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Abstract-A mathematical model for the kinetics of nonisothermal wet spinning of chemical 

fibers from polymer solutions is proposed. The model gives a way to calculate the kinetics 

of spinning and gelation simultaneously, using the phase diagram with regard to heat and 

mass transfer, layered two-phase patterns, and movable interfaces. The process is calculated 

numerically, and a comparison is made between calculated and experimental data. 

In wet spinning of chemical fibers from polymer solutions, jets of a polymer solution pass through a 

spinning bath containing an agent that coagulates the polymer. The coagulant finds its way into the 

solution jets and accumulates there. When enough of the coagulant has been accumulated, the polymer 

solution is separated into a solid (gel-like) and a liquid phase. The gel-like phase is the primary structure 

of the fiber and controls its properties in many respects. The new polymer phase (gel) is a very viscous 

fluid. Its shear viscosity is high compared with the viscosity of the solution. 

Although separate features of wet spinning of chemical fibers from polymer solutions are thoroughly 

discussed in [1 -3], a general quantitative theory of this process has not been created as yet. Some 

technological and physical problems for this process are studied in [4-7]. Papers [7-10] deal with 

calculating the flow of polymer-solution jets. Numerous attempts to create a model for wet spinning were 

made in [1-10]. However, the well-known models failed to take into account many important factors 

involved in the spinning process: all forces acting on the filament, the kinetics of phase separation in the jet, 

phase-equilibrium diagrams for the polymer-solvent-coagulant system, changes of rheological properties 

in the jet upon gelation, and others. 

The gelation model proposed in [11] includes many important factors such as the phase-equilibrium 

diagram for the polymer-solvent-coagulant system to be formed, heat transfer, the temperature 

dependence of diffusion processes, the existence of a layered two-phase structure in spinning from 

polymer solutions, and a variable filament size in the process. However, that model fails to take into 

account the spinning kinetics. 



The purpose of this paper is to create a kinetic model for the initial step of wet fiber formation 

(spinning) from a polymer solution with regard to the kinetics of phase separation. 

Figure 1 illustrates the pattern of wet spinning from a polymer solution. The pattern includes five 

conventional zones: (I) flow of the solution through the spinneret channel; (II) expansion of the jet 

leaving the spinneret (Barrus effect); (II-III) phase separation, which begins when the solution leaves 

the spinneret and ends when the gelation across the jet is completed; (III-IV) filament extension; (V) 

filament collection. In each zone, the flow of the solution and filament is governed by its own 

mechanism. The first two zones are adequately described in the model proposed in [10]. This paper 

deals mainly with the third and fourth zones of the process. 

The mathematical model to be developed in this paper is based on the following assumptions about 

fiber formation: 

 

Fig. 1. Schematic diagram of wet spinning from 

polymer solutions: (I-V) conventional zones, (1) 

spinneret, (2) solution, (3) gel, and (4) fiber (filament). 

 

(1) The problem is axially symmetric and one-dimensional. The coagulant diffuses solely in the 

radial direction and there is no convection. The fiber is an unbounded cylinder whose radius is small 

compared with the size of the spinning bath. Basic assumptions about gelation are the same as in [11]. 

(2) The contributions of gravity and surface tension to the motion of the jet of a polymer 

solution are neglected. 

(3) The equation governing the motion of the filament is one-dimensional and the axial velocity is 

uniformly distributed over the jet cross section. Basic assumptions for the theory of thin-jet motion 

are the same as in [3]. 

(4) The solution and gel velocities are the same. 



(5) The change in the jet radius due to the Barrus effect, shrinkage upon gelation, and mass 

transfer between the jet and spinning (coagulating) bath are ignored. 

(6) The reference point in describing the process (x= 0) corresponds to the maximum radius of 

expanded jet after the latter has left the spinneret. 

(7) The solution in the coagulating bath is stagnant. 

(8) The process of fiber formation is considered for a single jet in the coagulating bath (interaction 

between jets is ignored). 

(9) The solution and gel deformation in the jet is treated in terms of the Newtonian-liquid flow. 

To describe the time-independent extension of the jet of a polymer solution in phase separation, we 

will consider a balance of forces acting on the moving jet. With the above assumptions and those given in 

[3], this balance can be written as 

 

Frh(x) = Frh(0) + Fin(x) + Fgd(x).                                                                  (1) 

 

The rheological force depends on the elastoviscous properties of the material (polymer solution or gel) 

and on the conditions of its deformation [3-7]. Assuming the additivity of the rheological forces of both 

polymer phases, we obtain 

 

Frh(x) = psSs+pgSg ,                                                                       (2) 
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Fin=G(v-v0).                                                                             (4) 

The fourth assumption transforms the time-independent continuity equation G = ρvS to 

G = v(ρsSs+ ρgSg),                                                     (5) 

 

where ps = µsv’, pg = µgv’, and v' = dv/dx (here and below, the prime stands for differentiation with 

respect to  x). 

