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SUMMARY

1. A novel conceptual model linking anoxia, phosphorus (P), nitrogen (N), iron (Fe) and sulphate to

the formation of noxious filamentous and colonial cyanobacteria blooms is presented that reconciles

seemingly contradictory ideas about the roles of P, N and Fe in bloom formation.

2. The model has several critical concepts: (i) P regulates biomass and productivity in fresh waters

until excessive loading renders a system N-limited or light-limited, but it is the availability of ferrous

ions (Fe2+) that regulates the ability of cyanobacteria to compete with its eukaryotic competitors; (ii)

Fe2+ diffusing from anoxic sediments is a major Fe source for cyanobacteria, which acquire it by

migrating downwards into Fe2+-rich anoxic waters from oxygenated waters; and (iii) subsequent

cyanobacterial siderophore production provides a supply of Fe3+ for reduction at cyanobacteria cell

membranes that leads to very low Fe3+ concentrations in the mixing zone.

3. When light and temperature are physiologically suitable for cyanobacteria growth, bloom onset is

regulated by the onset of internal Fe2+ loading which in turn is controlled by anoxia, reducible Fe

content of surface sediments and sulphate reduction rate.

4. This conceptual model provides the basis for improving the success of approaches to eutrophica-

tion management because of its far-reaching explanatory power over the wide range of conditions

where noxious cyanobacteria blooms have been observed.

Keywords: cyanobacteria, eutrophication, freshwaters, nuisance algae, nutrient cycling

Introduction

Freshwater cyanobacteria blooms of filamentous and

‘matrix’ colonial species (hereafter called cyanobacteria)

remain a significant global problem in spite of decades

of research and billions of dollars spent on nutrient

removal to reduce primary productivity (Steffensen,

2008). We define the word ‘bloom’ here to mean domi-

nance by cyanobacteria (i.e. >50% of the phytoplankton

biomass) regardless of whether surface accumulation

occurs. Specific problems of cyanobacteria blooms

include the production of toxic or otherwise unpleasant

taste and odour compounds, accumulation of surface

scum and anoxia leading to fish kills, all of which are

expensive to mitigate (Wilhelm et al., 2006; Havens,

2008; Smith, Boyer & Zimba, 2008). We have learned a

great deal about eutrophication in the last 50 years and

achieved major successes in controlling, even reversing,

eutrophication in many systems (Jeppesen et al., 2005).

Nevertheless, the problem persists and in some regions

appears to be worsening (Carey, Weathers & Cottingham,

2008; Winter et al., 2011; Michalak et al., 2013).
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Management of affected waters would be greatly aided

by improved scientific understanding of the underlying

causative mechanisms for cyanobacteria bloom formation.

While total phosphorus (TP) and total nitrogen (TN)

concentrations are positively correlated with the magni-

tude and duration of cyanobacteria blooms and are

clearly very strong risk factors, the reason why large

cyanobacteria are often rare in nutrient-poor (oligo-

trophic) waters, yet manage to displace their eukaryotic

competitors in nutrient-rich (mesotrophic and eutrophic)

waters (Watson, McCauley & Downing, 1997; Downing,

Watson & McCauley, 2001), has not been clearly

established. We cannot predict with any certainty when

a cyanobacteria bloom will begin once temperatures are

warm enough to support growth or the duration of a

bloom except through empirical observations from pre-

vious years. Nor do we know why the problem is wors-

ening in some mesotrophic systems.

Clearly, the predictive state of cyanobacteria science is

unsatisfactory. This dissatisfaction may have contributed

to the recent debate challenging the supremacy of the P

paradigm in eutrophication management. Wurtsbaugh,

Lewis, Paerl and their colleagues argue that N plays a

major role alongside P in promoting cyanobacteria

blooms and that both N and P should be controlled

(Lewis & Wurtsbaugh, 2008; Lewis, Wurtsbaugh &

Paerl, 2011; Paerl, Hall & Calandrino, 2011a; Paerl et al.,

2011b). This argument has been vigorously challenged

in return by Schindler and his colleagues who claim that

controlling N to control cyanobacteria will not work

because N-fixation by cyanobacteria will compensate to

a large extent for induced N shortages (Schindler et al.,

2008; Schindler & Hecky, 2009; Paterson et al., 2011). The

outcome of this on-going debate can be expected to

influence the direction of billions of dollars in public

expenditures to remedy nutrient loading.

The dominant line of research thinking for the last

50 years with respect to factors that control cyanobacte-

ria bloom formation has focused mainly on P and N

and, to a lesser extent, temperature and light, although

other factors have, from time to time, been hypothes-

ised, including molybdenum (Cole et al., 1993) and iron

(Fe; Wilhelm, 1995). Judging by the quantity of litera-

ture published in recent years, many scientists must

feel that looking at P and N one more time from a dif-

ferent angle could shine enough light to solve the mys-

tery of cyanobacteria dominance in nutrient-enriched

waters. This has not happened and we are quite pessi-

mistic that it will ever happen without new thinking. A

reviewer reminded us of a quote attributed to Albert

Einstein, ‘The definition of insanity is doing the same

thing over and over again and expecting different

results’.

Our purpose here is to present a novel model that

does not supplant the important roles of P and N as

major macronutrients, but instead weaves additional

ideas into older ones to create a novel and more com-

prehensive conceptual framework with much more

explanatory power that spans the range of conditions

where cyanobacteria blooms have been observed.

Although in early stages of testing, the large amount of

indirect and some direct evidence strongly suggests that

the coupled biogeochemical/physiological model pro-

posed here is worth presenting to a larger audience at

this stage to expedite the full range of scientific scrutiny

and testing necessary for further development.

What do we know with reasonable certainty?

Our state of knowledge of the causative factors of cyano-

bacteria blooms is incomplete. We know that recruit-

ment of cyanobacteria via akinete germination and

activation of overwintering vegetative cells in oxic sedi-

ments is light- and temperature-dependent (Head, Jones

& Bailey-Watts, 1999a; Brunberg & Blomqvist, 2003) and

that they need nutrients to support population growth.

We know that freshwater pelagic cyanobacteria are ubiq-

uitous, capable of dominating nutrient-rich waters glob-

ally (Paerl & Paul, 2012) in both soft and hardwaters

(Marino et al., 1990; Codd et al., 2005; Paterson et al.,

2011) with one major exception. Pelagic forms are ‘con-

spicuously absent’ from phytoplankton communities of

polar regions, while benthic forms are common (Rautio

et al., 2011; Vincent & Quesada, 2012).

We know that with sufficient P enrichment, cyanobac-

teria blooms are almost certain to occur and that there is

a lesser risk of cyanobacteria dominating oligotrophic

and mesotrophic waters (Downing et al., 2001).

