
Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2011, Article ID 926712, 10 pages
doi:10.1155/2011/926712

Research Article

Generalized Quadratic Linearization of Machine Models

Parvathy Ayalur Krishnamoorthy,1 Kamaraj Vijayarajan,2 and Devanathan Rajagopalan1

1 Department of Electrical and Electronics Engineering Department, Hindustan of Science & Technology, Chennai 603103, India
2 Department of Electrical and Electronics Engineering, SSN College of Engineering Kalavakkam 603110, India

Correspondence should be addressed to Parvathy Ayalur Krishnamoorthy, akparvathy@hindustanuniv.ac.in

Received 10 May 2011; Revised 17 August 2011; Accepted 26 August 2011

Academic Editor: Derong Liu

Copyright © 2011 Parvathy Ayalur Krishnamoorthy et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In the exact linearization of involutive nonlinear system models, the issue of singularity needs to be addressed in practical
applications. The approximate linearization technique due to Krener, based on Taylor series expansion, apart from being applicable
to noninvolutive systems, allows the singularity issue to be circumvented. But approximate linearization, while removing terms up
to certain order, also introduces terms of higher order than those removed into the system. To overcome this problem, in the case
of quadratic linearization, a new concept called “generalized quadratic linearization” is introduced in this paper, which seeks to
remove quadratic terms without introducing third- and higher-order terms into the system. Also, solution of generalized quadratic
linearization of a class of control affine systems is derived. Two machine models are shown to belong to this class and are reduced
to only linear terms through coordinate and state feedback. The result is applicable to other machine models as well.

1. Introduction

Control of nonlinear systems is gaining increasing attention
in recent years due to its technical importance and its
impact on various applications as well. When nonlinearities
of systems become significant, linear control techniques
generally fail to produce the desired results. However,
feedback linearization of nonlinear systems allows linear
control methods to be applied effectively to the resultant
linearized system.

In the application of exact linearization technique [1–
3] to involutive systems, an issue of singularity needs to be
addressed in practical situations. The singularity is caused
when a function of the system state tends towards zero
causing the state feedback to fail. Approximate linearization
technique due to Krener [4] based on a Taylor series
expansion, applicable to non-involutive systems, has the
merit of allowing the problem of singularity to be over-
come.

Poincare [5] derived what are known as homological
equations for approximate linearization of autonomous
differential systems. Kang and Krener [6–8] extended the
result for the approximate linearization of control affine
systems and derived what are termed generalized homo-

logical equations. Tall [9, 10] extended Kang and Krener’s
normal forms to multi-input systems. Devanathan [11, 12]
developed necessary and sufficient conditions for quadratic
linearization of control affine systems with a single input.

Using the approximate linearization technique, the prob-
lem of singularity of state feedback can be circumvented
by appropriate definition of state feedback. But the approx-
imate linearization, while removing nonlinearities up to
a certain higher order, introduces nonlinearities into the
system of higher order than those removed. Introduction
of higher-order nonlinearities into a system which orig-
inally may not have such nonlinearities is a matter of
concern.

In the case of machine models, for example, the second-
order dynamic models as given in [13] seem adequate to
describe the normal behaviour of the machine. Applying
quadratic linearization based on approximate linearization
technique to this model introduces third- and higher-
order terms into the model even though the machine
does not possess nonlinearities of this order during normal
operation.

In this paper, a new concept called “generalized quadratic
linearization” which seeks to remove the second-order
nonlinearity in the model without introducing third-and
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higher-order nonlinearities in the process is introduced.
This is in contrast to the existing quadratic linearization
techniques due to Kang and Krener [6–8] and Devanathan
[11, 12] which introduce third- and-higher order terms in
the process of removing second-order terms. The generalized
quadratic linearization, being a stronger condition than
quadratic linearization, imposes additional constraints on
the quadratic polynomials of the system than those imposed
due to quadratic linearization alone. Sufficient conditions on
the quadratic polynomials together with coordinate and state
feedback transformations are derived for a class of systems
for which generalized quadratic linearization is applicable.
In particular, the results are shown to apply to the induction
motor and permanent magnet synchronous motor models.
The results can be extended to other machine models as
well. Application of generalized quadratic linearization to
machine models also helps to avoid the issue of singularity
which is a drawback attributed to the existing exact lineariza-
tion of machine models [2, 3]. This is the main contribution
of the paper.