Let R0(x) be the current outer radius of the jet and R = R(x) be the coordinate of the gelation front, 

which varies from Ro to r = 0 over the formation path. The current gel thickness Rg(x) will be defined as 

the difference between the filament radius and gelation-front coordinate: Rg(x) = R0(x) - R(x). The areas 

of the phases are given by 



Ss = πR2,    Sg = π(R0
2-R2).                                             (6) 

Differentiating relation (1) with respect to x and substituting expressions (2)-(6) gives an equation that 

governs the motion of the jet: 

π(µgδ/v+φR2)v’’+π[µgδ(µ’g/µg -v’/v)/v+R(2φR’+Rφ)-G/π]v’- 

-Agd[δ/v+(1-k)R2]0.5(1-ξ)v (2-ξ)=0.                                                        (7) 

To solve equation (7), two boundary conditions were used. The initial velocity at x = 0 was 

determined from the continuity equation. The value of the velocity gradient at x = 0 was chosen 

numerically so that the final filament velocity vfin would be equal to the experimental value of this 

quantity in the process to be simulated. 

For the above problem to be closed, it is necessary to consider diffusion and heat transfer in the 

solution jet and, using the assumption that the phases in the system are in equilibrium, to determine the 

kinetics of phase separation, namely, the function Rg(x). According to [ I I ] ,  the heat and mass transfer 

equations can be written as 
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where qg(r, t) = 0 and qs(r, t) = qv.(r, t).  

The initial conditions at x = 0 are 

Ts(r, 0) = Tinit(r),                                                  (10) 

Cs(r, 0) = Cinit(r).                                                  (11) 

We use the following boundary conditions: at r = Ro (the outer filament surface), 
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Cg(R0,0) = Co(x);                                                                (13) 

 



at r = R (the polymer-solution-gel interface), 

 

Cs(R,x) = Cg(R,x),                                                 (14) 
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Ts(R,x) = Tg(R,x),                                                          (16) 
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at r = 0 (the filament center, symmetry conditions), 
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The heat source in (2) accounts for the heat liberated upon mixing the coagulant and solvent [9]. The 

source power is expressed as 
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To determine the coordinate of the gelation front R(x), it is necessary to use the phase-separation 

diagram for the ternary polymer-solvent-coagulant system. This diagram establishes the conditions for 

phase separation and influences the structure of fibers and their physicomechanical properties in wet 

spinning. 

The gel thickness has to be determined by solving the transcendental equation 

C[R(x),x] = Ccr[T(r, x)],                                                           (20) 

where the values of Ccr are taken from the phase diagram. This equation is solved for R = R(x), the 

coordinate of the gelation front. 

The system of equations (7)-(20) is a mathematical model for the uniaxial extension of a 

nonisothermal jet. The variation of temperature along the jet influences its longitudinal viscosity and, 

according to (7), its velocity. At the same time, the jet velocity influences the temperature profile because 

of being involved in equation (9) and through the heat-transfer coefficient in (12). Therefore, the system 

of equations (7)-(20) is closed. Its solution allows us to find the distribution over the formation path not 

only for the velocity and stress, but also for the radius, jet temperature, and gel thickness. 



The presence of the movable boundary brings about additional difficulties in solving the problem. One 

way to pass from the movable to a stationary boundary is to use the von Mises transformation [12], in 

which a new dimensionless variable η is introduced: 

 η= r/R0(x).                                                                         (21) 

The system of equations (7)-(20) was solved using the implicit finite-difference method [12,13]. The 

algebraic system of equations was linearized by the method of iterations [13]. In the calculation, we used 

no more than three iteration steps. The method of iterations was used because the function R0(x) is not 

known in advance and the value of the radius has to be determined in the course of the solution. 

Nonlinear ordinary differential equation (7) in the system of equations (7)-(20) was solved by a fourth-

order Runge-Kutta method with a constant step. The error in calculation did not exceed 1.5% for the 

chosen parameters of the numerical scheme. 

