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Abstract 
 

This paper presents a novel transformation 
technique that can derive various fast Fourier 
transform (FFT) in a unified paradigm. The proposed 
algorithm is to find a common twiddle factor at the 
input side of a butterfly and migrate it to the output 
side. Starting from the radix-2 FFT algorithm, the 
proposed common factor migration technique can 
generate most of previous FFT algorithms without 
using mathematical manipulation. In addition, we 
propose new FFT algorithms derived by applying the 
proposed twiddle factor moving technique, which 
reduce the number of twiddle factors significantly 
compared with the previous algorithms being widely 
used for pipelined FFT processing.  
 
1. Introduction 
 

Fast Fourier Transform (FFT) is an important signal 
processing block being widely adopted in 
communication systems, especially in orthogonal 
frequency division multiplexing (OFDM) systems such 
as digital video broadcasting, digital subscriber line 
(xDSL) and WiMAX (IEEE 802.16). These 
applications require large-point FFT processing for 
multiple carrier modulation, such as 1024/2048/8192-
point FFTs. 

Based on the Cooley-Tukey (CT) decomposition [1], 
many FFT algorithms, such as radix-22 [2], radix-23 [3], 
radix-(4+2) [4], split-radix [5] as well as radix-4 
algorithms, have been proposed using the complex 
mathematical relationship to reduce the hardware 
complexity. As the algorithms were derived based on 
intensive mathematical manipulation, it is not 
straightforward to understand the mathematical 
meaning and apply them to derive new FFT algorithms. 
The computational complexity and the hardware 
requirement are greatly dependent on the FFT 
algorithms in use.  

In this paper, we propose a novel transformation 
which provides a general view that can unify almost all 
the FFT algorithms based on the CT decomposition. 
The proposed transformation is to find a common 

twiddle factor at the input stage of a butterfly pair of a 
stage and move it to other stages, which enables 
reinterpretation of the previous FFT algorithms and 
intuitive generation of new FFT algorithms without 
resorting to complicated mathematical manipulation. 
Two new FFT algorithms are presented in this paper, 
which are all derived using the proposed twiddle factor 
transformation to minimize the total size of tables 
required to store twiddle factors as well as the 
computational complexity especially in implementing 
pipelined FFT processors.  

The rest of this paper is organized as follows. 
Section 2 describes the fundamentals of FFT 
decomposition focused on the Cooley-Tukey algorithm, 
and presents the previous FFT algorithms briefly. In 
Section 3, the proposed common twiddle factor 
migration is described in detail. Section 4 explains how 
to derive the previous FFT algorithm by using the 
proposed transformation. New FFT algorithms derived 
based on the proposed algorithms are presented and 
compared with the previous FFT algorithms in Section 
5, and concluding remarks are made in Section 6. 
 
2. Previous FFT algorithms 
 

The N-point Discrete Fourier Transform (DFT) of 
an N-point sequence {x(n)} is defined as 
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where x(n) and X[k] are complex numbers. The twiddle 
factor is defined as follows.  
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To reduce the computational complexity, a number of 
FFT algorithms have been developed by recursively 
applying the Cooley-Tukey decomposition algorithm 
[1] proposed in 1965.  

 
2.1. Cooley-Tukey (CT) decomposition 

 
The CT decomposition can be expressed as 
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In this paper, N, N1, and N2 are assumed to be powers 
of 2, that is, N = 2l+r, N1 = 2l, and N2 = 2r, where l and r 
are positive integers. Note that (3) involves two 
summations indexed by n1 and n2, which are referred 
as inner DFTs and outer DFTs, respectively. As a 
result, we can partition the N-point DFT into the N1-
point and N2-point DFTs. Each output of the inner DFT 
is multiplied by twiddle factor 1 2k n

NW .  

2.2. Previous FFT algorithms 
 
Various FFT algorithms can be categorized by how 

to apply the CT decomposition. Let us begin with the 
radix-r FFT algorithms [6] in which the transform of 
length N is recursively decomposed into N/r and r until 
all the remaining transform lengths become less than or 
equal to r. The decomposition is sequentially 
conducted starting from the time or frequency domain, 
which classifies the decomposition into decimation-in-
time (DIT) or decimation-in-frequency (DIF) 
decomposition. Fig. 1 shows the signal flow graphs of 
16-point DIF FFT corresponding to the radix-2 
algorithm. The value of r, radix, plays a major role in 
determining the efficiency and complexity.  