To summarise the rest of the paper, in Section 2,
homological equations for arbitrary order linearization are
introduced. Section 3 helps to simplify the homological
equations for quadratic linearization, thus paving the way
for the central result on generalized quadratic linearization
presented in Section 4. In Section 5, generalized quadratic
linearization is applied to two machine models including
a real-world numerical example. In Section 6, the paper is
concluded.

2. Background

Consider a multiple-input control affine system of the form
[7, 14, 15]

ẋ = Ax + Bu + f (2)(x) + f (3)(x) + · · · + f (p)(x)

+ · · · + g(1)(x)u + g(2)(x)u + · · · + g(p−1)(x)u + · · · ,
(1)

where (A,B) are in Brunovsky normal form. That is, let k =
{k1, k2, . . . , kr} be a sequence of integers such that k1 ≥ k2 ≥
· · · ≥ kr such that k1 + k2 + · · · + kr = n

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ak1 0 · · · 0

0 Ak2 · · · 0

...
...

...
...

0 0 · · · Akr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bk1 0 · · · 0 0 · · · 0

0 bk2 · · · 0 0 · · · 0

...
...

...
...

...
...

0 0 · · · bkr 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

where matrix A is partitioned into r2 blocks while matrix B
is partitioned into μr blocks with r ≤ μ. Each block Aki or bki
is of the form

Aki =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
...

...

0 0 0 · · · 1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, bki =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Aki is of order ki × ki, bki is of order ki × 1, and B is n × μ

matrix. x = [x1, x2, . . . , xn]T and u = [u1,u2, . . . ,uμ]T are the
vector input such that μ < n. f (p)(x) and g(p−1)(x) are vector
polynomials of order p and (p−1), respectively, p = 2, 3, . . ..

In order to linearize the system, change of coordinate and
state feedback [6] of the following form is considered:

y = x + φ(x) ,

u =
(
Iμ + β(x)

)
v + α(x),

(4)

where

φ(x) =
∑

j=2,3,4,...

φ( j)(x), α(x) =
∑

j=2,3,4,...

α( j)(x),

β(x) =
∑

j=2,3,4,...

β( j−1)(x),
(5)

and Iμ is the identity matrix of order μ. Applying the
transformations (4), (1) is reduced to

ẏ = Ay + Bv (6)

provided the following equations, called homological equa-
tions [6], are satisfied for m ≥ 2:

−Aφ(m)(x) + Bα(m)(x) + f ′(m)(x) +
∂φ(m)(x)

∂x
Ax = 0, (7)

Bβ(m−1)(x)v +
∂φ(m)(x)

∂x
Bv + g′(m−1)(x)v = 0, ∀v, (8)

where f ′(m)(x) = f (m)(x) form = 2 and f ′(m)(x) is expressed
in terms of f (m−i)(x), i = 0, 1, 2, . . . (m − 2), and φ(m− j)(x),
j = 1, 2, . . . (m− 2), m > 2. g′(m−1)(x) = g(1)(x); m = 2, and
g′(m−1)(x) is expressed in terms of g(m−i)(x), i = 1, 2, . . . (m−
1), and φ(m− j)(x), j = 1, 2, . . . (m− 2), m > 2.

3. Quadratic Linearization

Consider the specialized case of system (1) containing only
quadratic terms in x as in

ẋ = Ax + Bu + f (2)(x). (9)

Quadratic linearization of (9) involves specialization of the
result discussed in Section 2 for m = 2 and simplifying it
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by applying g(1)(x) = 0. That is, applying the following
coordinate transformation and feedback,

y = x + φ(2)(x),

u =
(
Iμ + β(1)(x)

)
v + α(2)(x),

(10)

(9) is reduced to

ẏ = Ay + Bv +O(3)(y, v
)
, (11)

where O(3)(y, v) corresponds to terms of order 3 or higher,
provided the following equations are satisfied:

−Aφ(2)(x) + Bα(2)(x) + f (2)(x) +
∂φ(2)(x)
∂x

Ax = 0, (12)

Bβ(1)(x)v +
∂φ(2)(x)
∂x

Bv = 0, ∀v. (13)

Remark 3.1. Applying quadratic linearization to system (9)
introduces third- and higher-order terms into the system (see
(11)) even though originally the system does not possess
nonlinearities of this order. To avoid this situation, we
introduce a new concept of generalized quadratic lineariza-
tion which seeks to remove the second-order nonlinearity
in the system without introducing third- and higher-order
nonlinearities in the process. Sufficient conditions for the
generalized quadratic linearization for a class of systems are
discussed in the next section.

We next simplify the homological equations (12) and
(13) by representing them in partitioned form, using the
Brunovsky normal form introduced in Section 2.

