryosurgery, the blood ves­
sels do not have sufficient time to contract, thus, blood continues 
to flow until it freezes as a bulk. This assumption is also in accor­
dance with Walder [15] and Chato [16]. The second assumption 
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Fig. 1 Schematic drawing of control volume used in the analysis 

was identical for the blood perfusion rate while the volumetric 
metabolic rate was assumed to drop linearly to zero with tissue 
temperature. This linear variation of the metabolic rate could not 
be supported by the literature and was assumed for the purpose of 
studying its influence on tissue temperature. It turned out that 
this second assumption complicated the analysis slightly but did 
not change the results significantly. Therefore, the first assump­
tion is used in the analysis. 

The problem is divided into two time domains: t < to and t > to 
where to denotes the time of formation of the first ice crystals. In 
the first time interval, lowering of tissue temperature to the freez­
ing level takes place. In the second, freezing of the tissue adjacent 
to the probe occurs with the advancement of the frozen front. At 
the beginning of the second time interval, temperature distribu­
tion immediately preceding formation of the first ice crystals is as­
sumed to be compatible with that obtained by the analysis of the 
freezing region. This could be obtained by varying the temperature 
of the probe in a certain manner which will be described later. 

The analysis of the freezing region is performed according to the 
technique of solution of the ablation problem [17]. Temperature 
distributions in the frozen region are based on solutions to the in­
verse Stefan problem [18]. 

The control volume for which the analysis is performed is shown 
in Fig. 1. In this figure the location of the frozen front is indicated 

• N o m e n c l a t u r e -

A = frozen-unfrozen interface velocity 
B = imaginary temperature in equation 

(13); defined by equation (14) 
ci, = specific heat of blood 
cp = specific heat of tissue 
h = modified Peclet number, defined by 

equation (18) 
H = frozen-unfrozen interface cooling rate 
k = thermal conductivity of unfrozen tis­

sue 
k/ = thermal conductivity of frozen tissue 
L = latent heat of fusion of water 
m = imaginary mass flux through the mov­

ing control volume surface, defined by 
equation (7) 

qm = metabolic heat generation rate 
s = frozen-unfrozen interface location 
t = time 
to = time of formation of the first ice crys­

tals 
T = temperature 
Ta = arterial systemic blood temperature 
To = initial temperature 
Tph = phase change temperature 
ibb = blood perfusion rate 
x = length 
xo = characteristic length 
x = length inside control volume, defined 

in Fig. 1 

a = thermal diffusivity 
/3 = wi,CbXo2/k, nondimensional blood per­

fusion flow rate 
7 = ivbCblk 

p = density 
t = maximum initial temperature devia­

tion, defined by equation (21) 
r = Fourier number, defined by equation 

(19) 
£ = x/xo, nondimensional length 

Subscripts 

/ = frozen tissue 
b = blood 
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by the dashed line at a distance s from the coordinate origin (i.e., 
probe surface). Also shown are the heat flux vector, q, and the 
imaginary mass flux, m, which is discussed in the following. 

Solution to the second time domain is obtained in stages. First a 
solution is sought for the unfrozen region adjacent to the frozen 
one, i.e., t > to and x > s. Mathematically, the problem is stated as 
follows: 

dT 

dt 

d2T 
= a —^ 

dx2 

WbCb 

P-Cp 

with the boundary conditions: 

and the initial con dition 

T(s, 

T(= 

t)* 

,t) 

(Ta~ 

= Tpb 

= T0 

T)+-
P-Cp 

T(x, t0) = T0 + (Tph - T0) exp \ - ^ x l 

where T0 is defined by [9] 

9m 

(1) 

(2) 

(3) 

(4) 

(5) T0 = Ta+-
WbCb 

The control volume surface is assumed to move with the frozen-
unfrozen tissue interface. A solution was sought so that the result­
ing cooling rate at the interface be constant and predictable, which 
is the physiological requirement for controlling tissue destruction 
rate. 

The temperature profile inside the control volume is obtained 
by writing a quasi-steady heat balance and integrating twice over 
the region x = 0 to infinity. At x -* <*> an additional adiabatic con­
dition is imposed to yield 

T = T0 + (Tph - To) exp [ - ^ £ (x - ») j (6) 

which satisfies conditions (2)-(4). Equation (1) is satisfied by 
equation (6) when rh is given by2 

\A + [A2 + 4ya2]l/2) • p 

and by imposing a constant velocity, A, of the freezing front 

ds 
— = A withs(to) = 0 
dt 

(7) 

(8) 

2 m is an imaginary mass flux which includes the blood perfusion into and 
the amount of tissue mass passing through the moving control volume sur­
face. 

