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Abstract 
Proxy servers (Proxies) have been a staple of the World 

Wide Web infrastructure since its humble beginning. 
They provide a number of valuable functional services 
like access control, caching or logging. Historically, 
control systems have had little need for full-fledged 
proxied systems, as direct, unimpeded resource access is 
almost always preferable. This still holds true today, 
however unbound direct asset access can lead to 
performance issues, especially on older, underpowered 
systems. This paper describes an implementation of a 
fully transparent proxy server used to moderate 
asynchronous data flow between selected front-end 
computers (FECs) and their clients as well as 
infrastructure changes required to accommodate this new 
platform. Finally it ventures into the future by examining 
additional untapped benefits of proxy control systems like 
runtime read-write modifications. 

INTRODUCTION 
In a perfect world proxies are not only unnecessary, but 

are usually frowned upon, as they introduce additional 
complexity to already complicated systems. The majority 
of the proxy-based systems require some level of 
additional configuration – usually in the top most client 
layer. Additionally, in ideal conditions performance issues 
are non-existent, so any latency or throughput benefits 
provided by caching proxies are also rendered irrelevant. 
However we do not live in a perfect world and often 
proxies are the only cost effective way to accommodate 
growing and/or aging accelerator infrastructure.  

The idea to implement a truly transparent proxy-server 
framework in the Collider Accelerator Department has 
been kicked around for quite a while. The concept would 
usually come up while trying to tackle performance issues 
of one or more struggling front-end computers, which had 
been over-utilized and thus were unable to handle 
requested loads. Prior to the development of the 
transparent proxy system, the solution to these problems 
usually involved utilizing custom middleware servers, 
which throttled back the backend side utilization by 
putting themselves between the clients and the front-end 
computers. This is still an acceptable solution, however 
it’s not as flexible as its transparent counterpart, as it does 
require additional, persistent modifications in the client 
layer. For some applications, these changes can be trivial, 
for others they require a more substantial time investment. 
In neither case it is automatic or transparent. 

Reflective Server (RS) has been designed to circumvent 
this issue. It features all the benefits of a classic 
middleware proxy without introducing additional 
configuration entropy to the system. 

IMPLEMENTATION 
Reflective Server is built on top of the existing Java 

Accelerator Device Object (ADO [1]) framework. Its core 
contains one or more self-configuring, faux device 
objects, which inherit all the external, system visible 
features of a true, reflected instance. In essence, this 
process creates one twin image of each real ADO, which 
resides on another host (usually a FEC). The similarities 
are only skin-deep, as the faux instance is just a thin shell 
masquerading as the real device object. It knows nothing 
about the business logic of the real instance, however it 
does know how to forward requests and data to and from 
its real counterpart. It, similarly to its twin, resides in a 
container that handles all the client-server 
communications. The standardized ADO communication 
RPC [2] vocabulary is also identical, which means that 
from a client perspective, real and faux systems are 
indistinguishable. Figure 1 shows both direct and indirect 
client access pattern. The clients are completely identical, 
and neither one can tell whether or not they are accessing 
the data via a proxy or directly. 

 

Figure 1: Direct and indirect access pattern.  

Transparency 
The above-mentioned transparency is achieved by 

modifying the name server records on as needed basis. 
The Reflective Server when bootstrapping device objects 
modifies their entries in the master Controls Name Server 
(CNS) to reflect their new “location”. This record 
includes a host name as well as RPC program and version 
numbers required for all client server communication. 
These records remain unchanged for the duration of proxy 
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server lifetime and each Reflective Server instance has a 
responsibility to restore original entries upon shutdown. 
Clients always obtain the location of device objects from 
the name server, which means modifying this central 
repository is the only way to transparently inject proxy 
instances to the live system. Figure 2 shows the actors 
participating in name lookup process. Relational database 
is used to prepopulate records in CNS. Clients retrieve 
desired record based on the supplied name. Once decoded 
the record points to a device object’s network location. 
Reflective Server(s) can at any time modify the name 
server contents, thus rerouting clients to its location. 

 

Figure 2: ADO name lookup.  

Runtime Configuration 
From a Reflective Server perspective Accelerator 

Device Object is a single indivisible entity. As previously 
mentioned an ADO server is a collection of these device 
objects. Proxy servers by virtue of being an ADO 
container adhere to this principle, which means that can 
also be configured in variety of ways depending on a 
problem they are trying to solve. Two of the most 
common configurations are: 
• One Reflective Server per FEC – this is by far the 

most common scenario. Each server instances maps 
and reflects all (usually > 100) ADO instances on a 
selected FEC. This scenario is used when trying to 
offload a busy front-end computer.  

• One Reflective Server for multiple scattered ADO 
instances – in this scenario one server maps and 
reflects selected ADOs from one or more FECs. This 
set-up is used to target a specific, usually very 
popular, application, whose instance count is causing 
unusually high strain on accessed FECs. 

Other configurations ranging from one ADO per server 
to all ADOs in the Collider Accelerator Department per 
single RS instance are also possible - though highly 
improbable. 

Synchronous Access 
All synchronous requests for dynamic data go through 

the proxy servers to the underlying FEC system 
unimpeded. Reflective Server routes all synchronous RPC 
requests originating from the client-facing layer to the 
appropriate ReflectiveAdo instance. This instance 

contains exactly one RemoteAdo object responsible for 
the FEC-facing communication. It re-encodes the 
parameter set and dispatches the request to the appropriate 
front-end instance. Results are bubbled up to the calling 
client. 