Let

φ(2)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ(2)
k1

(x)

φ(2)
k2

(x)
...

φ(2)
kr

(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

xk1

xk2

...

xkr

⎤
⎥⎥⎥⎥⎥⎥⎦

, (15)

f (2)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f (2)
k1

(x)

f (2)
k2

(x)
...

f (2)
kr

(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

α(2)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α(2)
1 (x)

α(2)
2 (x)

...

α(2)
μ (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where putting pi =
∑i ki, i = 1, 2, . . . r,

φ(2)
ki

(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(2)
pi−1+1(x)

...

φ(2)
pi−1+t(x)

...

φ(2)
pi−1(x)

φ(2)
pi (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

xki =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xpi−1+1
...

xpi−1+t
...

xpi−1

xpi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

f (2)
ki

(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (2)
pi−1+1(x)

...

f (2)
pi−1+t(x)

...
fpi−1(x)

f (2)
pi (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

∂φ(2)(x)
∂x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ(2)
k1,k1

φ(2)
k1,k2

· · · φ(2)
k1,kr

φ(2)
k2,k1

φ(2)
k2,k2

· · · φ(2)
k2,kr

...
...

...
...

φ(2)
kr ,k1

φ(2)
kr ,k2

· · · φ(2)
kr ,kr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

where

φ(2)
ki ,kj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ(2)
pi−1+1(x)

∂xpj−1+1
· · · ∂φ(2)

pi−1+1(x)

∂xpj
...

...
...

∂φ(2)
pi−1+t(x)

∂xpj−1+1
· · · ∂φ(2)

pi−1+t(x)

∂xpj
...

...
...

∂φ(2)
pi (x)

∂xpj−1+1
· · · ∂φ(2)

pi (x)

∂xpj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i, j = 1, 2, . . . r,

β(1)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β(1)
1 (x)

β(1)
2 (x)

...

β(1)
μ (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(22)
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where

β(1)
i (x) =

[
β(1)
i,1 (x),β(1)

i,2 (x), . . . ,β(1)
i,μ (x)

]
, i = 1, 2, . . . ,μ.

(23)

Using (2), (14)–(17), and (21), the ith block row of (12)
can be written as

−Akiφ(2)
ki

(x) + bkiα
(2)
i (x) + f (2)

ki
(x) +

r∑

j=1

φki,kjAkj xkj = 0,

i = 1, 2, . . . , r.
(24)

The second homological equation, namely, (13), can be
simplified as follows. Since the effect of control input u in (9)
is dependent on the B matrix only, without loss of generality,
we can then assume that μ = r, because the terms in B matrix
are nonzero only for the first r inputs. So, we can write the
revised B matrix as

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bk1 0 · · · 0

0 bk2 · · · 0

...
...

...
...

0 0 · · · bkr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

We now put (13) in partitioned form. Using (2) and
(21)–(23), the ith block row of (13) can be written as

bkiβ
(1)
i (x)v +

[
φki ,k1bk1 φki,k2bk2 · · · φki,kr bkr

]
v = 0

∀v, i = 1, 2, . . . , r.
(26)

Since (26) is to be an identity in v, we can drop v and
rewrite (26) as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0
...

...
...

...

...
...

...
...

0 0 · · · 0

β(1)
i,1 (x) β(1)

i,2 (x) · · · β(1)
i,r (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ(2)
pi−1+1(x)

∂xp1

· · · ∂φ(2)
pi−1+1(x)

∂xpr
...

...
...

∂φ(2)
pi−1+t(x)

∂xp1

· · · ∂φ(2)
pi−1+t(x)

∂xpr
...

...
...

∂φ(2)
pi (x)

∂xp1

· · · ∂φ(2)
pi (x)

∂xpr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

i = 1, 2, . . . , r.

(27)

Since β(1)
i,l (x), l = 1, 2, . . . , r, are arbitrary, it is clear that a

necessary condition for (13) to be satisfied is

∂φ(2)
pi−1+t(x)

∂xpq
= 0, q = 1, 2, . . . , r, t = 1, 2, . . . , (ki − 1),

i = 1, 2, . . . , r.
(28)

4. Generalized Quadratic Linearization

Theorem 4.1. Consider the system

ẋ = Ax + Bu + f (2)(x), (29)

where x = [x1, x2, . . . , xn]T and u = [u1,u2, . . . ,ur]
T , n > r.