We know that N-fixing cyanobacteria often dominate

the phytoplankton community when N is limiting

(Smith, 1983; Havens et al., 2003), but we do not know

why non-N-fixing cyanobacteria such as Microcystis

dominate nutrient-rich waters when N availability is suf-

ficient (Xu et al., 2010).

We know that as an oligotrophic lake becomes eutro-

phic, P regulates phytoplankton biomass and productiv-

ity (Hecky & Kilham, 1988; Watson et al., 1997) until P

loading becomes excessive relative to N loading. How-

ever, the only conclusion we can draw about the role of

P in promoting cyanobacteria dominance is that high P

concentrations are a strong risk factor for cyanobacteria

bloom formation (Downing et al., 2001) because the
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causal mechanism between P and bloom formation has

eluded us. In summary, we do not know how P or high

N : P loading ratios specifically influence the outcome of

competition between cyanobacteria and eukaryotic algae.

Conventional wisdom says that cyanobacteria popula-

tions are small in oligotrophic waters because they are

poor competitors for P; that is, they have lower P trans-

port affinities at low P than eukaryotic algae and are

therefore excluded from the phytoplankton community

(Tilman et al., 1986) [affinity is defined as the slope of a

transport rate versus P concentration curve at very low

P, which is equivalent to the ratio of maximum transport

rate/half saturation constant in Michaelis–Menten kinet-

ics (Molot & Brown, 1986)]. This argument is consistent

with resource-partitioning theory that states that when

species are limited by the same nutrient, only one spe-

cies can dominate the community, and it will be the one

with the superior nutrient sequestering ability (Taylor &

Williams, 1975; Titman, 1976; Sommer, 1993). Many

eutrophication models employ this P acquisition concept

by assuming the following: first, a low P transport affin-

ity for cyanobacteria and a higher affinity for eukaryotes

at low P concentrations to simulate observed eukaryotic-

dominated communities typical of oligotrophic waters,

and second, that cyanobacteria have higher uptake rates

than eukaryotes at higher P concentrations to allow

model cyanobacteria populations to dominate at higher

P (e.g. Scavia, Lang & Kitchell, 1988). However, evidence

from laboratory and field studies shows that cyanobacte-

ria and picocyanobacteria (bacteria-sized cyanobacteria

that are single celled or attached to each other without a

mucilaginous sheath and which lack a buoyancy mecha-

nism) have higher P affinities than their eukaryotic com-

petitors (Molot & Brown, 1986; Wagner, Falkner &

Falkner, 1995; Aubriot & Bonilla, 2012) and thus should

dominate low P systems. Since this P affinity evidence is

contrary to the low P affinity hypothesis, eutrophication

phytoplankton models such as those just described are

wrong, but the models persist in their current form

because there are no better alternatives.

The critical role of ferrous iron

Asking why cyanobacteria are absent from oligotrophic

systems is as important as asking how they dominate

eutrophic systems: they are two sides of the same mech-

anism. Clearly, something other than P kinetics prevents

cyanobacteria from dominating phytoplankton commu-

nities in oligotrophic waters, and this factor may explain

both their absence from some systems and their abun-

dance in others.

The model presented here has several critical con-

cepts. We accept that P regulates biomass and produc-

tivity except in systems with very high concentrations

relative to N (N is discussed below). Importantly, we

also propose that the availability of ferrous iron, Fe2+,

regulates the ability of cyanobacteria to compete with

eukaryotic competitors. Further, the scarcity of Fe2+ in P-

limited oxygenated waters severely limits cyanobacteria

growth unless supplemented by migrating down into

Fe2+-rich anoxic waters enriched by internal loading

from anoxic surface sediments (Fig. 1).

Evidence for the ecological importance of Fe2+ to bloom

formation was provided by Molot et al. (2010) who

prevented a cyanobacteria bloom in P-enriched mesocosms

in eutrophic Lake 227 in the Experimental Lakes Area by

adding oxine which would have oxidised Fe2+ and chelated

Fe3 + . The inhibitory effect of oxine was reversed in labora-

tory cultures in one of two chlorophytes by adding Fe, but

growth of two oxine-exposed cyanobacteria could not be

re-established with Fe additions. Their results suggest that

cyanobacteria can transport Fe2+ but not Fe 3+ across their

cell membrane (see also Hopkinson & Morel, 2009; Kranzler

et al., 2011, 2013; Dang et al., 2012).

Free Fe2+ is very soluble in anoxic waters but is pres-

ent only in vanishingly small concentrations in circum-

neutral oxygenated waters because it is rapidly oxidised

to Fe3+. Fe3+ is the most common form of Fe in non-

acidic oxygenated waters, but it is not very soluble.

However, total dissolved Fe concentrations (typically

defined as that which passes through a 0.2- or 0.45-lm
filter) are usually much higher in fresh waters because

of complexation of Fe3+ and Fe2+ to dissolved organic

matter (DOM; Ghassemi & Christman, 1968; Curtis,

Fig. 1 Simplified conceptual diagram of the modified phosphorus

eutrophication model of cyanobacteria bloom formation for systems

lacking naturally anoxic surficial sediments. The only factor con-

trolling Fe2+ production shown here is anoxia at the sediment

water interface.
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1993; Molot & Dillon, 2003). Therefore, most if not all of

the Fe in the mixing layer is biologically unavailable to

cyanobacteria without dissociation and reduction steps

prior to transport across the inner membrane.

Cyanobacteria also have higher Fe requirements than

their eukaryotic competitors with N-fixation imposing an

even higher Fe demand (Table 1). This, coupled to an

inability to transport Fe3+, may induce Fe limitation in

cyanobacteria in waters lacking a large Fe2+ pool. We hy-

pothesise that internal Fe2+ loading in nutrient-rich waters

prevents Fe limitation. Some eukaryotic algae appear able to

transport Fe3+ (Molot et al., 2010) and some employ phago-

trophy as a mechanism for acquiring Fe (Maranger, Bird &

Price, 1998), which, combined with a lower Fe demand,

probably prevents Fe limitation in eukaryotic algae.