Some operations, such as synchronous reads, can 
benefit from the built in proxy caching, however this 
feature is disabled by default. Immutable data is always 
cached in the proxy. 

Asynchronous Access 
This is the key area where Reflective Server framework 

proves to be the most valuable. By positioning itself in 
front of backend infrastructure, it essentially removes all 
subscribe-publish related scaling issues. This mechanism 
relies on proxy instances becoming exclusive clients to 
FEC server instances, and thus taking the burden of 
handling all, client issued, asynchronous requests onto 
itself. Figure 3 shows the default, direct access pattern. In 
this case the FEC is responsible for all client connections. 
Figure 4 shows the equivalent, indirect access pattern. In 
this case the FEC is only dealing with one client, and that 
is one Reflective Server instance, which in turn manages 
all client issued asynchronous requests.  

 
Figure 3: Direct asynchronous connection request model.  

 

Figure 4: Proxy routed asynchronous connection request 
model.  

Dealing with the Unexpected 
Front-end computer reboots, timeouts, backend 

communication failures, and client dropouts – these are 
just a few examples of exceptional system states, that 
have to be handled by the Reflective Server instances. 
The transparent nature of the proxy servers has to be 
enforced during these conditions. Clients routed through 
RS instances must be notified about any failures in the 
same exact way as if they were connected directly to the 
FECs.  
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Front-end communication loss due to a machine reboot 
is by far the most common exceptional state encountered 
during normal accelerator operation. Clients receiving 
data asynchronously have a number of built in 
mechanisms to identify, mark and eventually attempt to 
reconnect to a failed host. They rely on both ADO 
protocol as well as built-in RPC constructs like 
portmapper to accurately judge FEC states. This behavior 
has been meticulously tested and it works exceptionally 
well in direct server access scenarios. However it does 
introduce additional level of complexity to the proxy 
servers, as they have to correctly simulate all possible 
client-observable states. A full-fledged FEC failure due to 
a reset would trigger the following sequence of events in a 
previously connected Reflective Server: 
• Terminate client facing RPC transport responsible 

for the affected front-end machine. We want the 
clients to immediately notice that the FEC is no 
longer available. The only way to achieve this 
without actually killing the server process is to shut 
down part of the front-facing infrastructure. 

• Enable more aggressive heartbeat mechanism to 
speed up recovery process. 

• Terminate asynchronous connections to cleanup 
publish-subscribe bookkeeping structures. Clients 
automatically reissue requests for their entries when 
the server comes back online. 

• When the FEC is back in service reestablish client-
facing RPC transport and wait for requests.  

Other exceptional states are also handled accordingly to 
well known and accepted rule-set.  

EXTENSIONS 
Reflective Server implementation is based on a new 

Java ADO platform. This close relationship exposes 
additional features native to this platform to ADO 
designers and developers.  The most important one being 
AOP [3] modifier chains, which allow for device object 
extensions.  

Extension is an advice, which cuts across all sets and 
gets (input and outputs) for all Reflective Server 
contained device objects. This advice is supplied to the 
RS runtime as a class file, which gets weaved with the 
existing set of advices already attached to the ADO set 
and get methods. The most basic extension point 
overrides two methods from the base aspect – one for 
input and one for output modification. The former has full 
control over the data sent to the slave ADO, while the 
latter controls the data shipped back to the clients. This 
tight pairing can be utilized by device object developers in 
a variety of ways during all stages of a development cycle 
as well as in deployed systems.  

Extensions point flexibility and ease of deployment 
makes them excellent candidates for analyzing application 
behavior and mocking up test cases for various system 
components. ADO developers can effortlessly create 
artificial ADO states as seen by the application by 
modifying the data output to the clients. Note that we are 

not modifying real ADO values - those remain unaltered. 
However clients accessing them through a Reflective 
Server with a modifying extension point are oblivious to 
that fact. To them modified values are real. Figure 5 
shows an example where “floatM” parameter is forced to 
a constant value for testing purposes.  

 

Figure 5: Output modifying extension point.  

Input modifying extensions are equally useful. Figure 6 
shows two simple, yet very powerful examples. The first 
one changes the client interface to all current settings on 
all reflected ADOs from amps to milliamps. Again we are 
not changing the underlying device objects – they will 
still receive values in amperes. The second example 
removes all write access to the “simple.test” device.    

 
Figure 6: Input modifying extension points.  

APPLICATION 
Several candidates were identified where FEC loading 

was inhibiting the overall system performance. Adding 
the Reflective Server layer has improved the FEC 
utilization in all cases. Lower throughput cases performed 
seamlessly however higher throughput did encounter 
intermittent loss of communication. 

An example of a low throughput is the Beam Inhibit 
Reflective Server instance, which collects a small sample 
of data from four different FECs. This system is heavily 
used by the Operations, and the proxy server, which has 
been deployed for the last two runs encountered no issues. 

The Low Level RF FECs are much higher throughput 
with each FEC passing ~5GB of data through this layer 
per hour. These front-ends were also placed behind a 
layer of multiple Reflective Server instances in a pseudo-
operational model. Proxy servers at these data volumes 
still require some handholding, as they are not as stable as 
their low throughput counterparts. Even with frequent 
interventions, which require either a server restart or FEC 
reboot, the benefits still outweigh the drawbacks.  
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FUTURE DEVELOPMENT 
At the top of the agenda for future Reflective Server 

development is improving reliability. In order to make 
this a truly operational system it will need to become 
more robust, both in performance and in limiting any 
impacts upon clients of the RS when problems do arise. 
Once this improvement is in place, we foresee many more 
systems making use of this functionality. 
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