(A,B) are in Brunovsky normal form as given in (2), (3), and
(25). f (2)(x) is given by (16), where

f (2)
ki

(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

f (2)
pi−1(x′)

f (2)
pi (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ki > 2,

⎡
⎢⎣
f (2)
pi−1(x′)

f (2)
pi (x)

⎤
⎥⎦, ki = 2,

[
f (2)
pi (x)

]
, ki = 1,

i = 1, 2, . . . r,

(30)

f (2)
ki

(x) is of order ki × 1 and x′ is given by the r-tuple x′ =
(xp1 , xp2 , . . . , xpr ). Then the transformation (4), where φ(x) =
φ(2)(x), is given by (14), where

φ(2)
ki

(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(2)
pi−1+1(x)

...

φ(2)
pi−1(x)

φ(2)
pi (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

f (2)
pi−1(x′)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ki ≥ 2,

[
φ(2)
pi (x′)

]
; φ(2)

pi (x′) arbitrary, ki = 1,

i = 1, 2, . . . , r.

(31)

α(x) = α(2)(x) given by (17), where

α(2)
i (x) = − f (2)

pi (x), i = 1, 2, . . . , r, (32)

β(m−1)(x) = (−1)m−1

{
BT

∂φ(2)(x)
∂x

B

}m−1

, m ≥ 2,

(33)
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reduces the system (29) to

ẏ = Ay + Bv. (34)

Proof. We first show that the quadratic linearization of (29)
is achieved using (10), assuming (30)–(33). That is, it needs
to be verified that (12) and (13) are satisfied. To verify
that (12) is satisfied, it is sufficient to verify that (24) is
satisfied. Substituting (30)–(32) into (24), we need to satisfy
the following:

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
...

...

0 0 0 · · · 1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

f (2)
pi−1(x′)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f (2)
pi (x) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

f (2)
pi−1(x′)

f (2)
pi (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
r∑

j=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0
...

...
...

0 · · · 0

∂ f (2)
pi−1(x′)
∂xpj−1+1

· · · ∂ f (2)
pi−1(x′)
∂xpj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xpj−1+2

xpj−1+3

...
xpj

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0,

i = 1, 2, . . . , r.

(35)

Note that f (2)
pi−1(x′) is a function of xpj , j = 1, 2, . . . , r, only.

Hence, ∂ f (2)
pi−1(x′)/(∂xpj−1+t) = 0, t = 1, 2, . . . , (ki−1). Equa-

tion (35) then reduces to the following after simplification:

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

f (2)
pi−1(x′)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

f (2)
pi (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

f (2)
pi−1(x′)

f (2)
pi (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
r∑

j=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0

...
...

...
...

...
...

...
...

0 · · · 0
∂ f (2)

pi−1(x′)
∂xpj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xpj−1+2

xpj−1+3

...

xpj

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, i = 1, 2, . . . , r.

(36)

Clearly (36) is an identity. Hence (24) is satisfied for ki ≥ 2.
For the case ki = 1, it is easy to verify that (24) is satisfied as

φ(2)
pi (x′) is a function of xpj , j = 1, 2, . . . , r, only.

Equation (28) is a necessary condition for (13) to hold,

and it follows easily from (31), where φ(2)
pi−1+t(x) = 0, t =

1, 2, . . . , (ki − 1), i = 1, 2, . . . , r. To satisfy (13), note that,
from (25), it follows that

BTB = Ir . (37)

Premultiply (13) by BT and rearrange to yield

β(1)(x) = −BT ∂φ
(2)(x)
∂x

B (38)

which is (33) for m = 2. Substitution of (38) satisfies (13).
Hence, the result holds for m = 2.

As a result of quadratic linearization (i.e., satisfying (12)
and (13)), higher-order terms are left in the system as per
(11) even though originally (29) did not have third- and
higher-order terms. These are now to be removed to effect
generalized quadratic linearization. The higher-order terms
are functions of α(x),φ(x), and β(x) and are given for the
case g(m)(x) = 0, m ≥ 1, through algebraic computations as

f ′(m)(x) = ∂φ(m−1)(x)
∂x

f (2)(x) +
m−1∑

j=2

∂φ( j)(x)
∂x

Bα(m− j+1)(x),

m ≥ 3,
(39)

g′(m−1)(x) =
m−1∑

j=2

∂φ( j)(x)
∂x

Bβ(m− j)(x), m > 2. (40)

For m = 3,

f ′(3)(x) = ∂φ(2)(x)
∂x

[
f (2)(x) + Bα(2)(x)

]
. (41)

Partitioning f ′(3)(x) similar to f (2)(x) in (16) and consider-
ing the ith block row,

f ′ki
(3)(x) =

r∑

j=1

φki,kj
(
f (2)
kj

(x) + bkj α
(2)
j (x)

)

=
r∑

j=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ(2)
pi−1+1(x)

∂xpj−1+1
· · · ∂φ(2)

pi−1+1(x)

∂xpj
...