Sources of Fe2+

Fe2+-specific transport and high metabolic Fe require-

ments do not by themselves guarantee that cyanobacteria

are Fe-limited. Fe limitation is more likely if the rate of

supply of Fe2+ is low. In systems lacking internal Fe2+

loading from anoxic sediments, the major sources of Fe2+

are extracellular photoreduction of Fe+3 complexed to

DOM (Zepp, Faust & Hoigne, 1992; Voelker, Morel &

Sulzberger, 1997) and biological reduction of Fe+3 at the

cell membrane (Kranzler et al., 2011, 2013; Fig. 2). We

postulate that rapid reoxidation by dissolved oxygen

above pH 6 outside cells and in the periplasmic space

decreases the availability of Fe2+ derived from photore-

duction and biological reduction for transport across the

cell membrane. This follows from a consideration of the

high reactivity of Fe2+ with dissolved oxygen: 80% of Fe2+

is oxidised within 1 or 2 min at pH 7.6 in a solution in

atmospheric equilibrium (Morgan & Lahav, 2007). Note

that the dissolved oxygen concentration in equilibrium

with the atmosphere during the summer is about 250 lM,
whereas the concentration of Fe2+ in the periplasmic

space between the outer and inner membrane is probably

many orders of magnitude smaller at circumneutral pH.

Table 1 Summary of published Fe:C and Fe:P quotients (lmol mol�1) for eukaryotic phytoplankton and N-fixing and non-N-fixing cyano-

bacteria, including picocyanobacteria, under a variety of growing conditions. Quotients for some heterotrophic pelagic bacteria are also

shown. Data presented here are for low Fe when both low Fe and high Fe culture conditions are available. Fe concentrations may be overes-

timated because of potential Fe adsorption to cell walls (Tovar-Sanchez et al., 2003; Tang & Morel, 2006)

Eukaryotes Non-N-fixing N-fixing References

0.15–0.241 15.31 Raven (1988)

Trichodesmium

5.2

Trichodesmium

13.5

Kusta, Sa~nudo-Wilhemy &

Carpenter (2003)

Crocosphaera: 0.76–6.5
Mean 16.7 � 18.0

Trichodesmium culture:

14.7 & 138.2

Mean 76.5

Crocosphaera: 7.3–96.7
Mean 36.2 � 28.7

Trichodesmium culture: 12.4–176.7
Mean 91.4 � 65.4

Trichodesmium field: 13.8–85.9
Mean 66.1 � 39.0

Tuit, Waterbury & Ravizza

(2004)

Trichodesmium

13 (total Fe)

3.1 (Ti washed)

Berman-Frank et al. (2001)

Trichodesmium 27

Anabaena 0.4

Cyanothece 0.08

Berman-Frank et al. (2007)

Thalassiosira 3–7 Sunda, Swift & Huntsman

(1991)

Thalassiosira 0.65–14 Maldonado & Price (1996)

Thalassiosira 6–12 Price (2005)

Marine field phytoplankton

4.4 � 0.8

Heterotrophic marine bacteria

9.1 � 1.5

Tortell, Maldonado & Price

(1996)

Marine field phytoplankton

3.7 � 2.3

Cyanobacteria N-fixing capability

not stated 19 Heterotrophic bacteria

6.65 � 2.5

Tortell et al. (1999)

Thalassiosira 8–11 Trichodesmium 11–28 Glass, Wolfe-Simon & Anbar

(2009)

Fe : P ratio:

10�34–10�4 oceanic

10�3.1–10�2 coastal

Fe : P ratio:

10�2.7–10�1.4

picocyanobacteria Synechococcus

Brand (1991)

1Dry weight converted to C by assuming 50% of dry weight was C.

© 2014 John Wiley & Sons Ltd, Freshwater Biology, doi: 10.1111/fwb.12334
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Overcoming Fe limitation requires a large source of

Fe2+ that we suggest can be supplied by internally

loaded Fe2+ from anoxic sediments; that is, Fe2+ diffus-

ing upwards from microbial reduction of Fe3+ oxy-

hydroxides (Cook, 1984; Davison, 1993). Anoxic

sediments are characteristic of nutrient-rich waters

(N€urnberg, 2004), and indeed, Trimbee and Prepas

(1988) argued 25 years ago that anoxia was a pre-condi-

tion for cyanobacteria blooms in eutrophic waters. Sev-

eral studies have noted that warm temperatures and

stable water columns promote cyanobacteria blooms in

eutrophic waters (Paerl, 1988; Zhang & Prepas, 1996),

conditions that concurrently promote anoxia.

Fe2+ transported upward from anoxic sediments

remains in reduced form until it reaches oxygenated

waters where it is rapidly reoxidised to Fe3+. Hence, to

acquire internally loaded Fe2+ before reoxidation, cyano-

bacteria must migrate downwards into anoxic waters

below the mixed layer. Migration velocities appear to be

large enough to reach anoxic areas in many systems, but

data are limited (Table 2). Migration downwards into

anoxic waters has been observed (Camacho et al., 1996;

Camacho, Vicente & Miracle, 2000; Gervais et al., 2003)

as well as acquisition of P during migration (Head,

Jones & Bailey-Watts, 1999b). Aphanizomenon has been

observed migrating upwards in the anoxic hypolimnion

of Lake 227 in the Experimental Lakes Area in north-

western Ontario below the metalimnion (Fig. 3). Maxi-

mum concentrations of upwardly migrating filaments

were repeatedly measured at 6.5 m in this 10-m-deep

lake (2.5 m below the metalimnion). While we do not

know whether Aphanizomenon in Lake 227 acquires hyp-

olimnetic Fe2+ or whether it uses anoxygenic photosyn-

thesis, cyanobacteria do use the latter elsewhere

(Garlick, Oren & Padan, 1977). However, d15N and d13C
signatures in particulate organic matter at 6 and 8 m

indicate both biological use of N and C fixation (J. Venk-

iteswaran & S. Schiff, unpubl. data) by cyanobacteria,

sulfur bacteria or chemoautotrophs.

Acquiring Fe with siderophores

Siderophores are low molecular weight, high-affinity

Fe3+ chelators produced by some fungi and bacteria,

including cyanobacteria (Neilands, 1995; Hopkinson &

Morel, 2009). Picocyanobacteria do not appear to pro-

duce siderophores, although some Synechococcus can

(Kranzler et al., 2013), but may have the ability to access

siderophore-bound Fe3+ (Hopkinson & Morel, 2009). A

reduction step to free the bound Fe3+ and transport it

Fig. 2 The processes that promote Fe delivery to cyanobacteria and thereby promote cyanobacteria dominance in lakes. (1) Anoxia: systems

with anoxic sediments will experience Fe2+ flux into anoxic waters. Migrating cyanobacteria can acquire Fe2+ for direct transport into cells.