The second class is the radix-2n algorithms proposed 
to avoid the drawback of high-radix algorithms. The 
radix-22 algorithm [2] not only reduces the 
computational complexity but also retains the simple 
structure of the radix-2 algorithm. Although the overall 
signal flow is almost the same as the radix-2 algorithm, 
the number of stages requiring twiddle factor 
multiplication is reduced to half like the radix-4 
algorithm. Due to the low computational complexity as 
well as the simple signal flow graph, many FFT 

processors recently developed are based on the radix-2n 
algorithms [8][9].  

3. Common twiddle factor migration 
 
This section introduces common twiddle factors 

with their basic properties and explains the proposed 
common twiddle factor migration in detail. Starting 
from the radix-2 DIF FFT, we describe how to find and 
move the common twiddle factor to derive other FFT 
algorithms.  

 

3.1. Common twiddle factors 
 

Let us consider a butterfly pair shown in Fig. 2(a). 
If there is a factor common in the two input twiddle 
factors, it can be moved to the output side without 
affecting the functionality of the butterfly pair as 
shown in Fig. 2(b). As all twiddle factors of a stage 
have the same base, finding a common twiddle factor 
at the input side can be achieved by examining the 
exponents of the input-side twiddle factors. Moving the 
common twiddle factor to the output side is equivalent 
to multiplying the original twiddle factors of the output 
side by the migrated common factor, and the 
multiplication is actually to add the exponent of the 
common twiddle factor to those of the output-side 
twiddle factors when they have the same base.  

Let us consider the signal flow graph of the 16-
point radix-2 DIF FFT shown in Fig. 1. The bases of 
the twiddle factors are different depending on the stage. 

 
Figure 1. 16-point radix-2 FFT 

 
(a) 

 

 
(b) 

 

Figure 2. Butterfly pair (a) before and (b) after moving a 
common twiddle factor  
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To make it easy to manipulate the common factors, we 
normalize the bases to the largest one of the first stage. 
The normalization can be achieved based on the fact of 

k
N kNW Wα α= , where k is a non-zero integer. If the bases 

are normalized, specifying only the exponents is 
sufficient to represent the twiddle factors. For a 2n-
point FFT, n bits are sufficient to represent all the 
exponents of twiddle factors.  

 

3.2. Finding common twiddle factors 
 
Suppose that all the twiddle factors of a signal flow 

graph are normalized and represented with their 
exponents. To extract a common exponent at the input 
side of a butterfly pair, the exponents at the input side 
can be compared by performing the bit-wise AND 
operation. The common exponent obtained by using 
this method is called a Boolean common factor. 
Though we can imagine a more complex method that 
calculates the common factor algebraically, we deal 
with only the Boolean common factors in this paper, 
for simple manipulation.  

The Boolean common factors can be classified into 
three types. First, a Boolean common factor obtained 
by the bit-wise AND operation of the input exponents 
is called a max-common factor, as it has the longest 
number of non-zero bits among common factors 
achievable with the input exponents. We can make 
another kind of common factor called a min-common 
factor by taking a single non-zero bit from the max-
common factor. Taking more than one non-zero bits in 
a max-common factor results in a different common 
factor, called a part-common factor in this paper.  

Fig. 3(a) redraws the lower part of the second stage 
of the 16-point FFT signal flow graph specifying only 
the exponents. It shows the relationship between the 
input twiddle factors in a stage, where we can see that 
the most significant bit (MSB) is always zero, the 
second MSB is not common, and the two least 
significant bits, colored gray, are common for all the 
butterfly pairs and a combination of the two bits is 
associated with a separate butterfly pair. Note that the 

exponent difference between the input twiddle factors 
of a butterfly pair is N/4=4. Fig. 3(b) shows a part of 
the third stage that has non-zero exponents at the input 
side.  

As this relationship is held irrespective of stage 
location, we can treat all the butterfly pairs in a stage 
as a whole instead of dealing with each butterfly pair 
individually. Therefore, all the exponents of max-
common twiddle factors in a stage can be denoted as a 
symbolic representation where two MSBs are zero, 
( 1)i −  LSBs are zero for stage i, and between them the 
j-th bit of stage i is represented with bi,j.  

