
Planning Delayed-Response Queries and Transient
Policies under Reward Uncertainty

Robert Cohn
Computer Science and

Engineering
University of Michigan
rwcohn@umich.edu

Edmund Durfee
Computer Science and

Engineering
University of Michigan

durfee@umich.edu

Satinder Singh
Computer Science and

Engineering
University of Michigan

baveja@umich.edu

ABSTRACT
We address situations in which an agent with uncer-
tainty in rewards can selectively query another agent/human
to improve its knowledge of rewards and thus its pol-
icy. When there is a time delay between posing the
query and receiving the response, the agent must deter-
mine how to behave in the transient phase while wait-
ing for the response. Thus, in order to act optimally the
agent must jointly optimize its transient policy along
with its query. In this paper, we formalize the afore-
mentioned joint optimization problem and provide a
new algorithm called JQTP for optimizing the Joint
Query and Transient Policy. In addition, we provide a
clustering technique that can be used in JQTP to flex-
ibly trade performance for reduced computation. We
illustrate our algorithms on a machine configuration
task.

Keywords
Human-robot/agent interaction, Reward structures for learning, Sin-
gle agent Learning

1. INTRODUCTION
The work described in this paper addresses a problem that arises

when one agent (which we will refer to as the robot) is acting on
behalf of another agent (which we will refer to as the (human) op-
erator). The robot should act so as to bring about states of the world
that satisfy the preferences of the operator, but in complex environ-
ments the effort required of the operator to express preferences that
account for every possible circumstance is prohibitive. In this pa-
per, we assume that the operator’s preferences are expressed as a
reward function. Thus, in all but very simple domains the robot is
inherently uncertain about some aspects of the operator’s true re-
ward function. Should the world the robot encounters veer into re-
gions where its uncertainty over the operator’s true rewards is high,
the robot’s only way to reduce its uncertainty is to ask the operator
one or more queries.

Such a robot is semi-autonomous: it can behave autonomously
for considerable intervals of time (in more routine circumstances
where the operator’s preferences are unambiguously clear) but might
periodically need human assistance. Because its human operator is
only called on to help infrequently, the operator’s valuable cogni-

The Seventh Annual Workshop on Multiagent Sequential Decision-
Making Under Uncertainty (MSDM-2012), held in conjunction with
AAMAS, June 2012, in Valencia, Spain.

tive capabilities will be shared with other tasks (such as operating
other robots). Thus, we assume that the operator is not necessarily
paying attention to the robot at all times. When the robot asks for
assistance, the operator might require some (variable) time to com-
plete or suspend her current cognitive activities, to understand what
exactly the robot is asking, to introspect to discern an appropriate
answer, and to articulate the response. Delays in communication
channels can further extend the time lapse between when the robot
asks a query and when it receives a response.

Because getting a response from the operator incurs cost (dis-
tracting the operator from other possibly valuable cognitive tasks),
the robot must choose with care when to query and what to query
about. Furthermore, because receiving a response might take some
time, the robot needs to decide what to do while waiting. In fact, be-
cause the value of a query response often depends on what state the
robot is in when that response arrives, the decisions about what to
ask and what to do while waiting for the response are intertwined.

We focus in this paper on the formulation and solution of this
joint sequential decision problem that the robot faces. We should
note that in the treatment we provide here, the other agent in the
system—the human operator—is simply assumed to provide a (truth-
ful) response to the posed query after some (stochastic) delay. Thus,
the sequential decision problem we consider here is multiagent only
in a degenerate sense, in that the query response policy of the oper-
ator is assumed fixed. Nevertheless, solving the robot’s intertwined
problems of deciding on a query and on a transient policy to follow
while awaiting the response is itself challenging, and is influenced
by the operator’s responsiveness.

In the remainder of this paper, we formally define this problem,
and then identify aspects of the problem structure that can be ex-
ploited as part of a greedy myopic approach. Finally, we describe a
technique for reducing computation in a flexible way by clustering
together hypothetical future reward function beliefs arising from
potential responses to queries.

2. PROBLEM DEFINITION
In this section, we define the two interacting processes that con-

stitute the overall problem faced by the (robot) agent, the decision-
making process that models the agent’s interaction with the envi-
ronment and then the reward-knowledge process which models the
agent’s interaction with the operator.

Decision-Making Process
First we define the two elements that form the decision-making

process faced by the agent, namely controllable Markov processes
and uncertainty over reward functions.

In a Controlled Markov Process (CMP), at time t the agent oc-

cupies state st ∈ S, executes an action at ∈ A, and stochastically
transitions to state st+1 with probability governed by transition
function T (st+1|st, at). Given any reward function R : S × A→
< that maps states and actions to reals, the value function of a pol-
icy π ∈ Π, where π : S → A, is
V πR (s) , E[

∑∞
t=0 γ

tR(st, at)|s0 = s, π], the expected discounted
sum of rewards achieved when the agent starts in state s and be-
haves according to policy π. Thus, a reward function R induces a
partial ordering over policies for a CMP. The optimal policy π∗R
satisfies V π

∗
R

R ≥ V πR ∀π ∈ Π and is guaranteed to exist; its value
function V π

∗
R

R is termed the optimal value function and denoted
V ∗R . The optimal value function and corresponding optimal policy
can be computed by algorithms such as value iteration and policy
iteration.