Since the numerical method used in solving the problem fails to determine C0(r, x) analytically, 

gelation in the model given by (7)-(20) was calculated by the following method. When the system of 

heat and mass transfer equations was solved numerically, the distributions of the coagulant 

concentration C(r, xj) and filament temperature T(r, xj) over the filament radius were compared (at each 

step xj in the coordinate x) with the phase diagram constructed in the same coordinates T and C. In doing 

so, we determined the polymer-solution filament fraction of radius R(x) and the remaining gel-like 

filament fraction of thickness Rg(x). 

To estimate the effectiveness of the above mathematical model and its adequacy, calculated results 

were compared with experimental data [10, 14]. In [14], the kinetics of formation of oxalon fibers in the 

poly (n-phe-nylene-l,3,4-oxadiazole) (POD)-sulfuric acid-water system was studied. The dependence 

of the velocity v(x) and filament radius R0(x) on the formation-path length x was measured for various 

values of the spinneret radius, polymer-solution flow rate, and coagulant concentration in the spinning 

bath. 

For numerical simulation, we used the following values of formation parameters, which 

correspond to the experimental conditions reported in [14]: the spinneret channel radius R0(0)= 7.5·10-5 

m; the volume flow rate of the spinning solution g=3.2·10-10 m3/s; the coagulant (water) concentration in 

the spinning bath C0 = 40 mass %; the solvent (sulfuric acid) concentration, 60 mass %; the initial 

polymer concentration in solution Cp = 5.3% in 98% sulfuric acid; the sulfuric acid density ρ1 = 1840 

kg/m3; the POD density ρ2= 1430 kg/m3; the polymer-solution density was determined from the equation 

ρs = 0.053ρ2 + 0.947ρ1; the polymer-gel density was determined from the equation ρg = 0.053ρ2 + 

0.947ρ3, where the 30% sulfuric acid density ρ3 = 1615 kg/m3; the density of the medium was 

defined as the density of 40% sulfuric acid, ρ0 = 1505 kg/m3 [15]; and the final filament velocity vfin = 

0.05 m/s. The kinematic viscosity of the medium was v0= 1.3·10-5 m2/s [15]. According to [10], the  



 

 
Fig. 2. Dependence of (1) the filament velocity v and (2) the velocity gradient v' on x: 

line, results calculated from the model; point, data [14]; (a) v values measured by the 

velocity sensor; (b) v values calculated from changes in fiber diameter. 

 

coagulant diffusivity in the solution was Ds = 6·10-10 m2/s. According to [3], the diffusivity in the polymer 

gel was Dg = Ds/3. The values of the model coefficients not given in this paper are borrowed from [11]. 

The kinetics of gelation was calculated using the phase diagram for the POD-sulfuric acid-water 

system [10]. For the experimental conditions of interest, the critical coagulant (water) concentration in 

the filament at which the gelation (coagulation) of the polymer system occurs is 30 mass %. For 

simulation, the initial value of the radius according to the sixth assumption and [14] was taken to be 

R0(0) = 0.125 mm. This value was used to calculate the initial velocity from continuity equation (5). The 

rheological parameters for the formation of fibers from the POD solution of interest are given in [10], 

where µs = 200-320 Pa s. For calculation, we took an average value of µs = 260 Pa s. The polymer-gel 

viscosity according to experimental data [2] was taken to be µg=6µs. As the difference between the solution 

and gel viscosities is large, we have to consider the rheological force in either polymer phase [equation (2)]. 

Since the experiment reported in [14] was conducted under isothermal conditions, heat transfer can be 

ignored. 

The fiber formation in the POD-sulfuric acid-water system was chosen for numerical simulation 

because the experimental data for this system are quite complete. 

Figures 2-4 illustrate calculated data and their comparison with experimental data. For comparison, 

we took the most important parameters of fiber formation accounting for its structure and properties 

(macromolecule orientation, macrodispersion, and crystallite sizes), as well as the most important 

process parameters (gelation time, tension, geometrical sizes at given temperatures and concentrations of 

polymer solution and coagulant) [2, 3]. Figure 2 illustrates the dependence of the filament velocity v(x) and 



velocity gradient v’(x) on the distance from the spinneret x in the spinning bath. 

We calculated the dependence of the filament radius Ro and the gel-layer thickness Rg on the formation-

path length x. The calculated results are plotted in Fig. 3. The S-shaped curve Rg(x) is explained by the 

different dependence of Rx on x for the intervals x < 0.04 m and x > 0.04 m [ I I ] .  Complete (over the 

whole filament thickness) gelation occurs at x ≈ 0.067 m, corresponding to the motion time t = 4.1 s. The 

time of complete gelation calculated after [ 1 1 ]  for an average filament 

 

Fig. 3. Dependence of (1 )  the filament radius R0 ,(2) gel-layer thickness Rg, and (3) the 

filament tension force Frh on x: line, results calculated from the model; point, 

experimental data for R0(x) [14]. 