 

3.3. Moving range of a common twiddle factor 
 

A max-common factor can move only to the very 
next stage, because the migrated max-common factor 
is not common any longer at the next stage. In contrast, 
a min-common or a part-common factor may be 
common at the next stage, implying that it is possible 
to move a min-common factor or a part-common factor 
by more than one stage. 

The maximal moving range of a min-common 
factor is defined as the moving span. In general, a min-
common factor corresponding to bi,j has a moving span 
of n-2-j, and thus the span is independent of what stage 
the bit is in. This implies that the moving span of a 
lower significant bit is longer than that of a higher 
significant bit. For a part-common factor, the moving 
span is determined by choosing the minimal value 
among the moving spans of min-common factors 
belonging to the part-common factor. When sij 
represents the moving span of a min-common factor 
corresponding to bi,j , the moving span matrix S = [ sij ] 
with  0 ,  0i n j n< ≤ ≤ <  is specified as follows. 

 

2   0 - 2
0 ij

n j if j n
s

otherwise
− − ≤ <

= 


  (4) 

 

3.4. Moving Operation and Relevant Matrices 
 

                                      
                                                (a)                                                                           (b) 

 

Figure 3. (a) The lower part of the second stage (b) a part of the third stage in 16-point DIF FFT signal flow graph 
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The common factor migration can be described as a 
matrix operation denoted by . Assume that the 
exponential term of a stage is represented by (bn-1, bn-2, 
…, b0). Prior to describing the operation, let us define 
two operand matrices for 2n-point FFT. One operand is 
an n n×  matrix named symbolic exponent matrix 

[ ]ijE e= , 0 ,  0i n j n< ≤ ≤ < , whose entry is specified 
as follows.  

 
1          1   -  

0 
j

ij

if there is an exponent whose b is at the i th stage
e

otherwise


= 
 (5) 

 

The twiddle factors of the radix-2 DIF FFT 
algorithm are used for constructing E. In practice, the i-
th row vector of E can be obtained by performing the 
bit-wise OR operation of all the exponents at the i-th 
stage. The symbolic exponent matrix for 2n-point FFT 
denoted by E is given as follows.  
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The other operand is an n n×  matrix 

[ ]ijM m= named moving matrix, which is specified as 
follows, 

 
          

       -         
0       

j

ij

r if the min - common factor corresponding to b

m at the i th stage is to be moved by r stages
if not to be moved


= 

 (7) 

where 0 ijr s≤ ≤ .  
 

The new symbolic exponent matrix K resulting 
from moving operation is expressed as follows, 

 

  K M E=                       (8) 
where the moving operation migrates eij from the i-th 
stage to the (i+mij)-th stage. As we can treat all the 
butterfly pairs in a stage as a whole instead of dealing 
with each butterfly pair individually, we are able to 
describe the migration by taking the symbolic 
exponent matrix instead of a matrix containing all the 
exponents of every stage.  
 

4. Derivation of previous FFT algorithms 
 

Most of the previous FFT algorithms can be 
explained by the proposed common factor moving 
method. Starting from the signal flow graph of the 
radix-2 DIF, we describe in this section how to apply 
the proposed method to generate the previous FFT 
algorithms such as radix-22 and DIT.  

 

4.1. Radix-22 FFT algorithm 
 
The radix-22 algorithm [2] is usually implemented 

by employing a butterfly pair accompanied with an 
additional multiplexer at every odd stage and a 
conventional one at every even stages. As the former 
can be implemented without a twiddle factor 
multiplier, the number of stages requiring twiddle 
factor multiplication is reduced to half. Therefore, the 
radix-22 algorithm leads to a more efficient hardware 
implementation than the radix-2 algorithm does.  

Starting from the radix-2 DIF FFT algorithm, we 
first calculate the max-common factors at every odd 
stage and then move them to the next even stage at the 
right side. The FFT algorithm resulting from this 
procedure is exactly the same as the radix-22 algorithm 
if the property of / 4N

NW j= − is applied. The following 
is the corresponding moving matrix for N=2048. 