CMPs are identical to MDPs except that, unlike MDPs, CMPs
do not assume that the rewards are an observation from the envi-
ronment. Instead, CMPs treat rewards as an expression of a (oper-
ator’s) preference ordering over policies.

In this paper, we assume that an agent knows the CMP, but has
uncertainty over which reward function is the operator’s true re-
ward function. The uncertainty is expressed as a distribution ψ ∈ Ψ
over a finite set of reward functions {R1, R2, · · · , Rn} (we will
interchangeably use ψ as a distribution and as a knowledge-state).
The expected value function with respect to a reward function dis-
tribution ψ that never changes is defined as follows:

V πψ (s) , ER∼ψ[V πR (s)]

= ER∼ψ
[
E[

∞∑
t=0

γtR(st, at)|s0 = s, π]
]

= E[

∞∑
t=0

γtRψ(st, at)|s0 = s, π], (1)

where R ∼ ψ denotes reward function R drawn with probability
governed by ψ, and where Rψ(s, a) ,

∑n
i=1 ψ(i)Ri(s, a) is the

mean-reward for state-action pair s, a under distribution ψ (ψ(i)
denotes the probability assigned to reward function Ri by ψ). The
Bayes-optimal policy π∗ψ , arg maxπ V

π
ψ and the corresponding

Bayes-optimal value function is denoted V ∗ψ . Note that solving for
the Bayes-optimal policy with uncertainty only over rewards as
above is no harder than solving a traditional MDP [8], so long as
the mean-reward function can be calculated efficiently.

In this paper we consider situations in which an agent’s decision-
making problem is a CMP with uncertain rewards, but where the
uncertainty over reward functions is not fixed for all time because
the agent has the capability of actively querying its operator to ac-
quire information about the distribution over rewards.

Reward-Knowledge Process
Here we consider CMPs with reward uncertainty in which the

agent has the ability to query its operator about the reward func-
tion, where the operator in turn responds to these queries with some
stochastic temporal delay. The response to a query is informative in
some way about the true reward function, and thus potentially leads
to an update to the distribution over rewards, but otherwise has no
effect on the CMP. We will assume that the agent can only have
one outstanding query at a time, and that each query has an asso-
ciated cost. We now formalize the reward-knowledge process as a
controlled semi-Markov process (CsMP).

The state of the reward-knowledge process is the distribution
ψ over rewards {R1, R2, · · · , Rn} and the number of time steps
since the last querying action was taken. Let the initial distribu-

tion or state be denoted ψ0. The actions of this reward-knowledge
process are queries from set Q = {q1, q2, · · · , qm}. Examples of
the form of queries include asking about the reward for some state-
action pair, and about the optimal action in some state. For the pur-
poses of developing this formal framework, the form of the query q
as well as the form of the response o is irrelevant. What matters is
at what time step the query returns a response, and what changes to
the distribution over reward functions are caused by the query re-
sponse. Specifically, let Fq(τ) denote the probability that query q
returns τ time steps after it is asked; we will assume that all queries
return within τmax time steps of being asked.

Let Hq(ψ′|ψ) represent the probability that the distribution over
reward functions is ψ′ given that query q was asked in distribution
ψ; each possible response to a query can potentially lead to a differ-
ent next distribution ψ′. Denote the support of Hq(ψ′|ψ), i.e., the
set of posterior beliefs possible given q is asked in belief state ψ,
as Ψ(ψ, q). This set can be computed by considering all possible
responses to q. For example, in the experiments in the paper, we
consider action-queries, which query for the optimal action given
some state. The response can then be used to update the agent’s
reward function distribution, and so Ψ(ψ, q) can be computed by
performing a Bayes update for each action possible in the state be-
ing queried (see [4],[8] for details).

We emphasize the semi-Markov nature of this controlled pro-
cess; the state does not change and no query-action choice is avail-
able until the previous query returns. Finally, the cost of asking
query q is denoted c(q), where c(q) ≤ 0. The states and actions of
the decision-making process will be distinguished from the corre-
sponding quantities in the reward-knowledge process by calling the
latter knowledge-states and queries respectively.

Joint Reward-Query CMP
Above we defined two factored processes: a decision-making

process that is modeled as a CMP, and a reward-knowledge pro-
cess that is modeled as a CsMP. Given fixed policies in each of
the two processes, their dynamics, i.e., their evolution of state, are
completely uninfluenced by each other. Thus the only way these
processes interact is that each influences what the agent should
do in the other process. Specifically, the reward-knowledge pro-
cess defines the evolving mean-reward function for the decision-
making process. Therefore, the best choice of query in the reward-
knowledge process depends on the likely state of the agent in the
decision-making process when the query returns, and the best be-
havior of the agent in the decision-making process whilst waiting
for a query to return depends on the query and its likely responses
and temporal delay. Planning in domains with this highly structured
interaction is at the heart of this paper. Hereafter we will refer to
the joint reward-knowledge and decision-making processes as the
Reward-Query CMP or RQCMP.