35 

30 

?S 

™ — ll"Osec 

ss/^ 
- / / 

ft/ V 
i i 

• U=l08sec _ ^ - ~ ^ j f d r -

^ ^ 

cose i 

case 2 

case 3 
— case 6 

Ta=37°C 

1 1 

1=158 sec 

01 0-2 0-3 0'4 

DISTANCE FROM PROBE SURFACE , cm 

0 5 

For a constant cooling rate, aT/at(s, t) = H, the following expres­
sion is obtained 

a2-H2 1 1/2 
(9) 

i 7 • aHTph - T0)2 + a • H(Tpll - To)I 

Next, the analysis is performed for the frozen region subject to 
the following equations [18] 

Hit- til 
v-2 

a/ 
at ax 

t > to and x < s 

Tf(s, t) = Tph with s = A(t-t0) 

aT, dT ds 
kf—L(s,t) = k — (s,t) + p-L — 

ax ax dt 

Solution to equations (10)-(12) is given by 

T, - Tp* + fl|l-exp [^-(«-*)] 

where 

1 

(10) 

(11) 

(12) 

(13) 

(14) r P -c p (To T ^ ) . [ A + [ A 2 + 4 7 a 2 ] i / 2 ] + p . L , ^ | 
1 2 . J p/Cp/A 

In the first time domain, t < to, an exact solution to the problem 
might be obtained by assuming a constant cooling rate at the 
probe-tissue interface, i.e., 

aT. 

at 
• (0, t)=H (15) 

The governing equation and the additional boundary condition 
are given by equations (1) and (3), respectively, and the initial con­
dition is given by: 

T(x, 0) = To (16) 

Fig. 2 ( 6 ) Approximate temperature distributions at the onset of freezing 
for different cases 
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Fig. 2 (a ) Approximate temperature distributions in the unfrozen tissue as Fig. 2 (c ) Exact temperature distributions in the unfrozen tissue for case 
calculated from equation (6 ) for different cases 2 and comparison with the required distribution at the onset of freezing 
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The solution is obtained by a Laplace transform and is given by 

(Ta-T0) , f / J _ \ ,_t ~ . / _ ! 
T = T0 + - • / l ( ( T " i ^ ) e x p ( " ^ ) e r f c V 2 ^ 

^ - T ) + (T + 2 v i ) e x p ( ^ ) e r f c ( 2 v ; + ^ 7 ; ) ) (17) 

where 

h = 
H-p 

(Ta-

• Cp ' ". 

-To) 

tk 

co2 

• k 

pCpXo" 

and 

{ = • 

*o 

(18) 

(19) 

(20) 

It turned out that the required initial condition at t = to, i.e., 
equation (4), could not be satisfied exactly. A maximum deviation 
of about 7 percent between the desired equation (4), and obtained 
equation (17), was obtained (see Fig. 2(c)). Thus, a slightly differ­
ent approach was adopted. Accordingly, it was assumed that the 
shape of the temperature distribution in the tissue at t = to be 
identical to the one given by equation (4). This assumption dic­
tates that the temperature profile at t < to and x > 0 be given by 
equations (6)-(9). However, when equation (6) is examined, it is 
observed that to should attain a very large value if the initial con­
dition, equation (16), is to be satisfied. This result is due to the ex­
ponential nature of equation (6). Thus, an engineering compromise 
in the form of permitting a slight deviation in the initial condition 
was required. If e denotes this maximum deviation 

.T(o,o)-r0 
Tph — To 

then to is determined by 

to = -lne 

(21) 

(22) 

For the set of physical parameters as given in Table 1, to was 
calculated at about 39 s. On the other hand, taking c = 0.005, to is 
obtained at 208 s which is considerably longer; for t0 to be equal to 
39 s the deviation is calculated at about 0.38 which is a prohibitive­
ly high value. 

D i s c u s s i o n 
First, the effects of the various parameters are examined. From 

equation (9), with To replaced by equation (5), it is obtained that 
the velocity of the freezing front, A, decreases somewhat with in­
creasing the volumetric metabolic rate, qm. Increasing blood perfu­
sion rate, wt,, also decreases A but more sharply indicating the im­
portance of this factor in energy transport in the tissue. It follows 
from equations (4), (5), (7), and (9) that the temperature gradient 
at the freezing front becomes larger when both qm and Wb increase. 
It is also evident, from equation (7), that the effect of Wb is much 
stronger than that of qm. 

Analysis of the results is performed for the numerical values and 
6 cases as given in Tables 1(a) and 1(6). In this table the corre­
sponding values for To as calculated by equation (5) are also 
shown. Case 6 in which both qm and Wb vanish is included for com­
pleteness and is probably applicable to situations where in vitro 
freezing occurs. In all cases to = 208 s, such that t < 0.005. 

Temperature distributions in the unfrozen region, equation (6), 
when t < to, for cases 1-3 and 6, are shown in Figs. 2(a) and 2(6). 
It is seen that deviation from the initial temperature remains small 
for relatively long times and then increases exponentially with 
time. In Fig. 2(c) the exact solution, equation (17), is plotted for 
case 2. At t = to both the exact solution and the required one, 
equation (4), are compared. The maximum deviation found for 
these two graphs is about 7 percent. 

In Fig. 3, temperature distribution in both the frozen and unfro­
zen regions at t = to + 100 s are shown for all six cases. It is seen 
that the higher Wb and qm the closer the location of the frozen 
front, at x = s, to the tissue-probe interface. Also, the effects of qm 

are seen to be smaller than those of Wb- For the limiting case 6, i.e., 
Wb = qm — 0, the tissue-probe interfacial temperature is the lowest 
at about —152°C, increasing to about —107°C for case 1. 

