View metadata, citation and similar papers at core.ac.uk brought to you by iCORE

provided by CiteSeerX

Vol 04, Issue0l; Jan-Feb 2013 PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER
http://ijpaper.com/

Structural Alignment Using Graphs

N.VEDAVATHI !, DHARMAIAH GURRAM'
1.Asst.Professor in Mathematics, K L University, Guntur (dist) A.P,India-522502

L 4

¢

ABSTRACT
Protein structure or sequence alignment methods are widely used to discover similar regions between proteins
and to assess the similarity by a score. Especially structural alignment methods, which are capable of
capturing structural thus functional homologies, are useful tools for protein fold classification, protein
structure modeling and structure based annotation. With rapidly growing experimental structure information ,
the need for fast and accurate structural alignment algorithms is apparent. In this paper we showed that
graph theoretical properties such as connectivity, clustering coefficient, second connectivity, characteristic
path length and centrality measures can be used effectively as the scoring function in structural alignment of
proteins.
_ Index Terms—Contact maps, graph theoretical properties, structural alignment.
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I. INTRODUCTION

Structure alignments of proteins may provide information about structural similarity of functional units
(domains) and overall similarity of two known structures for classification and annotation purposes. Several
structural properties of the proteins are used to obtain the optimum alignment of structures. In this work, we
represent the protein structure as a graph and network properties of the graph are shown to represent similar
regions between two distinct protein structures. We claim that network properties of the graphs can be used as
a target function to find similarities between proteins. Each protein can be represented as graphs and then the
structure alignment problem can be converted into inexact sub-graph matching problem where so many
heuristic algorithms are already developed. In this paper, we used nine different graph theoretical properties
and showed their applicability for structural alignment on two different data sets.

1I. BACKGROUND AND RELATED WORK

Structural alignment methods try to obtain the optimum overlay of proteins based on their three dimensional
coordinates. The resulting alignment is a superposition of amino acids where structurally similar regions are
aligned with each other. The goodness of the fit is measured by the root mean square distance (RMSD) which
calculates the mean distance between Ca atoms of corresponding amino acids [1]. There are different
approaches for solving the structure alignment problem which can be classified into two categories,
superposition and clustering methods [2]. Superposition methods translate and rotate one protein in three
dimensional spaces to minimize the protein’s intermolecular distance to other protein. Clustering methods
establish the amino acid clusters and compare the intra molecular amino acid to amino acid distances of one
protein to another.

CE (Combinatorial Extension) is a widely used structure alignment method based on clusters of amino acids
that uses inter residue distances [3]. Protein sequence is broken into and represented by a set of aligned
fragment pairs (AFP). AFPs are of fixed size, it’s reported that 8 is the optimum size in terms of speed and
accuracy. The alignment of two proteins A and B is defined as a path of AFPs in a similarity matrix S of size
(nA-m) * (nB-m) where m is the AFP size and nA and nB are the lengths of proteins. An alignment may start
from any AFP and after that consecutive AFPs are added in such an order that the next added AFP cannot
contain any residue that was included in the previous AFP. Gaps are allowed but there is an upper limit to the
length of a gap segment to reduce running times, the limit is 30. In the process of addition of new AFPs, not
all the possibilities are explored; several heuristics are employed to reduce the search space.