3. JOINT QUERY AND TRANSIENT-POLICY
PLANNING

The general problem of planning jointly optimal query and ac-
tion policies in RQCMPs presents a challenging optimization prob-
lem, which in this paper we will approximate by repeated myopic
planning. Specifically, we consider what query an agent should se-
lect and how it should act whilst waiting for the query to return, ig-
noring the possible effects of future queries. It is repeated myopic
planning because we repeat this myopic joint optimization when-
ever a query returns.

Query+Transient-Policy Value Function. Consider the expected
discounted summed value of mean-rewards as a function of state
s, query q, and transient non-stationary policy π ∈ Πτmax (where
Πτmax is the set of non-stationary policies defined from the current
time step to τmax additional time steps). We emphasize that π is
transient because it terminates when the query returns, and non-
stationary because in general the policy maps states and “time since
the start of the policy” to actions. This query+transient-policy value
function can be decomposed into three components by exploiting
the factored structure of RQCMPs. Formally, when the knowledge-
state is ψ and there is no outstanding query (recall that only one
outstanding query is allowed at a time),

Qψ(s, q, π) = c(q) + rqψ(s, π) (2)

+
∑
s′

T q(s′|s, π)
∑

ψ′∈Ψ(ψ,q)

Hq(ψ
′|ψ)V ∗ψ′(s

′)

(See Appendix for a derivation.) The first term, c(q), is the cost of
asking the query. The second term is the expected value of the dis-
counted sum of mean-reward obtained by the transient policy until
the query returns; the expectation here is over both the random state
transitions in the decision-making process as well as the random-
ness over return times. More formally, the second term is defined
as

rqψ(s, π) ,
τmax∑
τ=0

Fq(τ)E
[τ−1∑
k=0

γkRψ(sk, ak)|s0 = s, π
]
.

The third term is the expected value of the state at the time the
query returns; here the expectation is over the random state of the
decision-making process when the query returns. Note that the V ∗ψ′
is the optimal posterior value that is computed assuming no fur-
ther queries; hence the myopic nature of the query+transient-policy
value function. More formally,

T q(s′|s, π) ,
τmax∑
τ=1

Fq(τ)γτP (s′|s, π, τ)

where P (s′|s, π, τ) is the probability that the state in the decision
making process τ steps after the non-stationary transient policy π
starts in state s is s′. Furthermore note that T q takes into account
the effect of discounting because of the delay in query response. In
summary, Equation 3 defines the expected discounted sum of mean-
rewards obtained by an agent if it asks query q in state s and then
behaves according to policy π until the query returns, after which
the agent behaves optimally forever with respect to the posterior
distribution over rewards (without asking any additional queries).

Given the definition of the query+transient-policy value function
above, we can define three optimization problems (we will use the
first and second in our empirical results below; the third is included
here for completeness):

Joint Query and Transient-Policy Optimization

〈q∗, π∗〉|s, ψ = arg max
q∈Q,π∈Πτmax

Qψ(s, q, π) (3)

where Πτmax is the set of non-stationary policies of length τmax.
Transient-Policy Optimization

π∗|s, q, ψ = arg max
π∈Πτmax

Qψ(s, q, π) (4)

Query Optimization

q∗|s, ψ, π = arg max
q∈Q

Qψ(s, q, π)

Relationship to Options. The form of the query+transient-policy
value function in Equation 3 resembles the option-value functions
constructed in the options literature [13], where algorithms have
been developed to solve for the option-value function. However,
our form has two key differences. First, we have a joint optimiza-
tion over the query space and transient-policy space, rather than an
optimization over some option space. The transient-policy space
is much larger than the usual case of a small number of options
usually considered. Second, we have an additional inner sum over
knowledge-states that takes into account possible changes caused
by the query and its response.

Algorithm Components
We now present our Joint Query and Transient Policy (JQTP)

algorithm, which solves the Joint Query and Transient-Policy Op-
timization problem (Equation 3) for a given s and ψ. JQTP solves
the transient-policy optimization problem for each possible query
by solving a nested optimization problem as described below, and
then picks the best query along with its paired optimal transient pol-
icy. We rewrite the transient-policy optimization problem below for
reference (noting that c(q) does not depend on the transient policy):

π∗|s, q, ψ = arg max
π∈Πτmax

{
rqψ(s, π)

+
∑
s′

T q(s′|s, π)
∑

ψ′∈Ψ(ψ,q)

Hq(ψ
′|ψ)V ∗ψ′(s

′)
}
.