...
...

∂φ(2)
pi−1+t(x)

∂xpj−1+1
· · · ∂φ(2)

pi−1+t(x)

∂xpj
...

...
...

∂φ(2)
pi (x)

∂xpj−1+1
· · · ∂φ(2)

pi (x)

∂xpj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

...

0

f (2)
pj−1(x′)

f (2)
pj (x) + α(2)

j (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i = 1, 2, . . . , r.

(42)
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Using (31) and (32) and that φ(2)
pi (x) being a function of

xpj , j = 1, 2, . . . , r, only as above, (42) can be reduced to

f ′ki
(3)(x) =

r∑

j=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0
...

...
...

...
...

...
...

...

0 · · · 0
∂ f (2)

pi−1(x′)
∂xpj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

f (2)
pj−1(x′)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

i = 1, 2, . . . , r.
(43)

Hence, f ′(3)(x) = 0. Homological equation (7), for m = 3, is
satisfied if we put φ(3)(x) = 0 and α(3)(x) = 0.

For m = 4,

f ′(4)(x) = ∂φ(3)(x)
∂x

f (2)(x) +
∂φ(2)(x)
∂x

Bα(3)(x)

+
∂φ(3)(x)
∂x

Bα(2)(x).

(44)

As φ(3)(x) = 0 and α(3)(x) = 0, it follows from (44) that
f ′(4)(x) = 0. Hence, one can have φ(4)(x) = 0 and α(4)(x) =
0 to satisfy (7) for m = 4. Proceeding this way, it can be
proved that f ′(m)(x) = 0, m > 3.

Noting that from (40), g′(2)(x) = (∂φ(2)(x)/∂x)Bβ(1)(x)
for m = 3, and (8) can be written as

Bβ(2)(x) +
∂φ(3)(x)
∂x

B + g′(2)(x) = 0, (45)

from which using the fact that φ(3)(x) = 0, β(2)(x) =
−BT(∂φ(2)(x)/∂x)Bβ(1)(x) = (BT(∂φ(2)(x)/∂x)B)2 using (38)
is derived. Substitution of β(2)(x) satisfies (8) for m = 3.

Proceeding this way, one can show that f ′(m) = 0, m > 3,
and we can choose φ(m) = 0 and α(m) = 0, m > 3, to satisfy
(7). β(m−1)(x) as given in (33) is easily derived so as to
satisfy (8), where g′(m−1)(x) is given in (40), using the same
technique as for m = 2, 3 successively as above, hence the
result.

Remark 4.2. The result of Theorem 4.1 provides a solution to
the generalized quadratic linearization of a class of systems
defined by (29). Equation (29) may appear to be a strong
condition. But this is needed because of the requirement
that the third- and all higher-order nonlinearities, which
are usually introduced into the system during the course
of quadratic linearization, identically vanish. As shown in
Section 5, system (29) can represent many electric machine
models [13] of which induction motor and permanent mag-
net synchronous motor are examples. Also, temperature and
flow variables in heat transfer (composition and flow vari-
ables in mass transfer) processes, for example, combine to
produce quadratic nonlinearity [16] of the form (9) which is
a general form of (29). Further, even if a quadratic model (9)
does not correspond exactly to model (29), one can always
tune the coordinate and state feedback on the lines described
by the authors in [17] to bring the system to a linear normal

form. It can also be pointed out that quadratic system of the
form ẋ = Ax + Bu + f (2)(x) + g(1)(x)u can be brought to the
form ẋ = Ax+Bv+ f ′(2)(x) through state feedback as shown
in [6]. Hence the forms (9) and (29), which are a special case
of (9), are more general than they appear to be.

Remark 4.3. A specialized result of Theorem 4.1 appears in
an earlier paper by the authors [18]. In [18], the concept
of generalized quadratic linearization is applied to a class
of control affine systems with a specific configuration of
Brunovsky form for multiple inputs. A PMSM model is
shown to belong to this class and the generalized quadratic
linearization of PMSM is derived. In Theorem 4.1, however,
we have considered a more general class of systems with no
assumption on the configuration of the Brunovsky form
for multiple inputs. Hence, the theoretical result of [18] is a
special case of the result of Theorem 4.1.