CE uses three distance measures to evaluate similarity and AFP path extension alternatives. The first measure
is the average of the sum of distances between residues of two different AFPs where each residue participates
once. First measure is used to decide how well two AFPs combine, it is the path extension heuristic. The
second measure is similar to the first one but all possible distances between non-neighbor residues are averaged
for two different AFPs. Second measure evaluates the goodness of a single AFP, whether two protein fragments
match well. The third measure is the root mean square distance calculated from superimposed structures and is
used in the final steps to pick best alignments and optimization.
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11l. METHODOLOGY
Contact maps are widely used to represent the 3-Dimensional protein structures [4, 5]. A contact map shows
which amino acids are in close vicinity of each other when the protein folds into its functional form. Contact
maps can be represented as graphs where the residues correspond to the nodes and the contacts correspond to
the links. There are many definitions of a contact in the literature. In this work, we used the definition given by
Atilgan et. al [6]. If the distance between C, atoms for the residues i and j is smaller than 6.8 A°, then these
residues are considered to be in contact [4, 5].
There are many network properties that can be used for graph operations. The first network property we used is
the degree or the connectivity k which measures the number of neighbors of each residue in the protein. [7]
The connectivity of a graph is a measure that shows its robustness as a network. The distribution of the degree
frequency has a normal distribution in a protein and shows scale free property [8].
We have developed a new property to measure the compactness of the graph which we called as second
connectivity (S(k)). If the structure is made up of small compact domains rather than one globular structure, it
would have low second connectivity numbers. So this value can be used to determine the similar parts of the
proteins that have such structural features. The second connectivity of a node is calculated by the sum of the
contacts of all its neighbors. The third network property is the clustering coefficient so-called cliquishness
which measures how well the neighbors are connected to each other. The clustering coefficient for each node is
calculated as in (1);

Cc, = 2En_ )

k(k-1)

where E, is the actual edges of the residue n and k is the degree. [7, 9]

In addition to these properties we used characteristic path length as a network property which was also used by
Taylor et. al.[7] and Sinha et. al.[8]. Characteristic path length (L) is smaller in globular proteins and larger in
fibrous proteins because of the variations in the shortest paths in the protein structures. Moreover,
characteristic path length L; for each residue is calculated by the average of the shortest paths from the residue
i to all the other residues given as in (2);
L=t oy 2)
' (N-D A
where o is the shortest path length between nodes i and j and N is the number of residues of a protein.[7]

Graph properties can only capture overall structural properties of the proteins but do not measure
physiochemical interactions between the atoms that are in contact in the folded form. Therefore we employed
weighted characteristic path lengths (wL) which have weights as contact potentials beside neighboring
information. Contact potentials are statistical potentials that are calculated from experimentally known 3D
structures of proteins which calculate frequencies of occurrences of all possible contacts and convert them into
energy values so that frequently occurring contacts over random values would have positive contact scores. We
used the contact potential matrix from Dill et. al. [10].

Several measures are used to discover the centrality of a node in a graph. Betweenness (Freeman [11]),
Clossness (Sabidussi [12]), graph (Hage and Harary [13]), and stress (Shimbel [14]) centrality measures are
the best known measures in the literature and their formulas are given respectively in equations (3), (4), (5),
(6) [15, 16]. If the centrality measure of a node is high, this node has a central role (they are part of most
frequently used pathways) in the structure of a protein and can be crucial in its folding [7].
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where d is the degree matrix, o, is the shortest path matrix and o, (i) is the matrix for the number of the
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paths between the nodes s and t pass through node i. In this paper to verify the applicability of the network
properties in structural alignment problem, we calculated the difference between the network property values of
the CE aligned residues of two protein structures then we checked to see whether such a difference value could
be obtained randomly to show the statistical significance of the results.

First, a pair of structurally similar proteins is aligned with CE alignment algorithm [3]. For each protein, the
values of different network properties are calculated. Then the Euclidean distances between network attributes
of the aligned residues in the CE alignment are found. If the distance is close to zero, it would mean that the
network values of the aligned regions are very similar. This would prove our claim that these properties can be
used as a target function in structure alignment problem. We used two methods to check whether such a
difference between network attributes could be obtained randomly.

In the first method; we kept the network values of the first protein the same and randomly shuffled the existing
network values in the second protein. This way we make sure distribution of network values is kept the same
but these values are assigned to different residues. Then we calculated the distance between aligned residues
arising from random assignment of network attributes. This method is called as “shuffled method”. This
procedure is repeated 1000 times. In the second method, we basically shifted the network values of the second
protein randomly while keeping the values of the first protein then calculated the distances of CE aligned
residues. This procedure is called “shifted method” and also repeated 1000 times. The reason for the second
method lies in the fact that the network values may not be independent of each other and these values may be
correlated for the neighboring residues. Random shuffling method would not capture the effect of such
correlations. That is why we shifted the values randomly, thus keeping the local ordering of the values the
same but these values would be assigned to different neighboring amino acids. Mean and standard deviations
of the distances of CE aligned residues of each network value are calculated for 1000 random runs and these
values are compared to actual distance values calculated based on CE alignments via their Z scores as in (7).