We can solve this transient-policy optimization problem by defin-
ing an induced terminal-reward problem in which the value for a
particular non-stationary π depends on the summed discounted re-
wards rqψ(s, π) it receives until the query is returned, at which point
it receives terminal reward

∑
ψ′∈Ψ(ψ,q) Hq(ψ

′|ψ)V ∗ψ′(s
′) depend-

ing on which state s′ it occupies. Note that both of the terms in
the terminal reward, Hq(ψ′|ψ) and V ∗ψ′(s

′) are independent of π
(the distribution over s′ is a function of π, which links the reward-
knowledge and decision-making processes). Thus, this terminal-
reward process can be represented as a non-stationary CMP, solv-
able by standard MDP solving techniques.

However, constructing this transient process requires the expen-
sive computation of

∑
ψ′∈Ψ(ψ,q) Hq(ψ

′|ψ)V ∗ψ′(s
′) for every s′ in

which the agent might receive the response to its query, each of
which requires solving the mean-reward MDP associated with each
possible ψ′. Thus, as specified, JQTP’s asymptotic complexity de-
pends linearly on both the number of states reachable within τmax
time steps, and the number of possible posteriors considering all
possible queries (the latter of which amounts to

∑
q∈Q |Ψ(ψ, q)|

value calculations). The latter issue precludes JQTP as stated from
being applied to problems with large query spaces without further
approximations. In the next section, we present such an approxima-
tion in the form of a clustering technique.

Posterior Belief Clustering
In this section, we propose reducing the number of different op-

timal posterior value (V ∗ψ′(·)) calculations in Equation 3 by clus-
tering posterior beliefs, and calculating the posterior value only
once for each cluster (sharing that value among each member of
the cluster). This idea is founded on the principle that similar pos-
teriors should share similar values. We now show that this princi-
ple has theoretical justification by bounding the maximal difference
between the optimal posterior value functions for posteriors which
induce similar mean reward functions. The following Lemma, a
result similar to those proved in [10] and [15], will be useful in
proving our bound:

LEMMA 1. If ||R1 −R2||∞ ≤ ε, then for all π,
||V πR1

− V πR2
||∞ ≤ ε

1−γ ,
where ||x||∞ = maxi xi.

PROOF. Using the fact that V πR1
= (I − γPπ)−1R1, and

V πR2
= (I − γPπ)−1R2,

||V πR1
− V πR2

||∞ = ||(I − γPπ)−1(R1 −R2)||∞,

where (I − γPπ)−1(R1 − R2) is the value function of policy π
for the reward function R′ = R1 − R2. By assumption ||R′||∞ ≤
ε and thus with reward function R′ the maximum value for any
state would be ε

1−γ and the minimum value for any state would be
− ε

1−γ .

THEOREM 1. Given two reward functions R1 and R2, if
||R1 −R2||∞ ≤ ε, then ||V ∗R1

− V ∗R2
||∞ ≤ ε

1−γ .

PROOF. Let π∗1 be optimal w.r.t.R1 and π∗2 be optimal w.r.t.R2.
Then, we know that ∀s

V
π∗1
R1

(s) ≤ V
π∗1
R2

(s) +
ε

1− γ (By Lemma 1)

≤ V
π∗2
R2

(s) +
ε

1− γ
and

V
π∗1
R1

(s) ≥ V
π∗2
R1

(s)

≥ V
π∗2
R2

(s)− ε

1− γ (By Lemma 1)

Thus ∀s
V
π∗2
R2

(s)− ε
1−γ ≤ V

π∗1
R1

(s) ≤ V π
∗
2

R2
(s) + ε

1−γ .

We now show that when the agent has uncertainty only in rewards,
the maximal difference in optimal value between two posteriors
can be bounded by the maximal difference between the mean re-
ward functions induced by the two posteriors:

THEOREM 2. Given distributions ψ1 and ψ2 over reward func-
tions,
||ER1∼ψ1 [V ∗R1

]− ER2∼ψ2 [V ∗R2
]||∞ ≤ 1

1−γ ||Rψ1 −Rψ2 ||∞.

PROOF. ||ER1∼ψ1 [V ∗R1
]− ER2∼ψ2 [V ∗R2

]||∞
= ||V ∗R̄ψ1

− V ∗R̄ψ2
||∞

≤ 1
1−γ ||Rψ1 −Rψ2 ||∞.

We now present our clustering algorithm, which given the agent’s
current state s and belief ψ, groups all possible posterior beliefs
(ψ′ ∈ ∪q∈QΨ(ψ, q)).

K-means Clustering of Posterior Beliefs. Theorem 2 above shows
that if the mean reward functions induced by two posteriors are
close, the difference in expected value for a particular state given
the two posteriors is small. We make use of this fact to save compu-
tation within JQTP in calculating

∑
ψ′∈Ψ(ψ,q) Hq(ψ

′|ψ)V ∗ψ′(s
′)

for each q and state s′ reachable (from s) as follows.

Given the agent’s current state is s, we cluster all posteriors ψ1, ψ2

in ∪q∈QΨ(ψ, q) using K-means with the following distance func-
tion:

D(ψ1, ψ2) , |Rψ1 −Rψ2 |1,

where each posterior ψ′ is assigned to cluster J(ψ′). We can then
use the clustering to compute the needed terms just for the clus-
ter center and to use them as approximations to the terms for all
the posteriors that fall into that cluster. Specifically, for each s′ the
agent could occupy when the query is returned and cluster j, we
compute the value given the posterior mean reward function ψj
represented by the center of j,

Ṽ ∗j (s′) , V ∗
ψj

(s).

