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A hybrid model, on the competition tumor cells immune system, is studied under suitable hypotheses. The explicit form for the
equations is obtained in the case where the density function of transition is expressed as the product of separable functions. A
concrete application is given starting from a modified Lotka-Volterra system of equations.

1. Introduction

The competition between tumor cells and the immune sys-
tem is mainly due to a significant presence of the prolifera-
tion and/or destructive events. In particular, cancer cells have
the ability of expressing their biological activity to escape
from the immune system which, in principle, have to chal-
lenge the progressing cells. The biological activity is not gen-
erally the same for all cells since it is statically distributed.

Several authors [1–7] have applied the methods of the
classical mathematical kinetic theory of gases to study the
immune competition with special attention to cancer phe-
nomena. In this approach, one has to take account of sta-
tistical averages and stochastic parameters, typical of macro-
models.

Other authors [8–15] have proposed mathematical mod-
els based on nonlinear differential equations, which general-
ize the classical Lotka-Volterra equations. These equations,
as known, follow from a deterministic approach on a mi-
croscale.

In some recent papers [16–20], a hybrid model was pro-
posed which can be considered as an alternative method
between the above two approaches, aiming to mix the two
scales into a unique set of equations, the hybrid model. In
this model, a system of nonlinear ordinary differential equa-
tions are coupled with a stochastic parameter generated by

the (kinetic) interaction between the tumor cells and the im-
mune system.

This time-depending stochastic parameter was linked
[17] to the hiding-learning information process which un-
derlies the cells competition. In particular [17], the hiding-
learning dynamics appears between two populations (tumor
cells-immune system) in which the first one has an uncon-
trolled proliferating and hiding ability and the second one
has higher destructive ability and the need of learning about
the presence of the first population.

In this paper, we study the above hybrid model by as-
suming a particular form of the stochastic coefficient. There
follow interesting results on the model and, moreover, the
classical model of Lotka-Volterra modified by the hiding-
learning process can be derived as a special case.

2. Modelling the Immune Competition of
Complex Systems

Let us consider a system of two interacting and competing
populations. Each population is constituted by a large num-
ber of individuals called active particles; their microscopic
state is called (biological) activity. This activity enables the
particle to organize a suitable response with respect to any
information process. In absence of prior information, the
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activity reduces either to a minimal loss of energy or to a ran-
dom process.

In active particle competitions, the simplest model of
binary interaction is based on proliferation-destructive com-
petition. So that, when the first population get aware of the
existence of the other challenging population, it starts to
proliferate and destroy the competing cells. However, in this
process the most important step is the ability of cells to hide
themselves and to learn about the activity of the competing
population.

In details consider a physical system of two interacting
populations each one constituted by a large number of active
particles with sizes:

ni = ni(t), (ni(t) : [0,T] −→ R+; i = 1, 2). (1)

Particles are homogeneously distributed in space, while
each population is characterized by a microscopic state,
called activity, denoted by the variable u. The physical mean-
ing of the microscopic state may differ for each population.
We assume that the competition model depends on the activ-
ity by a function of the overall distribution:

μ = μ
[
fi(t,u)

]
,
(
μ
[
fi(t,u)

]
: R+ −→ R+

)
. (2)

The description of the overall distribution over the mi-
croscopic state within each populations is given by the pro-
bability density function:

fi = fi(t,u),
(
fi(t,u) : [0,T]×Du −→ R+, Du ⊆ R; i = 1, 2

)

(3)

such that fi(t,u)du is the probability that the activity u of
particles of the ith population, at the time t, ranges in the
interval [u,u + du].

Moreover, it is

∀i, ∀t ≥ 0 : 0 ≤ fi(t,u) ≤ 1,
∫

Du

fi(t,u)du = 1.

(4)

We will see in Sections 3 and 4 how the microscopic
structure influences the macroscopic system.

3. Hybrid Model

We consider, in this section, the competition between two
cell populations: the first one with uncontrolled proliferating
ability and with hiding ability; the second one with higher
destructive ability, but with the need of learning about the
presence of the first population. The analysis developed in
what follows is referring to a specific case where the second
population attempts to learn about the first population
which, instead, escapes by modifying its appearance. Specifi-
cally, the hybrid evolution equations can be formally written
as follows:

dni
dt

= Gi
(
n1,n2;μ

[
f
])

,

∂ fi
∂t
=Ai

[
f
]
,

(5)

where

(1) Gi, for i = 1, 2, is a function of n = {n1,n2},
(2) μ, acts over f = { f1, f2},
(3) Ai, for i = 1, 2, is a nonlinear operator acting on f ,

(4) μ[ f ] is a functional (0 ≤ μ ≤ 1) which describes the
ability of the second population to identify the first
one.

As a consequence, (5) denotes a hybrid system of a determin-
istic system coupled with a microscopic system statistically
described by a kinetic theory approach. In the following, the
evolution of density distribution will be taken within the ki-
netic theory.