(2) Photoreduction: DOM-Fe3+ can be photo-reduced, giving rise to Fe2+ that is available for direct Fe2+ transport into phytoplankton cells,

but the transport rate is pH dependent. Acidity affects rates of abiotic oxidation by dissolved O2 and at pH <6 Fe re-oxidation may be low

enough to give rise to a pool of transportable Fe2+. At higher pH, much of it is probably re-oxidised before transport. (3) and (4) Fe-scaveng-

ing (or acquisition) system: siderophores are produced by cyanobacteria that can (3) bind free soluble Fe3+ and (4) cleave Fe3+ from DOM

complexes. Scavenged Fe3+ is then delivered to the cell membrane, creating a pool of Fe only accessible by cyanobacteria. Fe3+ is reduced by

the Fe reducing system (FeR) before transport across the inner membrane. The Fe2+ pool is shown as two separate pools – in anoxic waters

(internal loading) and in the mixing layer (photo-reduction).

© 2014 John Wiley & Sons Ltd, Freshwater Biology, doi: 10.1111/fwb.12334
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into the cell as Fe2+ is probably necessary (Boukhalfa &

Crumbliss, 2002; Harrington & Crumbliss, 2009; Kranzler

et al., 2013).

Siderophores are designed to scavenge Fe3+ (but not

Fe2+) from the surrounding environment in Fe-limited

conditions and increase the supply rate of Fe3+ to cells

(Wilhelm & Trick, 1994). This strategy locks Fe3+ into

siderophore-bound complexes that are unavailable to

other algae that do not have a siderophore-Fe uptake

system and may act to limit their population growth.

Indeed, Sorichetti, Creed and Trick (2014a) found that

siderophores lower ‘free’ (modelled) Fe3+ to extremely

low concentrations. Siderophores do not appear to be

responsible for initiating blooms but could be essential

in maintaining them by limiting eukaryotic access to Fe

(Murphy, Lean & Nalewajko, 1976). Siderophores may

also help cyanobacteria survive through extended peri-

ods of low Fe2+ availability.

Factors regulating internal Fe2+ loading

Anoxia

The redox potential at the sediment/water interface

must be low enough to facilitate microbial Fe reduction

in surface sediments with diffusion of Fe2+ into overly-

ing waters of stratified lakes or into the boundary layer

above the sediment/water interface in shallow polymic-

tic systems. A low redox potential requires both anoxia

and nitrate depletion because aerobic and anaerobic res-

piration raise the redox potential to levels that prevent

Fe reduction.

Reducible Fe content in sediments and sulphate

concentrations

If Fe2+ availability is a major factor required for the

onset of cyanobacterial dominance, then factors that con-

trol internal Fe2+ loading rates once anoxia develops are

critical to bloom formation. An important factor control-

ling this Fe2+ supply is the reducible Fe content

(assumed to be primarily Fe3+ oxyhydroxides) in surfi-

cial sediments and its rate of reduction under anoxic

conditions. The reducible Fe content is typically con-

trolled by the settling of particulate Fe to surface sedi-

ments and sediment diagenesis processes involving

dissolution, diffusion and precipitation of Fe (Wersin

et al., 1991). Reducible Fe is redox sensitive and there-

fore may decline after anoxia begins if the reduction/

dissolution rate exceeds the rate of new inputs.

The reducible Fe content can have a large range in

fresh waters. Loh et al. (2013) reported a range from 0.22

to 78.0 lmoles Fe (g dry wgt)�1 in three Canadian hard-

water lakes, while the range was 2.9–123.7 lmoles Fe

(g dry wgt)�1 in five softwater lakes in central Ontario

(Powe et al., 2013).

A second factor is the competing mechanisms that

remove Fe 2+ from sediment pore waters or the overly-

ing water column. Fe2+ can be sequestered in ferrous

phosphate or ferrous sulphides and carbonates or com-

plexed to organic matter. Ferrous phosphate has been

identified in freshwater sediments (Emerson & Widmer,

1978; Manning, Murphy & Prepas, 1991). While the

extent to which its formation can limit internal Fe2+

loading is unclear, its formation appears to be inhibited

by sulphide (Katsev et al., 2006). Ferrous carbonate is

considered very rare in freshwater sediments and can

only occur in anoxic environments with high pCO2, low

dissolved sulphide and a high Fe/Ca ratio to prevent

calcite formation (Bernard & Symonds, 1989).

Table 2 Summary of published cyanobacteria migration rates and

distances

Notes References

90% of Microcystis colonies in Vinkeveen

Lake, Netherlands, were upwardly

buoyant at 8 m. Most colonies found in

shallower waters less than 5 m

Ibelings, Mur &

Walsby (1991)

Cyanobacteria in Cauldshiels Loch,

Scotland, found migrating upward at

11 m, just below thermocline but perhaps

still in metalimnion. These colonies were

found to transport P from hypolimnion to

epilimnion

Head et al. (1999b)

Velocities of Microcystis colonies from

surface of Lake Okaro, New Zealand, were

measured in a graduated cylinder. Sinking

velocities after 24 h of illumination

averaged 52 � 13 m day�1, and rising

velocities after 24 h of darkness averaged

58 m day�1. These would likely differ in a

more turbulent environment

Walsby & McAllister

(1987)

Small individual filaments of Oscillatoria

agardhii in Lake Gjersjoen, Norway, a lake

with an anoxic hypolimnion, moved less

than 10 cm day�1, but when aggregated

into larger colonies (~3 mm in diameter)

had a rising rate of 24 m day�1 and a

sinking rate of up to 89 m day�1. The

proportion of positively buoyant filaments

increased with depth: at 10 m depth (3 m

below the bottom of the metalimnion),

100% were positively buoyant, at 8.5 m

depth, 85% of the filaments collected were

positively buoyant, and at 4 m depth (top

of the metalimnion), 39% were positively

buoyant

Walsby, Utkilen &

Johnsen (1983)

© 2014 John Wiley & Sons Ltd, Freshwater Biology, doi: 10.1111/fwb.12334
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Sulphate reduction to sulphide can limit Fe2+ diffusion

rates from anoxic sediments because of insoluble iron sul-

phide formation (Carignan & Tessier, 1988). Hence, lakes

in which the sulphide formation rate is high enough to

prevent Fe2+ diffusion should not experience a cyanobac-

teria bloom. The sulphate reduction rate is limited by the

sulphate diffusion rate at concentrations less than 3 mM

(which includes non-saline freshwater systems), but not

at 28 mM typical of open ocean waters (Boudreau & Wes-

trich, 1984). Hence, sulphate reduction rates will be

greater in marine sediments than in freshwater sediments

at a given organic matter deposition rate. Indirect evi-

dence for the influence of sulphate reduction rate on inter-

nal Fe2+ loading comes from marine sediments, which

have significantly higher internal soluble P loading than

freshwater systems, probably because of a much higher

formation rate of iron sulphide (Caraco, Cole & Likens,

1990; Blomqvist, Gunnars & Elmgren, 2004). A high rate

of iron sulphide formation limits formation of insoluble

Fe phosphate (because of the sulphide’s higher solubility

product), in turn permitting higher internal P loading. In

a study of saline lakes in Alberta, cyanobacteria were

absent from the most saline (65 mM), which was also

hypereutrophic, but present in others with less sulphate

(1.7–23 mM; Marino et al., 1990). However, significant Fe2+

removal as ferrous carbonate cannot be ruled out because

of the high lake pH (9.6).