 

 

2048

0     0     1     1     1     1     1     1     1     1     1
0     0     0     0     0     0     0     0     0     0     0
0     0     1     1     1     1     1     1     1     0     0
0     0    

M =

 0     0     0     0     0     0     0     0     0
0     0     1     1     1     1     1     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0
0     0     1     1     1    0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0
0     0     1     0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

        (9) 

 

4.2. Radix-2 DIT FFT algorithm 
 
Starting from the radix-2 DIF algorithm, we can 

derive the radix-2 DIT algorithm by moving every 
min-common factor to the last stage indicated by its 
moving span. The corresponding moving matrix for 
N=1024 is given as follows.  
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1024

0     0     1     2     3     4     5     6     7     8
0     0     1     2     3     4     5     6     7     0
0     0     1     2     3     4     5     6     0     0
0     0     1     2     3    

M =

 4     5     0     0     0
0     0     1     2     3     4     0     0     0     0
0     0     1     2     3     0     0     0     0     0
0     0     1     2     0     0     0     0     0     0
0     0     1     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

        (10) 

 
5. New pipelined FFT algorithms and 
simulation results 
 

The previous algorithms such radix-22 and radix-23 

algorithms could reduce the hardware complexity, but 
they did not seriously take into account the number of 
twiddle factors. The CORDIC algorithm [7] enables 
the on-demand computation of twiddle factors, but 
requires multiple cycles to compute a twiddle factor, 
which is not suitable for high performance FFT 
processing. To achieve high performance, therefore, 
the twiddle factors are usually stored into ROM tables. 
In the implementation of a large-point FFT processing 
block, the tables become large enough to occupy 
significant area. 

Among variety of FFT architectures, pipelined 
architecture is preferred since it can provide high 
performance with a moderate hardware cost [2][7]. Fig. 
4 depicts a typical pipelined architecture based on the 
single-path delay feedback (SDF). The pipelined 
architectures for FFT processing are summarized well 
in [2]. In this section, two new pipelined FFT 
algorithms derived by applying the proposed common 
factor migration are presented. 

 

5.1. Calculation of twiddle factor table size 
 

Let us derive the hardware cost of twiddle factors 
required in a pipeline stage of FFT processing. For 

simplicity, it is assumed that all the twiddle factors 
required in a pipeline stage are stored in a ROM table 
with considering the symmetric property of twiddle 
factors.  

In general, the i-th stage of 2n-point FFT requires 
2n i−  twiddle factors if the FFT is processed based on 
the radix-2 algorithm. This fact can be induced by 
looking at the number of 1’s in the symbolic exponent 
matrix. If we take into account the π/2 symmetric 
property, two MSB bits are ignored in counting the 
number of non-zero bits, which means that the i-th 
stage of 2n-point FFT requires 2n-1-i twiddle factors. 
Therefore, the twiddle factor table required in the stage 
can be implemented using a ROM of 2n-1-i entries. 
Although all the entries of the ROM are not occupied 
by valid twiddle factors, the ROM size defined above 
makes sense if we consider the conventional ROM that 
has consecutive entries of a power of two.  

 

5.2. Modified radix-22 FFT algorithm 
 

This algorithm is derived by imposing a constraint 
on the migration of the some common factors when 
deriving the radix-22 algorithm from the radix-2 DIF 
algorithm. If the right-most min-common factor at 
every odd stage is not allowed to move to its 
consecutive even stage in the common factor 
migration, the number of twiddle factors required in 
the even stage can be reduced to half. The moving 
matrix for 2048-point FFT is as follows.  

 

 
Figure 4. A typical pipelined architecture based on  SDF 
( i-th stage ) 

Table 1. Comparison of ROM size and hardware complexity with previous works 
 

1024 2048 8192 FFT length 
TEa TE(%) GMb CMc TE TE(%) GM CM TE TE(%) GM CM 

Radix-2 508 149 7 1 1020 149 8 1 4092 150 10 1 

Radix-22 340 100 4 0 680 100 4 1 2728 100 5 1 

Radix-23, 4+2 292 86 3 3 584 86 3 3 2340 86 4 4 

Proposed (A)d 178 52.4 4 3 344 50.6 4 4 1368 50.2 5 5 

Proposed (B)e 116 34.1 4 0 164 24.1 5 0 516 18.9 6 0 
aTotal number of entries in twiddle factor tables  
bTotal number of general complex multipliers,  cTotal number of constant complex multipliers 
dModified radix-22 FFT algorithm,  eEvenly-distributed radix-22 FFT algorithm 
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2048

0     0     1     1     1     1     1     1     1     1     0
0     0     0     0     0     0     0     0     0     0     0
0     0     1     1     1     1     1     1     0     0     0
0     0    

M =

 0     0     0     0     0     0     0     0     0
0     0     1     1     1     1     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0
0     0     1     1     1     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0
0     0     1     0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

     (11) 

 

The reduction in the table size is achieved by 
employing an additional constant multiplier at every 
second stage. Since the table size reducible is huge and 
the complexity of the constant multipliers is low in the 
former stages, we can improve the area-efficiency 
significantly by applying the modified radix-22 
algorithm to only the first several stages with small 
increase in computational hardware complexity.  