 

Fig. 4. Dependence of the filament tension force Frh(L) on the collection velocity vfin: 

line, results calculated from the model; point, experimental data [14]. 

 

radius of R ≈ 9.2·10-5 m is close to the above value: t = 3.9 s. Figure 3 illustrates the calculated curve of 

the filament tension force Frh versus the formation-path length, which characterizes the stress distribution 



in the filament. The filament stress is largely responsible for the orientation of molecules that provides 

the specified mechanical properties of the filament [3]. It should be noted that, after the complete 

gelation has been achieved, the force Frh(x) undergoes slight changes and the curve has a plateau. 

Figure 4 illustrates the calculated results for the dependence of the filament tension force Frh(L) [3] on 

the collection velocity vfin. 

The calculated results and their comparison with experimental data suggest that the model 

proposed in this paper satisfactorily describes the kinetics of wet spinning from polymer solutions. The 

discrepancy between the calculated and experimental data can be attributed both to the insufficient 

accuracy of the mathematical model, which was developed under certain assumptions, and to the error 

in the input data used in the calculations. 

As distinguished from the well-known models [9, 10], the above model for the wet spinning of 

chemical fibers from polymer solutions gives a way to calculate the kinetics of spinning and gelation 

simultaneously, using the phase diagram with regard to heat and mass transfer, layered two-phase 

patterns, and movable interfaces. 
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                      NOTATION 

Agd = acρo(2/v0)ξ - constant; 

ac, an, γ, ξ - constants; 

ai- solution and gel thermal diffusivities, m2/s; 

C0 - coagulant concentration in the bath solution, mass %; 

Ccr - coagulant concentration at the instant of polymer phase transition at temperature T, mass %; 

Cinit(r) - initial distribution of the coagulant concentration in the polymer solution, mass %; 

C(r, x) - coagulant concentration in the polymer-solution jet, mass %; 

Cf=acRe-ξ - friction coefficient, m4/(kg s);  

D - coagulant diffusivity, m2/s; 

Fgd(x) - frictional force between the filament and medium, N; 

Frh - rheological force, N;  

Fin(x) - inertial force, N;  

G - liquid mass velocity, kg/s;  

g - volume flow rate, m3/s;  

H - specific heat capacity, J/(kg K);  

ps  pg - solution and gel tension stresses, respectively, N/m2; 



pxs = 0.5cjp0
2 v - shear stress, N/m2; 

q - specific power of the heat source, K/s; 

qm - specific heat of mixing per unit mass of coagulant, J/kg; 

qv - specific heat of mixing per unit volume of coagulant, K/s; 

R0 = R0(x) - jet (filament) radius varying from R0(0) to R0(L) over the formation path, m; 

R = R(x) - gelation-front coordinate varying from Ro to r = 0 over the formation path, m; 

Rg(x) - current gel thickness, m; 

r - coordinate directed along the jet radius, m; 

S - jet cross-sectional area, m2; 

Ss ,  Sg - solution  and  gel  cross-sectional  areas, respectively, m2; 

T(r, t) - jet temperature at moment t at a point with coordinate r, K; 

Tinit - initial polymer-solution temperature, K; 

T0 - spinning-bath temperature, K; 

v - filament velocity in the spinning bath, m/s; 

v0 = v(0) - initial jet velocity, m/s; 

v(L) = vfin - final velocity, m/s; 

x - coordinate in the direction of the jet motion, m; 

α = 2λoanReγ/R - heat-transfer coefficient, calculated from the relation Nu = anReγ, W/(m2 K); 

δ = G/(πpg) - constant, m3/s; 

η - dimensionless variable defined by formula (21); 

k = ρs/ρg - constant; 

λ - thermal conductivity, W/(m K); 

µ - longitudinal viscosity of the solution and gel, Pa s; 

v0 - kinematic viscosity of the medium, m2/s; 

ρ0 - medium density, kg/m3; 

ρ - liquid density, kg/m3; 

φ = (µs – µgK) - constant parameter, Pa s;  

Nu = anReγ - Nusselt number; 

Re = 2R0v/v0 - Reynolds number. 

 

SUBSCRIPTS AND SUPERSCRIPTS 

init-initial value;  

cr-phase transition;  

g-polymer gel;  



s-polymer solution;  

i = g for R0>r>R; 

i = s for 0<r<R. 
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