Then, for each s′ and q, we estimate

∑
ψ′∈Ψ(ψ,q)

Hq(ψ
′|ψ)V ∗ψ′(s

′) ≈
∑

ψ′∈Ψ(ψ,q)

Hq(ψ
′|ψ)Ṽ ∗J(ψ′)(s

′).

We term the JQTP algorithm that utilizes this clustering esti-
mation technique JQTP_Clustering. Note that the number of clus-
ters is an input parameter to the K-means algorithm and hence to
the JQTP_Clustering algorithm; this will determine the amount of
computational savings achieved by clustering as well as the quality
of the approximation. In Section 4 we will show empirical results
that demonstrate the significant tradeoffs in using JQTP_Clustering
compared to JQTP.

4. EXPERIMENT: MACHINE CONFIGURA-
TION

In Section 3 we introduced JQTP, an algorithm that, at a partic-
ular decision point, finds an approximately optimal joint query and
action policy as prescribed by Equation 3. The approximation is
that JQTP is myopic, assuming that only one query can be asked
and can only be asked at the current time step. In addition, we pre-
sented a method for clustering posterior beliefs that can be used to
reduce the computation required by JQTP, and proved a worst-case
bound on the difference in value given two posterior beliefs. In this
section, we give a preliminary empirical evaluation of JQTP, com-
paring its performance and computational needs to alternative algo-
rithms for computing a joint query and transient policy. In addition,
we examine the degree to which clustering to reduce computation
reduces the quality of the joint query and transient policy found.

Domain Description. We conduct our evaluation in the Machine
Configuration domain, in which the agent’s task is to build a ma-
chine for its user consisting ofN components {c1, c2, ..., cN}. There
are M different types {ti1, ti2, ..., tiM} that can be assigned to each

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 V
al

ue

Number of Clusters (K)

Value in Machine Configuration

"JQTP"
"JQTP_Clustering"

"Optimal_Query_For_Prior_Policy"
"Prior_Policy"

"Optimal_Query_For_Wait_Policy"

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

Number of Clusters (K)

Computation time in Machine Configuration

"JQTP"
"JQTP_Clustering"

"Optimal_Query_For_Prior_Policy"

Figure 1: (a) Expected value of JQTP with clustering as a function of number of clusters. Expected value of other non-clustering
methods shown for comparison. Error bars are confidence intervals with p-value 0.05. (b) Average computation time to select query
and transient policy in seconds. Values were computed via Value Iteration, and value functions for each candidate reward function
were precomputed to allow for fast Bayes updates. Computation for Optimal_Query_For_Wait_Policy not shown but similar to
Optimal_Query_For_Prior_Policy as they both compute one value per potential query, and computation for Prior_Policy is on the
order of miliseconds. Error bars are negligible. Experiments were run on a 3.07GHz Intel R©Core TMi7 processor with 8GB of RAM.

component ci. We refer to the type assignment for component ci
as t(ci). The configuration agent has several actions at its disposal.
It can select a next component to assign a type to. If it has already
selected a component, it can assign a type to it. Hence, configuring
a component is a two-step process (selecting the component and
then assigning it a type). The agent also has an action of waiting,
which leaves a partial configuration unchanged for the time step.
However, at each time step until the configuration is completed and
given to the user, the agent receives a penalty of−0.2; hence, there
is a sense of urgency in completing the task, as waiting is costly.

The user has preferences over the assignment to each component
that can be modeled in terms of reward function R(t(ci)), and the
reward for a complete configuration is the sum of the component
reward functions

∑N
i R(t(ci)). The configuration agent, however,

may not know the user’s component reward functions, and repre-
sents its uncertainty as a probabilistic distribution over the com-
ponents’ possible reward functions. To reduce its uncertainty, the
agent can pose to the user an action-query [4], which asks the user
“What would you do?” given a partially specified machine, where
the question may only be posed as asking which type to specify for
a particular component. The user’s response, which for our experi-
ments comes after a deterministic delay of 2 time units, allows the
configuration agent to improve its probabilistic model of the user’s
true component reward functions. Here we assume the user’s re-
sponse is deterministic in that the user is sure of the optimal action;
we refer to our earlier work [4] for handling noise in the user’s re-
sponses. Note that we have not included every possible state in the
query space, as queries asking which part to configure next are use-
less since the user is indifferent as to in which order the parts are
configured.

Hence, the configuration agent faces a decision about what query
(if any) to pose, and what policy to follow while waiting for the re-
sponse. Intuitively, the agent might ask about a component whose
reward function it is least certain about. While awaiting a response,
it might assign components about which it is reasonably certain. In
the extreme case where it is sufficiently uncertain about any com-

ponents, and the possible reward values are high enough, the agent
might justifiably choose to wait for a response before making any
assignment. (Note: We assume that once a component is assigned
it cannot be changed.) Or, when query costs are high enough, the
agent might make assignments as best as it can without asking any
queries.