There is little quantitative information on relationships

between sulphate concentration, reducible Fe content

and internal Fe2+ loading. Loh et al. (2013) explored

empirical relationships between Fe release rate, sediment

Fe fractions and sulphate concentration in batch incuba-

tions of lake sediment cores, but these relationships

should be treated with caution because sulphate rapidly

disappeared in the first few days due to sulphate reduc-

tion. It could be informative to consider the ratio of

reducible Fe to sulphate concentration in overlying

water, R, as a potential indicator of cyanobacteria bloom

formation in fresh waters when the sediment/water

interface becomes anoxic. High R is an indication of Fe2+

internal loading and could be associated with bloom sit-

uations, whereas no internal loading or cyanobacteria

dominance should occur low at R. The range of R in

eight Canadian lakes discussed above, all of which have

experienced cyanobacteria dominance or near domi-

nance at certain times of the year, was 3–1709 lmoles Fe

(g dry wgt)�1 mM
�1 sulphate. We note that cyanobacte-

ria were dominant when R exceeded 8. In cyanobacteria-

dominated Lake 227, epilimnetic sulphate concentrations

are very low (<0.03 mM) and the reducible Fe content,

while not known, is probably very high because hypo-

limnetic dissolved Fe concentrations are very high

(>15 lM at the beginning of the 2006 bloom 2 m below

the metalimnetic/hypolimnetic boundary; Molot et al.,

2010). Hence, R is probably very high.

Sulphide-mediated Fe limitation may explain why

N-fixation rates vary along a salinity gradient. If internal

Fe2+ loading in anoxic systems declines with increasing

salinity (sulphate generally increases with salinity), we

should expect to find N-fixation rates changing along a

salinity gradient with rates lowest in ocean waters, inter-

mediate in brackish and higher in fresh waters because

of increasing Fe limitation with salinity. Reported N-fix-

ation ranges (mmoles N m�2 year�1) are 0.14–6.4 for

oceans, 0.9–129 for estuaries and 14–657 for eutrophic

lakes (Howarth et al., 1988). The ranges overlap to some

extent, but the maximum reported rates for each type of

system span two orders of magnitude (6.4–657 mmoles

N m�2 year�1), implying that Fe2+ may be less available

in more saline waters. Some of the variability was prob-

ably caused by varying degrees of N deficit, residence

time (Nixon et al., 1996) and the many assumptions used

to calculate annual rates from short-term measurements.

(a)

(b)

Fig. 3 Cyanobacteria migration in Lake 227. (a) Lower axis:

dissolved oxygen (DO, mg L�1; solid line), temperature (°C; dashed
line) and phycocyanin concentration (relative fluorescence units;

squares) and upper axis: total reactive Fe concentration (lg L�1,

circles) in Lake 227 on 28 June 2011. (b) Number of migrating

Aphanizomenon filaments during 24 h period on 28–29 June 2011.

Upward migration: dark bars, downward migration: light bars.

Error bars are standard errors with n = 4. Data from by S. McCabe

and L. Molot.
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Nevertheless, the negative relationship between salinity

(i.e. sulphate) and maximum N-fixation estimates for

each type of ecosystem is consistent with the central role

of Fe2+ hypothesised in this model.

There is very little information on reducible Fe levels

in marine sediments. Reducible Fe in surface sediments

at two shallow Danish coastal sites in the Kattegat region

(Jensen & Thamdrup, 1993) was 95 lmoles (g dry wt)�1,

similar to the highest value of 124 lmoles (g dry wt)�1

measured in the Canadian lakes. Assuming an open

ocean sulphate concentration of 28 mM, R for these

Danish sites was 3.4 lmoles Fe (g dry wgt)�1 mM
�1 sul-

phate, a low value consistent with absence of blooms in

the Canadian lakes. More information on reducible Fe

content and sulphate concentrations in fresh waters,

coastal regions and estuaries would be useful in testing

the use of R as an indicator of conditions suitable for

cyanobacteria dominance.

Two alternative explanations (but not mutually exclu-

sive) involving the relationship between salinity/sulphate

and N-fixation are as follows: (i) high sulphate concentra-

tions may interfere with nitrogenase activity in brackish

water cyanobacteria (Stal, Staal & Villbrandt, 1999), and

(ii) increased water density associated with higher salinity

may slow downward migration rates, thereby lengthen-

ing the time it takes to acquire Fe2+ although higher

salinity should increase upward migration rates.

Basin morphometry and depth of anoxia affect Fe2+

availability and accessibility

Anoxic zones enriched with Fe2+ must be accessible to

migrating cyanobacteria for blooms to occur. It is highly

unlikely that marine sediments in ocean regions removed

from coastal areas with restricted circulation or freshwa-

ter sediments in the deepest part of deep lakes meet this

criterion because anoxic zones may be too deep; that is,

too far below the mixing zone. However, coastal regions

and lakes have shallow sediments located along the sides

of their basins and, hence, internally loaded Fe2+ in

inshore regions with anoxic surficial sediments could be

accessible when mixing conditions permit.

Although sampling stations are typically located in

the deepest part of inland lakes, inshore regions can

play an important role. For example, Hamilton Harbour

(at the western end of Lake Ontario) at the central sta-

tion (24 m maximum depth) was completely anoxic

below 18 m and had less than 1 mg L�1 O2 below 15 m

on 23 June 2010 (Fig. 4a). However, at an inshore site

(12 m depth), anoxia occurred just above the sediment/

water interface at 12 m and O2 was less than 1 mg L�1

below 11 m. Thus, completely anoxic water was c. 6 m

closer to the surface, and hypoxic water was 4 m closer

to the surface at the inshore site compared with the

centre of the Harbour. Clearly, the top of the anoxic

layer in the hypolimnion was not strictly horizontal

throughout the harbour as it appears to have curved

upward inshore. Hence, an anoxic sediment/water inter-

face is more likely to occur closer to the bottom of the

metalimnion inshore than offshore, and Fe2+ produced

in inshore regions could contribute to bloom formation

when mixing conditions permit.

