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Abstract

In this note an inequality of N. G. de Bruijn is used to obtain inequalities
involving finite sums of sequences of real and complex numbers.
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1 INTRODUCTION

In 1960 N. G. de Bruijn ([1], [2]) established the following refinement of the
classical Cauchy-Buniakowsky-Schwarz inequality:

Theorem A Ifay,as,...,a, is a sequence of real numbers and z1, 2o, -+ , zp
15 a sequence of complex numbers, then
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Equality holds when there is o € C such that o* Y ,_, z2 > 0 and aj, = Re(azy,)
for all k.

In this paper we employ Theorem A to obtain some inequalities for sums of
complex numbers similar to those presented in ([3], [4], [5] [6], [7]).
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2 THE INEQUALITIES

We now establish the main result.

Theorem 1 Let zy,29,...,2,,(n > 2) be a sequence of complexr numbers.
Then,
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Equality holds when there is o € C such that oY ,_, z2 > 0 and a, = Re(azy,)
for all k. In particular, the constants (3n—4)/2 and n/2 are the best possible.

Proof. We begin with an identity.

Lemma 1 If z1,29,...,2,,(n > 2) is a sequence of complex numbers, then
2
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Proof. The proof is by induction on n. For n = 2 the identity is trivial.
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The proof is complete.
Setting ay = 1, (1 < k < n) into (I)), we have
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On the other hand, from the previous lemma, we have
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Substituting the preceding expression into the previous one, and rearranging

terms, the statement immediately follows and the proof is complete.
O



Lemma 2 Let z1, 29, ..., 2,, (n > 2) be complex numbers. Then,
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Proof. The case n = 2 is easily checked. Assume
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The statement is proved.
O

Notice that the preceding lemma gives an explicit expression for number R =
n Szl = 1300, zil?, which is always positive because of the Cauchy-
Buniakowsky-Schwarz inequality, in terms of a finite sum of positive numbers.

Theorem 2 Let 21,25, ..., 2,, (n > 2) be complex numbers. Then,
S a2 3 (Y- |34
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Equality holds when there is o € C such that o* Y ,_, 22 > 0 and aj, = Re(azy,)
for all k.



Proof. Adding up the identities in Lemma 1 and Lemma 2, we get
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Now, applying Theorem 1, we have
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or equivalently

n - 2 n
§Z|Zk|2§ >z — 2l +5
k=1

1<i<j<n

from which the statement immediately follows and the proof is complete. O
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