Experiment Setup. We compare five algorithms in the Machine
Configuration domain. As a baseline, the first algorithm (Prior_Policy)
does no querying, and simply follows the optimal policy given
the agent’s current model of the possible reward functions. The
second algorithm (Optimal_Query_For_Prior_Policy) incorporates
JQTP’s technique of iterating through the query space to find a (my-
opically) optimal query given a transient policy, but again assumes
the agent follows the prior policy (corresponding to acting accord-
ing to Equation 4 with π=π∗ψ). That is, Optimal_Query_For_Prior_Policy
follows a transient policy that has not been formulated to comple-
ment the query that is being asked, but has a chance to update its
policy according to the response of its query before the machine
has been completely configured (since a minimum of 6 actions
must be taken in total to complete the task). The third algorithm,
Optimal_Query_For_Wait_Policy, is at the other extreme: it fol-
lows the “always wait” transient policy and optimizes the query for
it. The fourth algorithm, JQTP, is the full implementation of JQTP
as described in Section 3, and finds a joint query and transient pol-
icy that together are guaranteed to maximize expected (myopic)
value (acting according to Equation 3). Finally, the fifth algorithm
(JQTP_Clustering) is JQTP with posterior belief clustering, where
we vary the K parameter used in K-means to explore tradeoffs be-
tween computational cost and solution quality.

We use a small version of the Machine Configuration domain
with query cost set to 0 for every query (varying query costs did
not produce any interesting additional trends), discount set to 0.9,
and N and M both set to 3. The algorithms were required to select
a query at the start state (except for Prior_Policy), and were not
allowed any additional queries. We measured the expected perfor-

mance in terms of value accrued by each algorithm, where the ex-
pectation was estimated over 180 trials: trials differed by the priors
used by the agents (though identical across the agents for a given
trial). On each trial, 10 candidate settings of R(t(ci)) were sam-
pled, where the reward for each possible component type was sam-
pled uniformly from [0, 3], and each agent’s prior was uniform over
these 10 candidate settings. For each trial, values were measured as
an expectation with respect to the trial’s prior. Even though the can-
didate reward functions were sampled uniformly, the small number
of samples biased the agent’s priors towards expecting larger or
smaller rewards for particular component types.

Results. Figure 1a shows our results for the above experiment.
As expected, JQTP performs best since it is optimal in this setting
where only one query may be asked and must be asked at the be-
ginning. Somewhat surprisingly, Optimal_Query_For_Wait_Policy
performs worst, even worse than electing not to query at all. This is
due to the fact that taking two steps longer to configure the ma-
chine penalizes the agent more than it gains by asking the best
query which will be received before committing to any compo-
nent types. Optimal_Query_For_Prior_Policy performs better than
Prior_Policy but worse than JQTP. This is because, as intuitively
expected, JQTP queries to determine the user’s preferences about
components it is less certain about, and while waiting assigns com-
ponents that it is more certain about. In contrast,
Optimal_Query_For_Prior_Policy assigns components in a rigid
order (unaffected by querying) and so decides on a query around
this order, meaning that sometimes it asks a query that is less use-
ful because an answer to a more useful query would be received af-
ter the corresponding component would already be assigned. These
results show that in this domain, optimal transient behavior (paired
with its optimal query) lies somewhere in between the two extremes
of always waiting for a response before taking irreversible actions
and never waiting.

Lastly, JQTP_Clustering displays improvement as the number of
clusters used in K-means is increased (as it makes finer distinctions
between queries’ results), approaching the performance of JQTP
after K = 20. This means it is able to perform nearly as well as
JQTP by evaluating only 20 posterior beliefs per reachable state,
as opposed to JQTP’s evaluation of all (382) possible posterior be-
liefs per reachable state. The computational implications are shown
in Figure 1b: in this domain, on average, JQTP_Clustering can per-
form nearly as well as JQTP without clustering with only approx-
imately 30% of the computation. Note that although the computa-
tion time shown includes that of performing the clustering step, its
impact is minimal.

These positive results can be explained by noticing that the opti-
mal number of clusters in this problem is 10: there are 10 distinct
posteriors possible after asking a single query (3 distinct posteriors
are possible for each query asking about one of the three compo-
nents, and 1 posterior equaling the prior is possible if the user were
to respond with “wait”). Clustering allows JQTP to avoid comput-
ing redundant values, and further shows a graceful degradation in
performance as less similar posteriors are grouped. Overall, these
results suggest that clustering posterior beliefs shows promise as
an effective means for flexibly balancing performance and compu-
tation in domains with time-delayed query responses.

5. RELATED WORK
Our previous work ([5], [4]) and similar work [6] deal with plan-

ning under different forms of query and environment uncertainty.
These methods can be seen as bridging Bayesian Reinforcement
Learning [12] and POMDP Planning [7] whereby the methods ex-

ploit structured uncertainty and observations. However, they do not
consider the temporal dynamics and concurrency induced by delays
in receiving query responses as we do in this work.