Cyanobacterial blooms are also observed in eutrophic

polymictic systems even though bottom waters may not

be anoxic. Polymictic systems do not thermally stratify

for any great duration but have boundary layers at the

sediment/water interface that could contain accessible

Fe2+. Internal P loading occurs in polymictic systems

(Jensen & Andersen, 1992; Ramm & Scheps, 1997),

suggesting that the sediment/water interface is anoxic at

least periodically when winds are calm (Loewen,

Ackerman & Hamblin, 2007; Bryant et al., 2010), perhaps

developing at night when photosynthetic production of

dissolved oxygen stops, and thus may contain Fe2+.

When winds are calm, the boundary layer thickness will

increase (Bryant et al., 2010) and will be large enough

for cyanobacteria to obtain nutrients should they migrate

the short distance to the sediment/water interface.

Cyanobacteria blooms in western and central Lake Erie

appear to originate inshore in areas that have polymictic

behaviour (shallow and not stratified, for example,

Maumee Bay, Sandusky Bay; Millie et al., 2009).

Anoxia is not limited to eutrophic systems. In a study

of five oligotrophic, softwater embayments with natural

anoxia along the Georgian Bay (Great Lakes) coast in

Ontario, Canada, cyanobacteria dominated three of the

five and were 14–27% of the phytoplankton biomass in

the other two embayments (Powe et al., 2013). Biomass

was low and internal P loading did not occur in two of

the embayments dominated by cyanobacteria. It was con-

cluded that P was not a factor in determining cyanobacte-

ria dominance in these systems. Notably, anoxia and

internal Fe2+ loading coincided with or preceded domi-

nance, consistent with the model proposed here. Clearly,

oligotrophic waters are not immune to cyanobacteria

dominance, and the critical concept of the role of Fe2+

apparently holds over a wide trophic range.

Timing of bloom formation

Once light and temperature become physiologically

favourable for cyanobacteria growth, our model predicts

© 2014 John Wiley & Sons Ltd, Freshwater Biology, doi: 10.1111/fwb.12334
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that bloom onset is regulated by the onset of internal Fe

loading, which in turn is controlled by the development

of anoxia, reducible Fe content of surface sediments and

sulphate reduction rate. These factors, presented in Fig. 5

as a decision tree, may explain variation in timing of

bloom onset between years and among lakes. For exam-

ple, cyanobacteria blooms begin in softwater Lake 227 in

north-western Ontario in mid-June, c. 6 weeks after

ice-out (Molot et al., 2010) although biogeochemical

conditions are optimal after ice-out in early May when

sampling begins (the hypolimnion is anoxic, hypolimnet-

ic Fe concentrations are very high (Molot et al., 2010) and

hypolimnetic sulphate concentrations are very low

(<0.02 mM) in mid-May). Bloom onset appears to have

coincided with warming of the top 2 m of the epilimnion

to c. 15–20 °C.

In contrast, cyanobacteria blooms typically begin

much later much further south in hardwater Hamilton

Harbour (Lake Ontario), typically in mid-August several

months after surface waters temperatures have increased

above 15 °C. The delay in Hamilton Harbour may be

related to a delay in internal Fe2+ loading. An anoxic

episode in June 2010 was accompanied by internal P

loading, but not by internal Fe loading or a cyanobacte-

ria bloom (Fig. 4a,b). The June episode was interrupted

by a seiche, following which anoxia was re-established

in July and internal Fe loading was then observed in

early August followed by a cyanobacteria bloom

2 weeks later. Sulphate was not measured in the Har-

bour in 2010, but concentrations typically range from

0.42 to 0.63 mM unless disturbed by a seiche which

imports oxygenated, low sulphate hypolimnetic water

from Lake Ontario (c. 0.27 mM sulphate; data from Envi-

ronment Canada). Figure 4c illustrates this: in 2009, sul-

phate declined throughout the water column below

10 m between 4 June and 8 July, increased to c. 4 June

levels by 17 July and then rapidly decreased again over

the next 5 days. High rates of iron sulphide formation

are consistent with high levels of acid extractable Fe

found in surface sediments in the harbour (Loh et al.,

2013). It is not known whether the reducible Fe content

increased as the summer progressed, but a combination

of increasing reducible Fe and lower sulphate in late

summer might have increased R to a level capable of

initiating a bloom.

Is N important? Yes but…

Both P and N are important as macronutrients to all

phytoplankton species, without which cell growth is

impossible. Algal cells require more N than P [the
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Fig. 4 Profiles in Hamilton Harbour: (a) temperature profiles at

the deep (1001) and inshore (909) stations (note cooling between 23

June and 21 July 2010); (b) dissolved oxygen profiles at the deep

and inshore stations in 2010; (c) dissolved P (0.45 lM filter) at 1 m

and 19 m and total reactive Fe at 21 m at the deep station in 2010;

(d) sulphate concentrations on four different dates in 2009 at the

deep station. Data from S. Watson (Environment Canada).
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stoichiometric molar N : P quotient is conventionally set

at 16 : 1 (Redfield, Ketchum & Richards, 1963), and

while the ratio varies considerably among species, it is

always greater than 1 (Klausmeier et al., 2004; Walve &

Larsson, 2007)]. Nutrient inputs to culturally eutrophic

lakes typically include both P and N although the N : P

ratio of inputs varies such that productivity in eutrophic

lakes is P-limited in some and N-limited in others. How-

ever, P management has been emphasised to reduce

algal blooms for three reasons: (i) most oligotrophic

freshwater systems are P-limited (Hecky, Campbell &

Hendzel, 1993), (ii) cyanobacteria dominance of oligo-

trophic P-limited systems is (or has been) rare (Downing

et al., 2001), and (iii) it is easier and cheaper to remove P

from waste water treatment plant effluent than N. Nev-

ertheless, it has been argued in recent years that both P

and N controls are needed to limit cyanobacteria bio-

mass in eutrophic fresh waters rather than controlling P

alone (Conley et al., 2009; Paerl & Scott, 2010; Lewis

et al., 2011; Paerl et al., 2011a and b).

N
availability
in relation

to P

Non-N-fixing
cyanobacteria

N-fixing
cyanobacteria

Low High

FeS ties up
Fe

Bioavailable
Fe2+ at

accessible depths

Cyanobacteria
dominant

SO4
2–

Low High

Anoxic SWI

Fe2+ not
at SWIFe2+ at SWI

O2
dynamics

Internal and
external nutrient and

BOD loading

Basin
morphometry

Yes No

Phytoplankton
biomass

Eukaryotes
dominant

Fig. 5 Decision tree for biogeochemical

processes promoting cyanobacteria

bloom formation. Ovals represent the

start and finishing points in the tree,

rectangles are major processes and

concentrations, and diamonds are critical

decision points. The first critical junction

at the top is whether or not anoxia

occurs and if so, whether microbial

reduction in Fe3+ to Fe2+ loading occurs.