5. Generalized Quadratic Linearization of
Machine Models

5.1. Squirrel Cage Induction Motor. The squirrel cage induc-
tion motor model can be derived as below [13]:

ẋ = Ax + Bu + f (2)(x), (46)

where x = [x1, x2, x3, x4, x5]T = [isds, i
s
qs,ψ

s
dr,ψ

s
qr,ωr]

T , u =
[u1,u2,u3,u4]T = [vsds, v

s
qs,ψ

′, ψ̂sdr], where ψ′ = is
∗

qsψ̂
s
dr −

is
∗

dsψ̂
s
qr, where vsqs, v

s
ds, i

s
qs, and isds represent the quadrature and

direct axis voltages and currents, respectively, and ψsdr,ψ
s
qr

represent direct and quadrature axis fluxes, respectively.
ψ̂sdr, ψ̂

s
qr represent the estimated direct and quadrature flux,

respectively, and ωr represents the angular velocity of the
rotor. is

∗
qs and is

∗
ds represent the reference values of quadrature

and direct axis currents, respectively. The superscript refers
to variables in the stationary frame:

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
(
L2
mRr + L2

r Rs
)

σLsL2
r

0
LmRr
σLsL2

r
0 0

0 −
(
L2
mRr + L2

r Rs
)

σLsL2
r

0
LmRr
σLsL2

r
0

LmRr
Lr

0 0 0 0

0
LmRr
Lr

0 −Rr
Lr

0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
σLs

0 0 0

0
1
σLs

0 0

0 0 0 −Rr
Lr

0 0 0 0

0 0 −3P2Lm
8JLr

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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f (2)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lmωrψsqr

σLsLr

−Lmωrψ
s
dr

σLsLr
−ωrψsqr

ωrψ
s
dr

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1x4x5

−c1x3x5

−x4x5

x3x5

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(47)

where Lm, Lr , and Ls represent the magnetizing, rotor, and
stator inductances, respectively. Rr and Rs represent the rotor
and stator resistances, respectively. J represents the system
moment of inertia, and P represents the number of poles.
σ = 1 − L2

m/LsLr and c1 = Lm/σLsLr . The model (46)
can be reduced to normal form in a standard way using
linear transformation of state variables [19] and linear state
feedback as follows, where x, u, A, B and f (2)(x) are retained
for simplicity of notation:

ẋ = Ax + Bu + f (2)(x), (48)

where A and B given by (2), where r = μ = 4 and k1 =
2, k2 = k3 = k4 = 1, are

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

f (2)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (2)
1 (x)

f (2)
2 (x)

f (2)
3 (x)

f (2)
4 (x)

f (2)
5 (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(49)

where f (2)
1 (x) = f1,35x3x5 + f1,45x4x5, f (2)

2 (x) = f2,35x3x5 +

f2,45x4x5, f (2)
3 (x) = f3,35x3x5 + f3,45x4x5, f (2)

4 (x) = f4,35x3x5 +

f4,45x4x5, f (2)
5 (x) = f5,35x3x5 + f5,45x4x5.

Remark 5.1. f (2)(x) can be partitioned using (16) as

f (2)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (2)
k1

(x)

f (2)
k2

(x)

f (2)
k3

(x)

f (2)
k4

(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (50)

where

f (2)
k1

(x) =
⎡
⎣ f

(2)
1 (x)

f (2)
2 (x)

⎤
⎦ =

⎡
⎣ f1,35x3x5 + f1,45x4x5

f2,35x3x5 + f2,45x4x5

⎤
⎦,

f (2)
k2

(x) =
[
f (2)
3 (x)

]
=
[
f3,35x3x5 + f3,45x4x5

]
,

f (2)
k3

(x) =
[
f (2)
4 (x)

]
=
[
f4,35x3x5 + f4,45x4x5

]
,

f (2)
k4

(x) =
[
f (2)
5 (x)

]
=
[
f5,35x3x5 + f5,45x4x5

]
.

(51)

As f (2)
1 (x) is a function of x3, x4, and x5 only and hence a

function of x′ = (x2, x3, x4, x5), one can write f (2)
1 (x) =

f (2)
1 (x′). The systems given by (48) and (49) are then in

line with conditions of Theorem 4.1 as given in (30). Hence,
Theorem 4.1 can be applied to system (48) to obtain the
solution of generalized quadratic linearization which is given
in Corollary 5.2.