7 = XTH (7)

where X, is the “real distance” from the values in the order of CE alignment, x is the averages and o is the
standard deviations.

IV. DATASETS

We used two different datasets. First data set was created by Capriotti et. al.[5]. There are 158 protein pairs in
this dataset that are structurally similar. However, their sequence identity is less then 30% and the average
sequence similarity is about 16%. Therefore, this dataset is being considered as a difficult set to find
alignments between pairs using common alignment techniques. The second dataset is chosen from Astral 40
database [18]. In this data set, the sequence identities of each pair are less then 40% and their average is
17.8%. This dataset, moreover, is created based on SCOP[18] classification. Therefore, the protein pairs are
built within the same sub-family in the dataset and this dataset consists of 3064 pairs.

V. RESULTS

The CE alignment of two proteins (12AS and 1PYS) from Caprioti data set is given in Figure 1. The network
values for both proteins corresponding to part of the aligned regions are summarized in Table 1. These
calculations are done for each pair in both data sets. The results for Caprioti data set were given in Table 2
and 3. The results for Astral 40 data set were given in Table 4 and 5.

The rows in the tables show the graph theoretical properties. k, C, and S(k) are degree, clustering coefficient
and second connectivity respectively. L and wL are characteristic path length and its weighted form. Cb, Cc,
Cg and Cs are the centrality measures which are betwenness, clossness, graph, and stress centrality
respectively. X, u and Z are the average scores of the randomly generated pairings and actual CE alignment
distances. # shows how many pairs have higher z scores than 1.96 (the Z value used for to 95% significance
testing). % shows percentage of the pairs in the data set that has significantly lower distances in the CE
alignment than the randomly generated networks values.

In both data sets degree and the second connectivity had the lowest distances for CE alignments. Centrality
measures were not as important as these attributes. Betweeness centrality measure was the most distinguishing
centrality measure for both data sets. As expected, shifted method yielded lower percentages for both data sets
than the shuffled method.
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Structure Alignment Calculator, version 1.02,

last modified: Jun 15, 2001.
CE Algorithm, version 1.00, 1998.
Chain 1: pdbdir/12AS.pdb:A (Size=330)

Chain 2: pdbdir/1PYS.pdb:A (Size=350)
Alignment length = 211 Rmsd = 3.45A Z-Score =

5.3 Gaps = 125(59.2%) CPU = 15s Sequence
identities = 14.2%
Chain 1: 9 QRQISFVKSHFSRQLEERLGLIEVQAPILSR

Chain 2:100 LHPITLMERELVEIFRAL-GYQAVEGPEVES

Fig. 1. A part of an example of the CE Alignment result between the chain A of 12AS and the chain A of
1PYS. Calculated values for each graph theoretical property for the bold part is in Table 1 as an example.

TABLE 1
CALCULATED NETWORK VALUES FOR BOTHPROTEINS

Res Num 21 22 23 24 25 26

12AS R Q L E E R
Res Num 112 113 114 115 116 117

1PYS E [ F R A L
1st k 8 9 12 10 7 8
2nd k 8 10 9 9 7 6
Istclig 0,64 0,58 0,44 0,53 0,76 0,61
2ndcliq 0,64 0,42 0,61 0,58 0,76 0,87

1st ss H H H H H H

2nd ss H H H H H H
1st sk 74 85 108 86 63 76
2nd sk 68 81 74 74 59 52
Ist L 5,67 5,48 5,04 5,36 5,75 5,37
2nd L 5,41 5,16 517 5,21 5,31 5,32
1st wL 6,57 6,63 5,15 6,50 6,85 6,69
2nd wL 6,80 573 5,82 6,73 6,33 6,04
1st Cb 882,44 923,16 3633,08 1402,67 713,15 1180,16
2nd Ch 748,84 4088,64 994,19 941,19 676,65 618,22
1st Cc 0,0005 0,0006 0,0006 0,0006 0,0005 0,0006
2nd Cc 0,0007 0,0007 0,0007 0,0007 0,0007 0,0007
1st Cg 0,1111 0,1111 0,1111 0,1111 0,1111 0,1111
2nd Cg 0,1000 0,1000 0,0909 0,0909 0,0909 0,0909
1st Cs 4995,44 5483,92 9702,06 6124,84 1321,29 4057,23
2nd Cs 2196,42 9416,08 4633,18 5952,57 3238,14 2038,70