 

5.3. Evenly-distributed radix-22 algorithm 
 

Even-distribution of non-zero bits can reduce the 
computational complexity. If we selectively move min-
common factors at the lower bit positions when 
generating the radix-22 FFT algorithm, we obtain a 
new FFT algorithm which reduces the table size while 
keeping the hardware complexity low. The moving 
matrix for 2048-point FFT is presented in (12). The 
hardware complexity and the table size of this FFT 
algorithm are summarized in Table 1.  

 

2048

0     0     1     1     3     3     3     3    5     7     9
0     0     0     0     2     2     2     2     6     8     0
0     0     1     1     1     1     1     1     7     0     0
0     0     

M =

0     0     0     0     0     0     0     0     0
0     0     1     1     1     1     5     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0
0     0     1     1     1     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0
0     0     1     0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0
0     0     0     0     0     0     0     0     0     0     0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (12) 

 
 

6. Conclusion 
 

In this paper, we have presented a new 
transformation technique that unifies most of FFT 
algorithms. The proposed method is to migrate the 
common twiddle factor from a certain stage to other 

stage. We have shown that most of radix-2 based FFT 
algorithms can be generated by applying the proposed 
technique to radix-2 DIF FFT. Furthermore, we have 
presented two novel FFT algorithms derived by 
applying the proposed algorithm, which can drastically 
reduce the total size of twiddle factor tables while not 
significantly increasing the hardware complexity. For 
example, an 8192-point pipelined FFT processor 
designed based on the proposed transformation could 
reduce the total size of twiddle factor tables by about 
80% when compared to the conventional radix-22 FFT 
widely adopted in hardware implementation. 

 
Acknowledgements 

 
This work was supported by Institute of Information 

Technology Assessment through the ITRC.  

References 
 

[1] J. W. Cooley and J. W. Tukey, “An algorithm for 
machine computation of complex Fourier series,” Math, 
Comp., vol. 19, pp. 297–301, Apr. 1965.  

[2] S. He and M. Torkelson, “Design and Implementation 
of a 1024-point pipeline FFT processors,” in  Proc. 
IEEE Custom Integr. Circuits Conf., May 1998, pp. 
131–134.  

[3] S. He and M. Torkelson, “Designing pipeline FFT 
processor for OFDM (de)modulation,” in Proc. IEEE 
URSI Int. Symp. Signals, Syst. Electron., Sept. 1998, pp. 
257–262. 

[4] Y. Jung, H. Yoon, and J. Kim, “New efficient FFT 
algorithm and pipeline implementation results for 
OFDM/DMT applications,” IEEE Trans. Consum. 
Electron., vol. 49, no. 1, pp. 14–20, Feb. 2003.  

[5] P. Duhamel and H. Hollomann, “Split radix FFT 
algorithm,” Electron. Lett., vol. 20, no. 1, pp. 14–16, Jan. 
1984. 

[6] L. R. Rabiner and B. Gold, Theory and Application of 
Digital Signal Processing. Englewood Cliffs, 
NJ:Prentice-Hall, 1975.  

[7] A. M. Despain, “Fourier transform computers using 
CORDIC iterations,” IEEE Trans. Comput., vol. C-23, 
pp. 993–1001, Oct. 1974.  

[8] Y. W. Lin, H. Y. Liu and C. Y. Lee, “A 1-GS/s FFT/ 
IFFT processor for UWB applications,” IEEE J. Solid-
State Circuits, vol. 40, no. 8, pp. 1726–1735, Aug. 2005.  

[9] W. H. Chang and T. Nguyen, “An OFDM-specified 
lossless FFT architecture,” IEEE Trans. Circuits Syst. I, 
vol. 53, no. 6, pp. 1235–1243, June 2006.  

6