Probe-tissue interfacial temperature and heat flux and location 
of the frozen front as functions of time are shown in Figs. 4 and 5. 
Fig. 4 gives the values for cases 1-3 and 6 whereas Fig. 5 is for cases 
2-6 excluding 3. These figures again support the previous observa­
tions regarding the freezing front velocity and the probe-tissue in­
terface temperature. It is observed in Fig. 5 that the effect of vary­
ing qm on the temperature distribution in the tissue is very small 
and might be neglected without introducing large errors. It is also 
seen that the heat flux is larger for smaller values of ibb and qm. 
Another result is associated with a limited minimal probe temper­
ature which might be due to the use of different cryofluids. When 
this limitation is considered coincidental with the desired constant 
cooling rate, it is obtained that the higher ibb and qm, the deeper 
the extent of destruction of the tissue. 

Table 1 Physical and thermophysical properties 
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-180 

Fig. 3 Temperature distributions in both the frozen and unfrozen regions 
100 s after freezing commenced for all six cases 
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Fig. S Probe temperature and heat flux variations and location of the fro­
zen front for various metabolic heat rales 

Fig. 6 shows typical temperature distributions for case 2. For the 
assumed set of parameters and a minimum probe temperature of 
—180°C the depth of freezing is 6.4 mm reached 133 s after forma­
tion of the first ice crystals. This result is also easily obtained from 
Figs. 4 and 5. 

Results of the present work were compared to those reported 
previously. It is found that Warren and co-workers obtained the 
same slowing effect of blood perfusion on the velocity of the freez­
ing front [11]. When examining their cooling rates at the frozen 
front, they found a —7°C/s temperature drop for s = 0 decreasing 
to —lcC/s at a depth of 6 mm reached 120 s after initiation of 
freezing. These results were obtained for a minimum probe tem­
perature of — 160°C. These cooling rates could be inside the range 
where a considerable number of cells may survive freezing, de­
pending on the tissue type [1]. In the present work, with heat ca­
pacity and heat generation considered, and for a constant cooling 
rate of — l°C/s, the frozen front is located at a depth of about 6.1 
mm after 120 s (see Fig. 4). Trezek and Cooper obtained similar re­
sults for spherical coordinates [9]. 

Conclusions 
An analysis of a Stefan-like problem in the freezing of a biologi­

cal tissue in cartesian coordinates is presented. Blood perfusion 
and metabolic heat generation rates are included in the thermal 
energy balance of the tissue. Heat capacity of the tissue is also con­
sidered and the solution is obtained for a constant imposed cooling 

rate at the freezing front. 
Based on this analysis, the following conclusions are drawn: 
1 The effect of metabolic heat generation rate, gm, on the tem­

perature distribution in the tissue is small and might, therefore, be 
neglected without causing significant errors in the results. On the 
other hand, blood perfusion effects are significant both in regard 
to the location of the freezing front and the temperature distribu­
tion in the tissue. 

2 The occurrence of small values of blood perfusion and meta­
bolic rate cause a high velocity of the freezing front with a small 
depth of the frozen region. 
Results presented in this work facilitate the estimation of required 
probe temperature and heat flux variations such that a constant 
cooling rate at the freezing front is achieved. As indicated pre­
viously, the present cartesian model yields values close to those ob­
tained by the spherical or cylindrical models. These results allow, 
therefore, the surgeon to employ a controlled cryoprocess for opti­
mal results in tissue destruction. 
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ERRATUM 

E r r a t u m on: H . Ozoe , K. Y a m a m o t o , S . W. C h u r c h i l l , a n d H. S a y a m a , " T h r e e - D i m e n s i o n a l , N u m e r i c a l A n a l y s i s of L a m i n a r 
N a t u r a l C o n v e c t i o n in a Conf ined F l u i d H e a t e d F r o m B e l o w , " p u b l i s h e d in t h e M a y 1976 i s s u e of t h e J O U R N A L O F H E A T 
T R A N S F E R , pp . 202-207. 

1 T h e first two lines of t h e In t roduc t ion should read , " T h r e e - d i m e n s i o n a l , n u m e r i c a l analysis of n a t u r a l convect ion in a confined fluid 
h a s been r a t h e r neglec ted following the p ionee r ing" 

2 In t h e N o m e n c l a t u r e , D/Dvr shou ld be D/DT 

3 T h e first a n d t h i r d co lumns of T a b l e 1 should r ead 
2000 1.451 
2600 — 
3000 1.966 
4000 — 
6000 2.617 
8000 — 

4 In Fig. 7, t h e X a t R a X 10~ 3 = 5 shou ld be a t R a X 10~ 3 = 6. 
5 T h e cap t ion of Fig. 4 shou ld read A T = 5.0 in s t ead of 50.0, a n d t h e cap t ion of Fig. 6 shou ld r ead A T = 1.54 ins tead of 15.4. 
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