Temporal abstraction and concurrency are issues that have been
addressed together before in Hierarchical Reinforcement Learning
[2] and other similar work [14], but these methods do not con-
sider environment model uncertainty explicitly, and thus do not ex-
ploit the factored relationship between physical state and knowl-
edge state with respect to queries and actions, as JQTP does.

Our setting can be viewed as a degenerate multiagent system in
which one agent (the operator, which we represented by the reward-
knowledge process) has a fixed policy (i.e., when the agent queries
q, from the agent’s viewpoint the operator responds according to
Hq(ψ

′|ψ) after a stochastic delay). This structured interaction al-
lowed us to develop a more scalable solution than solutions de-
veloped for similar problems explored in the rich multiagent com-
munication literature, where in the typical case agents may com-
municate their observation histories (or portions of them). In par-
ticular, Spaan et al. [11] analyzed multiagent communication un-
der state uncertainty with stochastic communication delays, but as-
sumed that communication involves exchanging entire histories of
observations, eliminating the what to query question that we ad-
dress. Further, their approach assumes that communication is either
delayed by one time step or fails entirely, while our approach allows
for any bounded communication delay distribution. Roth et al. [9]
provide an algorithm for the what to query problem in a similar
setting to Spaan et al. [11], but do not account for stochastic com-
munication delays. Thus, our setting can be roughly viewed as the
intersection of these settings generalized to allow for arbitrary com-
munication effects, but specialized to the case in which uncertainty
is only in rewards, and only two agents are present, with the query-
answering agent being a degenerate agent whose state merely con-
sists of the duration of time since the currently outstanding query
was asked, allowing for a more scalable solution.

A potentially interesting alternative way of framing our prob-
lem in the special case of single time step response delay is as a
transition-independent Dec-MDP [3], in which one agent controls
the CMP and the other agent controls the reward-knowledge pro-
cess, and the joint reward function depends on the states of both.
Whether algorithms for solving transition independent Dec-MDPs
can be fruitfully adapted to our setting is a subject we leave for
future work.

Lastly, [1] have explored clustering observations in POMDPs. In
their work, the aim is to reduce the size of a large observation set of-
fline, which they accomplish by clustering observations according
to their emission probabilities across all possible states. Our clus-
tering approach, while related in that we aim to reduce the num-
ber of possible posterior beliefs that the agent reasons over, instead
clusters possible posterior beliefs the agent might encounter online
during the planning stage. Further, our setting is more specialized
in that the agent’s uncertainty is in the reward function rather than
an arbitrary state space, which we exploit by clustering posterior
beliefs according to the distance between their induced mean re-
ward functions.

6. CONCLUSION AND FUTURE WORK
In this paper we investigated the problem of how an agent can act

optimally when it has reward uncertainty but can query its human
operator to receive a response (after a stochastic delay) that reduces
its uncertainty. We formulated a solution to the problem as a joint
optimization over the space of queries and transient policies, and
provided a Joint Query and Transient Policy (JQTP) algorithm that
optimally solves the myopic approximation of this problem by ex-

ploiting factoring between the agent’s knowledge state and physical
state with respect to queries asked and actions taken. We then pro-
posed a clustering algorithm for flexibly reducing the computation
required by JQTP in exchange for performance loss, and presented
empirical results showing potential benefits of JQTP and that the
clustering algorithm can effectively reduce computation while in-
curring only small performance loss relative to JQTP.

Our ongoing work is in two directions. First, we are investigating
the utility of leveraging further domain structure in order to more
effectively cluster query-response pairs, using ideas of influence-
based abstractions [16]. Second, we are looking to apply our method
to a physical robot and human operator situation. Our long-term ef-
forts are to extend our framework to multiagent sequential decision
problems involving more querying agents (vying for the attention
of a single human/agent responder), and hence where the policy of
the responder (over how to prioritize queries) should be optimized
jointly with the policies of the querying agents. Lastly, it would
be interesting to explore other forms of uncertainty (such as in the
transition function) in the context of delayed-response queries.

Acknowledgments.
We thank the anonymous reviewers for numerous helpful sug-

gestions. This research was supported in part by the Ground Robotics
Reliability Center (GRRC) at the University of Michigan, with fund-
ing from government contract DoD-DoA W56H2V-04-2-0001 through
the US Army Tank Automotive Research, Development, and En-
gineering Center. UNCLASSIFIED: Dist. A. Approved for public
release.

7. REFERENCES
[1] A. Atrash. Efficient planning and tracking in pomdps with

large observation spaces.
[2] A. G. Barto and S. Mahadevan. Recent advances in

hierarchical reinforcement learning. 13:2003, 2003.
[3] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman.

Transition-Independent Decentralized Markov Decision
Processes. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multi Agent Systems,
pages 41–48, Melbourne, Australia, July 2003. ACM Press.

[4] R. Cohn, E. H. Durfee, and S. Singh. Comparing
action-query strategies in semi-autonomous agents. In
AAAI’11, pages –1–1, 2011.