At the next critical junction, sulphate

plays a role in determining internal Fe2+

loading and thus whether the phyto-

plankton is dominated by cyanobacteria

or eukaryotic algae. BOD – biochemical

oxygen demand; SWI – sediment/water

interface.
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The model presented here, however, suggests that

implementing anthropogenic N controls to induce

N-limitation either alone or concomitant with P controls

will have limited impact on cyanobacteria dominance in

fresh waters unless Fe2+ availability is greatly restricted

by preventing anoxia at the sediment/water interface. If

anoxia and internal Fe2+ loading are not prevented,

N-limitation will favour N-fixing cyanobacteria that will

fix N to compensate for the loss of anthropogenic N.

We note that large blooms of N-fixing Aphanizomenon

comprising up to 90% of the phytoplankton biomass con-

sistently occurred in Lake 227 throughout the 23 years

after experimental N inputs ceased (Paterson et al., 2011).

The hypolimnion is anoxic shortly after ice-off, and the

high rate of internal Fe loading provides the Fe2+ neces-

sary to support a large, N-fixing population (Molot et al.,

2010). Heterocyst abundance has been increasing since

1990 when N additions stopped, perhaps in response to

gradual loss of legacy N in sediments (Paterson et al.,

2011). These long-term results are consistent with the pro-

posed central roles of anoxia and internal Fe2+ loading in

promoting cyanobacteria dominance.

Studies have found low nitrate concentrations to be

associated with cyanobacteria blooms (McQueen & Lean,

1987; N€urnberg, 2007) leading some to argue that the

cause of bloom formation is that an inorganic N pool

with high ammonia and low nitrate favours N acquisi-

tion by cyanobacteria, whereas the reverse favours N

acquisition by eukaryotic algae (Blomqvist, Pettersson &

Hyenstrand, 1994). However, there is a plausible alterna-

tive explanation for the correlation between cyanobacte-

ria blooms and low nitrate: anoxia promotes

denitrification and prevents nitrification, and hence,

nitrate concentrations will be low (Keeney, Chen & Gra-

etz, 1971), but it is the associated internal Fe2+ loading

that is directly responsible for cyanobacteria dominance.

Picocyanobacteria

Our model explains why freshwater picocyanobacteria,

with similar Fe requirements to larger non-N-fixing

cyanobacteria, coexist in oligotrophic waters with

eukaryotic algae. Freshwater picoplankton (which con-

sists of bacteria-sized cyanobacteria and eukaryotic spe-

cies) make up 0–90% of algal abundance in oligotrophic

systems (V€or€os et al., 1998; Bell & Kalff, 2001; Callieri &

Stockner, 2002; Callieri et al., 2007). This observation

raises the questions of what mechanism allows this

co-existence to occur and what mechanism accounts for

larger cyanobacteria dominating eutrophic systems

rather than picocyanobacteria?

Resource-partitioning theory predicts that co-existence

is possible under equilibrium conditions when two phy-

toplankton species are limited by different nutrients

(Taylor & Williams, 1975; Titman, 1976; Sommer, 1993).

Since studies show that eukaryotic phytoplankton are

usually limited by P in oligotrophic waters, there are

two nutrient-based explanations that may account for

their co-existence with picocyanobacteria.

1. Both groups are P-limited. Although picocyanobac-

teria have higher P transport affinities than eukaryotic

algae (Molot & Brown, 1986) and should dominate,

higher grazing pressure on picocyanobacteria could lead

to co-existence (Cavender-Bares et al., 1999; Mann &

Chisholm, 2000).

2. The two groups are limited by different nutrients: Fe

limitation of picocyanobacteria and P-limitation of eukary-

otes and thus co-existence is permitted according to

resource-partitioning theory. Picocyanobacteria have

higher Fe requirements than eukaryotic algae, leading to

Fe limitation in apparently P-limited oligotrophic and mes-

otrophic systems (Twiss, Auclair & Charlton, 2000; McKay

et al., 2005), similar to some marine systems (Brand, 1991;

Sunda & Huntsman, 1995; Maldonado & Price, 1999).

In either the P or dual P and Fe-limited scenarios,

small species may occupy the cyanobacterial niche in

oligotrophic waters because severe nutrient limitation

favours small cells with high surface area/volume ratios

(Smith & Kalff, 1983; Sunda & Huntsman, 1995). What

remains to be explained is how larger cyanobacteria out-

compete picocyanobacteria as nutrient enrichment

increases. Perhaps the ability of larger cyanobacteria to

migrate into anoxic waters to take advantage of a large

Fe2+ pool gives them a competitive advantage over non-

migratory picocyanobacteria. However, several supple-

mental mechanisms may also be involved: (i) selective

grazing of picocyanobacteria may suppress the popula-

tion, (ii) secretion of siderophores by larger cyanobacte-

ria which picocyanobacteria may not be able to utilise

may leave picocyanobacteria unable to obtain sufficient

Fe for growth, and (iii) secretion of allelogenic com-

pounds by larger cyanobacteria may impair growth of

other phytoplankton (Keating, 1977, 1978). Evidence for

either (2) or (3) comes from preliminary studies showing

that nutrient-enriched filtrate from spent Anabaena cul-

tures limits Synechoccocus growth, but the reverse does

not occur (Fig. 6; Sorichetti et al., 2014b).

Cyanobacteria dominance in acidified lakes

We hypothesised that rapid re-oxidation above pH 6 by

dissolved oxygen outside cells and in the periplasmic

© 2014 John Wiley & Sons Ltd, Freshwater Biology, doi: 10.1111/fwb.12334
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space decreases the availability of Fe2+ derived from

photoreduction and biological reduction for transport

across the inner cell membrane (see Sources of Fe2+ sec-

tion above). It follows that Fe2+ supply rates may be

higher in acidic waters in systems lacking anoxic sedi-

ments because acidity inhibits rapid reoxidation of Fe2+

to Fe3+ by dissolved oxygen. For example, 80% of Fe2+

is abiotically oxidised within 1 or 2 min at pH 7.6 but

takes more than 8 h at pH 5 at atmospheric equilibrium

(Morgan & Lahav, 2007). There is indirect evidence in

support of this because acid-tolerant cyanobacteria spe-

cies such as Rhabdoderma and Merismopedia often domi-

nate oligotrophic, atmospherically acidified lakes (Molot,

Heintsch & Nicholls, 1990; Anderson, Blomqvist &

Renberg, 1997).