TABLE 2
THE RESULTS FROM RANDOMLY SHUFFLED METHOD (CAPRIOTTI DATASET)

X Z # %
k 22,91 34,90 7,85 142 89,87
C 1,39 1,89 5,85 129 81,65
S(k) 271,89 439,56 9,17 142 89,87
L 13338,58 17855,23 6,24 132 83,54
wL 8,08 12,46 12,24 138 87,34
Ch 12,75 17,97 9,46 137 86,71
Cc 0,0082 0,0091 8,6922 137 86,71
Cg 0,3234 0,3849 6,8792 117 74,05
Cs 296164,26 334466,22 5,34 109 68,99
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TABLE 3
THE RESULTS FROM SHIFTED METHOD (CAPRIOTTI DATASET)
X n Z # %
k 22,91 34,60 4,20 131 82,9
1,39 1,88 4,13 124 78,5
S(k) 271,89 435,11 3,88 129 81,6
L 13338,58 17798,15 4,67 121 76,6
wL 8,08 12,31 3,53 122 77,2
Cb 12,75 17,81 3,62 125 79,1
Cc 0,0082 0,0090 3,0510 115 72,8
Cg 0,3234 0,3826 2,3328 84 53,2
Cs 296164,26 333401,59 2,54 92 58,2
TABLE 4
THE RESULTS FROM RANDOMLY SHUFFLED METHOD (ASTRAL 40 DATASET
X n Z # %
k 19,55 29,50 6,75 2708 88,38
C 1,22 1,67 5,29 2479 80,91
S(k) 223,35 349,74 7,36 2759 90,05
L 25477,08 30430,77 4,76 2083 67,98
wL 11,30 15,05 8,07 2498 81,53
Cb 15,72 19,89 6,80 2600 84,86
Cc 0,0077 0,0082 7,4336 2398 78,26
Cg 0,2877 0,3401 5,7695 2103 68,64
Cs 2949407,03 3035718,00 3,13 1796 58,62
TABLES5
THE RESULTS FROM SHIFTED METHOD (ASTRAL 40 DATASET)
X n Z # %
k 19,55 29,22 3,64 2478 80,87
C 1,22 1,66 3,58 2331 76,08
S(K) 223,35 345,71 3,22 2379 77,64
L 25477,08 30362,23 2,71 1813 59,17
wL 11,30 14,90 2,33 1859 60,67
Cb 15,72 19,74 2,60 2117 69,09
Cc 0,0077 0,0082 2,1432 1741 56,82
Cg 0,2877 0,3378 1,5773 1346 43,93
Cs 2949407,03 3035201,37 1,96 1486 48,50
CONCLUSION

In this work we showed that network property values rather than actual distances as used in existing methods
can be used for structural alignment. CE aligned pairs had very similar network attributes and this similarity
was significant at 95 % significance level.

The results indicate the most similar network attribute between aligned pairs was the second connectivity
which shows more similarity than connectivity itself; therefore using second connectivity will lead us to better
alignments. Betweenness as a centrality measure has more information content than the other centrality
measures. Using weights from statistical potentials in calculating characteristic path length improved the
results. Here we showed that most of the network values are significantly similar for CE aligned regions of two
proteins. Next, we can develop a function that would give high similarity score if the network values are close.
One can use an optimization algorithm such as dynamic programming to find the highest alignment score
corresponding to the optimum structural alignment.

This work is a first attempt to use a different function rather than actual atomic distances in structural
alignment problem. Other methods are highly dependent on actual coordinates of the proteins accuracy of

2010-2013 - IJPAPER



Vol 04, Issue0l; Jan-Feb 2013 PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER
http://ijpaper.com/

which may change with the experimental procedure that is used to obtain the structure. Our function is less
dependent on actual coordinates and therefore more robust than existing methods.
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