Corollary 5.2. The system (48) can be quadratic linearized in
the generalized sense using the transformation

y = x + φ(x),

u = (I4 + β(x)
)
v + α(x),

(52)

where

φ(x) = φ(2)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

f (2)
1 (x′)

φ(2)
3 (x′)

φ(2)
4 (x′)

φ(2)
5 (x′)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

α(x) = α(2)(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− f (2)
2 (x)

− f (2)
3 (x)

− f (2)
4 (x)

− f (2)
5 (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

β(m−1)(x) = (−1)m−1

{
BT

∂φ(2)(x)
∂x

B

}m−1

,

(53)

where φ(2)
3 (x′), φ(2)

4 (x′), and φ(2)
5 (x′) are completely arbitrary,

and x′ = (x2, x3, x4, x5). The system reduces to

ẏ = Ay + Bv. (54)

Proof. The result follows directly by applying the result of
Theorem 4.1 to (48) where n = 5, r = 4, μ = 4, k1 = 2, and
k2 = k3 = k4 = 1; p1 = 2, p2 = 3, p3 = 4, and p4 = 5.

5.2. Permanent Magnet Synchronous Motor. The PM ma-
chine model [13] can be expressed as

ẋ = Ax + Bu + f (2)(x); (55)
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x = [x1, x2, x3]t = [iqs, ids,ωe]
t and u = [u1,u2]t = [vqs, vds]

t

where vqs, vds, iqs, and ids represent the quadrature and
direct axes voltages and currents, respectively, andωe is stator
angular velocity:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Rs
Lqs

0 −
I′f Ldm

Lqs

0 − Rs
Lds

0

3P2LdmI
′
f

8J
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎣

1
Lqs

0

0
1
Lds

0 0

⎤
⎥⎥⎥⎥⎦

,

f (2)(x) =

⎡
⎢⎢⎢⎢⎢⎣

−Lds

Lqs
x2x3

Lqs

Lds
x1x3

(
Lds − Lqs

)
x1x2

⎤
⎥⎥⎥⎥⎥⎦
.

(56)

I′f is the field current equivalent to the permanent magnet.
Lds, Lqs, and Ldm are the direct, quadrature, and magnetizing
inductances, respectively. Rs is the stator resistance. P is the
number of poles, and J is the system moment of inertia. The
model (55) can be reduced to the following normal form in
a standard way using linear transformation of state variables
[19] and linear state feedback, where x, u, A, B, and f (2)(x)
are retained for simplicity of notation:

ẋ = Ax + Bu + f (2)(x), (57)

where A and B given by (2), where r = μ = 2 and k1 =
2, k2 = 1, are

A =

⎡
⎢⎢⎢⎣

0 1 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎣

0 0

1 0

0 1

⎤
⎥⎥⎥⎦,

f (2)(x) =

⎡
⎢⎢⎢⎢⎣

f (2)
1 (x)

f (2)
2 (x)

f (2)
3 (x)

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

C1x2x3

C2x3x1

C3x2x1

⎤
⎥⎥⎥⎦,

(58)

with C1,C2,C3 being constants.

Remark 5.3. f (2)(x) can be partitioned using (16) as

f (2)(x) =
⎡
⎣ f

(2)
k1

(x)

f (2)
k2

(x)

⎤
⎦, (59)

where

f (2)
k1

(x) =
⎡
⎣ f

(2)
1 (x)

f (2)
2 (x)

⎤
⎦ =

⎡
⎣C1x2x3

C2x3x1

⎤
⎦,

f (2)
k2

(x) =
[
f (2)
3 (x)

]
=
[
C3x2x1

]
.

(60)

Note that f (2)
1 (x) is a function of x′ = (x2, x3) and hence

f (2)
1 (x) = f (2)

1 (x′). The system given by (57) is in line
with conditions of Theorem 4.1 as given in (30). Hence,
Theorem 4.1 can be applied to system (57) to obtain the
solution of generalized quadratic linearization which is given
in Corollary 5.4.

Corollary 5.4. The system (57) can be quadratic linearized in
the generalized sense using the transformation

y = x + φ(x),

u = (I2 + β(x)
)
v + α(x),

(61)

where

φ(x) = φ(2)(x) =

⎡
⎢⎢⎢⎣

0

f (2)
1 (x′)

φ(2)
3 (x′)

⎤
⎥⎥⎥⎦,

α(x) = α(2)(x) =
⎡
⎢⎣
− f (2)

2 (x)

− f (2)
3 (x)

⎤
⎥⎦,

β(m−1)(x) = (−1)m−1

{
BT

∂φ(2)(x)
∂x

B

}m−1

,

(62)

where φ(2)
3 (x′) is completely arbitrary and x′ = (x2, x3). The

system then reduces to

ẏ = Ay + Bv. (63)

Proof. The result follows directly by applying the result of
Theorem 4.1 to (57) where n = 3, r = 2, and μ = 2; k1 =
2, k2 = 1; p1 = 2; p2 = 3.