[5] R. Cohn, M. Maxim, E. Durfee, and S. Singh. Selecting
operator queries using expected myopic gain. IAT, 2:40–47,
2010.

[6] F. Doshi and J. Pineau. Reinforcement learning with limited
reinforcement: Using bayes risk for active learning in
pomdps. In ICML, 2008.

[7] J. Pineau, G. Gordon, and S. Thrun. Anytime point-based
approximations for large pomdps. Journal of Artificial
Intelligence Research, 27:2006, 2006.

[8] D. Ramachandran and E. Amir. Bayesian inverse
reinforcement learning. In IJCAI, pages 2586–2591, 2007.

[9] M. Roth, R. Simmons, and M. Veloso. What to
communicate? execution-time decision in multi-agent
pomdps. In The 8th International Symposium on Distributed
Autonomous Robotic Systems (DARS), 2006.

[10] S. P. Singh and R. C. Yee. An upper bound on the loss from
approximate optimal-value functions. In Machine Learning,
pages 227–233, 1994.

[11] M. T. J. Spaan, F. A. Oliehoek, and N. Vlassis. Multiagent
planning under uncertainty with stochastic communication

delays. In Proc. of Int. Conf. on Automated Planning and
Scheduling, pages 338–345, 2008.

[12] M. Strens. A bayesian framework for reinforcement learning.
In In Proceedings of the Seventeenth International
Conference on Machine Learning, pages 943–950. ICML,
2000.

[13] R. Sutton, D. Precup, and S. Singh. Between mdps and
semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112:181–211,
1999.

[14] D. S. Weld. Planning with durative actions in stochastic
domains.

[15] R. Williams and L. C. Baird. Tight performance bounds on
greedy policies based on imperfect value functions.
Technical report, 1993.

[16] S. J. Witwicki and E. H. Durfee. Influence-based policy
abstraction for weakly-coupled Dec-POMDPs. In
ICAPS-2010, pages 185–192, Toronto, Canada, May 2010.

APPENDIX
Here we show the derivation of Equation 3, which represents the
expected discounted sum of mean-rewards of the agent which asks
query q, follows transient policy π, and then acts according to its
new knowledge state without asking any more queries. Let the ran-
dom time at which the query returns be τ . Let {st, at} be the infi-
nite random sequence of state-action pairs generated by following
transient policy π until the query returns and following the optimal
decision-making policy thereafter, and let {ψt} be the infinite ran-
dom sequence of knowledge states the agent encounters given that
it queries q and then asks no more queries. Note that {ψt} is ψ until
the (random) time step at which the query returns after which point
it is some (random) ψ′. Then,

Qψ(s, q, π)

, c(q)

+ E{st,at},{ψt}[
∞∑
t=0

γtRψt(st, at)|s0 = s, ψ0 = ψ, q, π]

= c(q)

+

τmax∑
τ=1

Fq(τ)E{st,at}[
τ−1∑
t=0

γtRψt(st, at)|s0 = s, ψ0 = ψ, q, π]

+

τmax∑
τ=1

Fq(τ)E{st,at},ψ′ [
∞∑
t=τ

γtRψt(st, at)|s0 = s, ψ0 = ψ, q, π∗ψ′].

The second term is rqπ(s), defined in the main text. The third term
represents the rewards collected by the agent after q has been re-
turned, at which point it updates its knowledge state to ψ′, never
to be updated again (the myopic assumption), and begins selecting
actions and queries according to π∗ψ′ :

τmax∑
τ=1

Fq(τ)E{st,at},ψ′
[∞∑
t=τ

γtRψ′(st, at)|s0 = s, q, ψ0 = ψ, π∗ψ′
]

=

τmax∑
τ=1

Fq(τ)
∑

ψ′∈Ψ(ψ,q)

Hq(ψ
′|ψ)E{st,at}

[∞∑
t=τ

γtRψt(st, at)|s0 = s, π∗ψ′
]

=
∑
s′∈S

T q(s′|s, π)
∑

ψ′∈Ψ(ψ,q)

Hq(ψ
′|ψ)E{st,at}

[∞∑
t=τ

γt−τRψ′(st, at)|sτ = s′, π∗ψ′
]

whereT q(s′|s, π) ,
τmax∑
τ=1

Fq(τ)γτP (s′|s, π, τ),

and where P (s′|s, π, τ)is the probability that the state τ steps

after the non-stationary policyπ starts in state s is s′. Now,∑
s′∈S

T q(s′|s, π)
∑

ψ′∈Ψ(ψ,q)

Hq(ψ
′|ψ)E{st,at}

[∞∑
t=τ

γt−τRψ′(st, at)|sτ = s′, π∗ψ′
]

=
∑
s′∈S

T q(s′|s, π)
∑

ψ′∈Ψ(ψ,q)

Hq(ψ
′|ψ)V ∗ψ′(s

′),

and so finally we have
Qψ(s, q, π) = c(q) + rqψ(s, π)+∑

s′∈S

T q(s′|s, π)
∑

ψ′∈Ψ(ψ,q)

Hq(ψ
′|ψ)V ∗ψ′(s

′).