Interestingly, reduction in sulphate concentrations as a

result of SO2 emission controls might increase the risk of

cyanobacteria dominance in lakes with low reducible Fe

content by significantly increasing internal Fe2+ loading

(in effect, increasing R), particularly if climate change

exacerbates the risk of late summer and autumn anoxia

through longer ice-free and thermally stratified periods

(Futter, 2003; Stainsby et al., 2011).

Management relevance

Our model has significant potential to improve eutrophi-

cation management because it improves our ability to

intervene judiciously.

Nutrient management guidelines

Current maximum acceptable P concentrations and their

associated P loading guidelines (e.g. tonnes year�1 for a

given system) to prevent cyanobacteria blooms are empir-

ical, based on past experience. For example, the maximum

P concentration guideline in the Province of Ontario is

20 lg L�1 (Ontario Ministry of Environment & Energy,

1994). If P loading criteria are set to prevent cyanobacteria

blooms, they should be set at levels that leave sediments

oxidised to the greatest extent practicable to prevent

internal Fe2+ loading. P criteria may need to be adjusted

downward if anoxia at the sediment/water interface

becomes more prevalent under a warmer climate.

Tertiary treatment

Our model suggests that use of iron-based coagulating

agents to remove phosphate from waste water effluent

should be reconsidered if the use of these compounds

leads to a build-up of reducible Fe in sediments.

In-lake treatment

Our model suggests that in-lake chemical and aeration

treatments to reduce the risk of cyanobacterial bloom

formation should also be reconsidered. For example,

would whole-lake treatment with aluminium or

polyaluminium sulphate (Welch & Schrieve, 1994;

Lewandowski, Schauser & Hupfer, 2003; Gibbs, Hickey

& €Ozkundakci, 2011; Jancula & Mar�s�alek, 2011) be more

effective than, say, Fe3 + -chloride treatment? (Cooke

et al., 1993; Wisniewski, 1999) Aluminium hydroxide is

not redox sensitive and will not release adsorbed P from

anoxic sediments, while the additional sulphate could

increase formation of ferrous sulphides and lower inter-

nal Fe loading, depending on background sulphate

concentrations and the magnitude of the chemical

treatment. In contrast, Fe3+-chloride will increase the

reducible Fe content in sediments, and, if anoxia is not

controlled, reduction of the new Fe will release

adsorbed P and Fe2+ into overlying waters, leading to
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Fig. 6 Growth (mean absorbance at 672 nm � standard error) of (a)

Synechococcus leopoliensis (CPCC 102) in spent Anabaena sp. (CPCC

64) media filtrate and (b) growth of Anabaena in spent Synechococcus

media compared to control cultures in synthetic media. Grey trian-

gles – cultures in spent media; black diamonds – controls. All cul-

tures were grown under continuous illumination at 24 °C in Bold

3M media with 0.05 lM Fe and 172 lM P. Spent media were

amended with 0.05 lM Fe and 172 lM P before re-use. Error bars are

standard errors with n = 3. Data from by S. McCabe and L. Molot.
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cyanobacteria dominance (Kleeberg, Herzog & Hupfer,

2013). Other redox-insensitive materials are also avail-

able for in-lake treatment (see, for example, Gibbs et al.,

2011).

Hypolimnetic aeration has had some success in miti-

gating cyanobacteria blooms (Prepas et al., 1997). Hypo-

limnetic aerators could be designed to increase oxygen

delivery to sediments to suppress internal loading as

well as maintain minimum oxygen concentrations in

overlying water (Singleton & Little, 2006). Alternatively,

the upper part of the water column could be aerated

(Hudnell et al., 2010) if it can be shown that increased

turbulence in the mixing zone disrupts vertical migra-

tion into anoxic regions.

Research challenges and knowledge gaps

Our model presents many experimental challenges. It is

challenging to test cyanobacteria for Fe limitation when

they are rare in a system, especially when small samples

are used to run assays, because samples may not include

any cyanobacteria or their populations may be too small

to displace their competitors within the experimental

timeframe. When cyanobacteria are abundant, an

Fe-stress test may no longer be relevant. Standard bottle

nutrient-enrichment assays add Fe3+, not Fe2+, with

chelators to keep Fe3+ in solution, but choice of chelator

may affect outcomes (Molot et al., 2010).

A knowledge gap is the minimum extracellular Fe2+

concentrations needed to establish dominance. However,

measuring Fe2+ colorimetrically is problematic because

of significant autoreduction of Fe3+ to Fe2+ in the pres-

ence of dissolved humic matter and a high detection

limit (Verschoor & Molot, 2013). Special precautions

must also be taken to exclude oxygen during sampling,

transport, fixation and measurement.

It would be very useful to know migration rates and

maximum migration distances under a range of mixing

conditions and migration frequencies for different

cyanobacteria species. There are very few relevant stud-

ies, and the data contained therein are helpful only to a

modest extent (Table 2).

We have presented a strong argument for a novel

model linking anoxia, P, N, Fe2+, sulphate and cyanobac-

teria migration to cyanobacteria bloom formation across

three gradients – nutrients, salinity and acidity – which

reconciles seemingly contradictory ideas about the roles

of P, N and Fe in bloom formation. The model has far-

reaching explanatory power and generates many testable

hypotheses, some of which are listed below (some may

require development of new methods).

1. In systems lacking anoxic surficial sediments, the

rate of Fe2+ reoxidation in the water column is too high

to permit cyanobacteria dominance when pH exceeds 6

but is low enough to permit their dominance in systems

with pH <5.5.

2. Cyanobacteria migrate into anoxic waters to

acquire sufficient Fe2+ to support population growth in

non-acidified lakes.

3. There is a maximum depth below which a given

cyanobacteria species cannot migrate.

4. R is a strong predictor of cyanobacteria dominance

in non-acidified lakes with anoxic sediments.

5. Cyanobacteria use siderophores (Fe-scavenging

compounds) to promote cyanobacteria population

growth in non-acidified lakes.

6. Reductions in nitrogen loading will have minimal

impact on cyanobacteria dominance unless the spatial

and temporal extent of sediment anoxia is significantly

decreased.

7. In systems without anoxic surficial sediments and

with very low Fe and very low P concentrations, the large

surface area/volume ratio of picocyanobacteria gives

them a competitive advantage over larger cyanobacteria.

While the collective weight of evidence from indirect

and direct field and laboratory studies in support of this

model is compelling, much more work is urgently

needed to test it because cyanobacteria bloom formation

is a pressing environmental health issue. We hope inves-

tigators will be encouraged by this article to begin exam-

ining new ideas.
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