The derivation of (5)2 can be obtained starting from
a detailed analysis of microscopic interactions. Specifically,
consider binary interactions between a test, or candidate,
particle with state u∗ belonging to the ith population, and
field particle with state u∗ belonging to the jth population.
We assume that microscopic interactions are characterized
by the following quantities.

(i) The encounter rate, which depends, for each pair of
interacting populations on a suitable average of the
relative velocity ηi j , with i, j = 1, 2.

(ii) The transition density function ϕij(u∗,u∗,u), de-
notes the probability density that a candidate particle
with activity u∗ belonging to the ith population, falls
into the state u ∈ Du, of the test particle, after an
interaction with a field entity, belonging to the jth
population, with state u∗. The probability density
ϕij(u∗,u∗,u) fulfills the condition

∀i, j, ∀u∗,u∗ :
∫

Du

ϕi j(u∗,u∗,u)du = 1,

ϕij(u∗,u∗,u) > 0.
(6)

Then, by using the mathematical approach, devel-
oped in [17], it yields the following class of evolution
equations:

∂ fi
∂t

(t,u) =
2∑

j=1

∫

Du×Du

ηi jϕi j(u∗,u∗,u)

× fi(t,u∗) f j(t,u∗)du∗du∗

− fi(t,u)
2∑

j=1

∫

Du

ηi j f j(t,u∗)du∗,

(7)

which can be formally written as (5)2.

Since our model is based on the hiding-learning dynam-
ics, one has to introduce the functional which takes into
account the “distance” between the two distribution so that
μ in (5) is defined as

μ
[
fi, f j

]
(t) = μ

(∣∣
∣ fi − f j

∣∣
∣
)

(t) (8)
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with

0 ≤ μ
[
fi, f j

]
(t) ≤ 1, ∀u ∈ Du ∧ t ∈ T ,

μ
[
fi, f j

]
(t) = 1 ⇐⇒ fi = f j ,

μ
[
fi, f j

]
(t) = 0 ⇐⇒ fi = 0∨ f j = 0,

(9)

where the maximum learning result is obtained when the
second population is able to reproduce the distribution of the
first one: f1 = f2, while the minimum learning is achieved
when one distribution is vanishing.

In some recent papers [5–7, 17], it has been assumed that

μ
[
fi, f j

]
(t) = μ

(∣∣∣ fi − f j
∣
∣∣
)

(t) = 1−
∫

Du

(
f1 − f2

)2(t,u)du.

(10)

In this case, it is μ = 1, when f1 = f2, otherwise μ /= 1
with μ ↓ 0, depending on the time evolution of the distance
between f1 and f2. There follows that this parameter could
have an infinite value range.

Thus, we have

0 ≤ μ
[
f
]
(t) ≤ 1 =⇒ 0 ≤

∫

Du

(
f1 − f2

)2(t,u)du ≤ 1,

∀t ∈ [0,T].
(11)

Notice that μ is the coupling term which links the macro-
scopic model (5)1 to the microscopic model (5)2.

4. Transition Density Function Based on
Separable Functions

In order to find some classes of solutions of (7), we assume
that the transition density is the product of separable density
functions as

ϕij(u∗,u∗,u) =
(

1− δi j
)
ψi(u∗,u)ξj(u∗,u), (12)

that is,

ϕ11 = ϕ22 = 0,

ϕ12(u∗,u∗,u) = ψ1(u∗,u)ξ2(u∗,u),

ϕ21(u∗,u∗,u) = ψ2(u∗,u)ξ1(u∗,u),

(13)

and using (10) one has

∫

Du

ψi(u∗,u)ξj(u∗,u)du = 1
(
i /= j

)
,

ψi(u∗,u) > 0, ξj(u∗,u) > 0
(
i, j = 1, 2

)
.

(14)

By a substitution of the above terms into (7) we get

∂ f1
∂t

(t,u)

=
2∑

j=1

∫

Du×Du

η1 jϕ1 j(u∗,u∗,u) f1(t,u∗) f j(t,u∗)du∗du∗

− f1(t,u)
2∑

j=1

∫

Du

η1 j f j(t,u∗)du∗,

∂ f2
∂t

(t,u)

=
2∑

j=1

∫

Du×Du

η2 jϕ2 j(u∗,u∗,u) f2(t,u∗) f j(t,u∗)du∗du∗

− f2(t,u)
2∑

j=1

∫

Du

η2 j f j(t,u∗)du∗,

(15)

from where, by taking into account (13), we obtain

∂ f1
∂t

(t,u)

= η12

∫

Du

ψ1(u∗,u) f1(t,u∗)du∗
∫

Du

ξ2(u∗,u) f2(t,u∗)du∗

− f1(t,u)

[

η11

∫

Du

f1(t,u∗)du∗ + η12

∫

Du

f2(t,u∗)du∗
]

,

∂ f2
∂t

(t,u)

= η21

∫

Du

ψ2(u∗,u) f2(t,u∗)du∗
∫

Du

ξ1(u∗,u) f1(t,u∗)du∗,

− f2(t,u)

[

η21

∫

Du

f1(t,u∗)du∗ + η22

∫

Du

f2(t,u∗)du∗
]

.