5.3. Real-World Example of PMSM. The parameters of an
actual machine are obtained from [20] as Rs = 1.2 ohms,
Lqs = 12.5 mH, Lds = 5.7 mH, ωe = 3500 rpm, P = 4, J =
0.0018 kgm2, and λaf = 123 mWb turns. The mathematical
model of the machine in the normal form is given by

ẋ = Ax + Bu + f (2)(x), (64)

where A and B are as given in (57) and

f (2)(x) =

⎡
⎢⎢⎢⎢⎣

C1x2x3

C2x3x1

C3x2x1

⎤
⎥⎥⎥⎥⎦

, (65)
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where C1 = −0.165(e − 3), C2 = −186.96, and C3 =
5.754386(e6). By applying Corollary 5.4 and choosing

φ(x) = φ(2)(x) =

⎡
⎢⎢⎢⎣

0

C1x2x3

0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

−0.0165(e − 3)x2x3

0

⎤
⎥⎥⎥⎦,

α(x) = α(2)(x) =
⎡
⎣α

(2)
1 (x)

α(2)
2 (x)

⎤
⎦ =

⎡
⎣ 186.96x3x1

−5.754386(e6)x2x1

⎤
⎦,

β(1)(x) =
⎡
⎣−C1x3 −C1x2

0 0

⎤
⎦

=
⎡
⎣0.0165(e − 3)x3 0.0165(e − 3)x2

0 0

⎤
⎦,

β(m−1)(x) = (−1)m−1

{
BT

∂φ(2)(x)
∂x

B

}m−1

.

(66)

It is seen by verification that the system (64) becomes

ẏ = Ay + Bv (67)

through transformation (61), given φ(x), α(x), and β(x) as
above. The above system is completely linearized with no
higher-order terms left behind.

5.4. Simulation Results. Verification of quadratic lineariza-
tion of PMSM through simulations is given in an earlier
paper by the authors [18]. The simulation results show
that the closed-loop dynamic response of PMSM, before
linearization, exhibits a behaviour that corresponds to varied
responses for variations in reference and load conditions.
However, it is verified that the quadratic linearized PMSM
system gives a uniform closed-loop response for different ref-
erence and load conditions, as is expected of a linear system.

6. Conclusion

In this paper, linearization of machine models, which are
predominantly quadratic in nature, is considered. Since the
machine models only exhibit higher-order nonlinearities
such as core loss, stray loss, and saturation, under extreme
conditions, quadratic models can be used to represent the
machines during normal operation.

The existing exact feedback linearization techniques
introduce singularities in the system. This may result in the
the faliure of linearization and the corresponding control
technique, during the course of operation of the machine.
Application of Poincare’s approximate linearization tech-
nique due to Kang and Krener can remove the quadratic
nonlinearity through a homogeneous transformation. This
technique does not suffer from singularity issues but, being
an approximate method, introduces higher-order terms in
the process of quadratic linearization. Hence, in this paper,
the concept of generalized quadratic linearization technique

is introduced, wherein the higher-order terms introduced
during the process of quadratic linearization are removed
even as the quadratic term is removed.

A solution to the problem of generalized quadratic
linearization is given for a class of control affine systems.
Induction motor and PM motor models involving quadratic
nonlinearity are considered and are quadratically linearised
in the generalized sense. The proposed method can also be
extended to wound rotor and synchronous machine models
as well.

The generalized quadratic linearization technique pro-
posed in this paper can also be considered as the approximate
feedback linearization equivalent of exact linearization of a
class of systems of the form (29). Since the solution of the
generalized quadratic linearization involves removing third-
and higher-order nonlinearities, the result of the paper can
also been seen as a contribution towards a special case of the
open problem on arbitrary order linearization [21] of control
affine systems.

Finally, as per the result of Theorem 4.1, β(x) =∑
m=2,3,... β

m−1(x) whose convergence needs to be established.
Also, Theorem 4.1 of Section 4 deals only with sufficient con-
ditions for generalized quadratic linearization. The question
arises as to what are the necessary conditions for (9) to be
generalized quadratically linearizable in general: this is our
future work.
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