(16)

According to (4) and (13), we have the more general system
for the transition density based on separable functions

∂ f1
∂t

(t,u)

= η12

∫

Du

ψ1(u∗,u) f1(t,u∗)du∗

×
∫

Du

ξ2(u∗,u) f2(t,u∗)du∗ − (η11 + η12
)
f1(t,u),

∂ f2
∂t

(t,u)

= η21

∫

Du

ψ2(u∗,u) f2(t,u∗)du∗

×
∫

Du

ξ1(u∗,u) f1(t,u∗)du∗ − (η21 + η22
)
f2(t,u).

(17)

This system (17) can be solved when the two functions of
(14)2 are given.
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Figure 1: Time evolutions of the orbits of (30) with parameters a = 2, b = c = 1, and d = 3 (a); distribution function μ(t) for μ = 1/4 (b).

As an example, let us solve this system under the follow-
ing hypotheses:

ψ1(u∗,u) = ψ2(u∗,u) = δ(u− u∗),

ξ1(u∗,u) = ξ2(u∗,u) = δ(u− u∗),
(18)

so that ψi and ξj (i, j = 1, 2) are a Dirac-delta which fulfill
(14)1

∫

Du

δ(u− u∗)δ(u− u∗)du = δ(u∗ − u∗). (19)

The system (17), by using (18), becomes

∂ f1
∂t

(t,u) = η12 f1(t,u) f2(t,u)− (η11 + η12
)
f1(t,u),

∂ f2
∂t

(t,u) = η21 f1(t,u) f2(t,u)− (η21 + η22
)
f2(t,u).

(20)

Moreover, by assuming that

η11 = η21 = η11 = η22
def= η, (21)

and putting

f (t,u) = f1(t,u)− f2(t,u), (22)

from (20), one has

∂ f (t,u)
∂t

= −2η f (t,u). (23)

The more general solution of this equation is

f (t,u) = f (0,u)e−2ηt. (24)

Assuming that

f (0,u) = 1√
π
e−u

2
, (25)

equation (24) becomes

f (t,u) = 1√
π
e−(u2 + 2ηt). (26)

From (10), by virtue of (22) and (26), we have

μ(t) = 1−
∫

Du

1
π
e−2(u2+2ηt)du. (27)

Taking into account that

∫ +∞

−∞
1
π
e−2(u2+2ηt)du = e−4ηt

√
2π

, (28)

equation (27) gives

μ(t) = 1− e−4ηt
√

2π
. (29)

5. A Simple Application

It is well known that the pioneering Lotka-Volterra’s model
of two interacting and competing populations (x = prey, y =
predatory) is based on the following differential system:

dx

dt
= ax − bxy,

dy

dt
= cxy − dy,

(30)

where a, b, c, and d are constants.
In this model, the hiding-learning processes are not

considered and the interaction and competition of the two
populations start immediately. The orbits of the solutions
of (30) are circles around the equilibrium point: x = d/c,
y = a/b (see Figure 1).
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Figure 2: Time evolutions of the orbits of (32) with parameters a = 2, b = c = 1, and d = 3 and initial populations x0 = 4, y0 = 1 (a),
x0 = 0.1, y0 = 9 (b).

If the hiding-learning processes occur, by using the re-
sults discussed in the previous sections, we propose the fol-
lowing system:

dx

dt
= ax − μbxy,

dy

dt
= cxy − dy,

(31)

where μ, given by (29), is the functional (stochastic) para-
meter depending on the distribution of populations (see
Figure 2).

The system (31) becomes

dx

dt
= ax − b

(

1− e−4ηt
√

2π

)

xy,

dy

dt
= cxy − dy.

(32)

The nonzero equilibrium point is

x = d

c
, y = a

b
(
1− (e−4ηt/

√
2π
)) , (33)

where

lim
t→∞

a

b
(
1− (e−4ηt/

√
2π
)) = a

b
. (34)

For η = 1/4, the solutions of the system (32) are shown in
Figure 2.

From Figure 2 it can be noticed that x0 > y0 so that the
hiding-learning process delay the achievement of the circle
around the nonzero equilibrium point. If x0 � y0, then the
cricle is reached more quickly.

6. Conclusion

In this paper, it has been studied a hybrid system of com-
petition tumor cells versus immune system, within the ki-
netic model. A stochastic parameters is computed explicitly

in the case of special transition density functions. A simple
application shows that due to this parameters we obtain some
more realistic solutions of the Lotka-Volterra system, where
the cicle around the nonzero equilibrium point is shift-
ed in time, thus showing the importance of the stochastic
parameters in a correct approach to the analysis of compe-
tition models.
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