
Twiddle Factor Transformation for Pipelined FFT Processing

In-Cheol Park, WonHee Son, and Ji-Hoon Kim
School of EECS, Korea Advanced Institute of Science and Technology, Daejeon, Korea

icpark@ee.kaist.ac.kr, {wson,sckid}@eeinfo.kaist.ac.kr

Abstract

This paper presents a novel transformation
technique that can derive various fast Fourier
transform (FFT) in a unified paradigm. The proposed
algorithm is to find a common twiddle factor at the
input side of a butterfly and migrate it to the output
side. Starting from the radix-2 FFT algorithm, the
proposed common factor migration technique can
generate most of previous FFT algorithms without
using mathematical manipulation. In addition, we
propose new FFT algorithms derived by applying the
proposed twiddle factor moving technique, which
reduce the number of twiddle factors significantly
compared with the previous algorithms being widely
used for pipelined FFT processing.

1. Introduction

Fast Fourier Transform (FFT) is an important signal
processing block being widely adopted in
communication systems, especially in orthogonal
frequency division multiplexing (OFDM) systems such
as digital video broadcasting, digital subscriber line
(xDSL) and WiMAX (IEEE 802.16). These
applications require large-point FFT processing for
multiple carrier modulation, such as 1024/2048/8192-
point FFTs.

Based on the Cooley-Tukey (CT) decomposition [1],
many FFT algorithms, such as radix-22 [2], radix-23 [3],
radix-(4+2) [4], split-radix [5] as well as radix-4
algorithms, have been proposed using the complex
mathematical relationship to reduce the hardware
complexity. As the algorithms were derived based on
intensive mathematical manipulation, it is not
straightforward to understand the mathematical
meaning and apply them to derive new FFT algorithms.
The computational complexity and the hardware
requirement are greatly dependent on the FFT
algorithms in use.

In this paper, we propose a novel transformation
which provides a general view that can unify almost all
the FFT algorithms based on the CT decomposition.
The proposed transformation is to find a common

twiddle factor at the input stage of a butterfly pair of a
stage and move it to other stages, which enables
reinterpretation of the previous FFT algorithms and
intuitive generation of new FFT algorithms without
resorting to complicated mathematical manipulation.
Two new FFT algorithms are presented in this paper,
which are all derived using the proposed twiddle factor
transformation to minimize the total size of tables
required to store twiddle factors as well as the
computational complexity especially in implementing
pipelined FFT processors.

The rest of this paper is organized as follows.
Section 2 describes the fundamentals of FFT
decomposition focused on the Cooley-Tukey algorithm,
and presents the previous FFT algorithms briefly. In
Section 3, the proposed common twiddle factor
migration is described in detail. Section 4 explains how
to derive the previous FFT algorithm by using the
proposed transformation. New FFT algorithms derived
based on the proposed algorithms are presented and
compared with the previous FFT algorithms in Section
5, and concluding remarks are made in Section 6.

2. Previous FFT algorithms

The N-point Discrete Fourier Transform (DFT) of
an N-point sequence {x(n)} is defined as

1

0
[] () , 0

N
kn

N
n

X k x n W k N
−

=
= ≤ <∑ (1)

where x(n) and X[k] are complex numbers. The twiddle
factor is defined as follows.

2 2 2cos sin

knj
kn N

N
kn knW e j

N N

π π π −
 = = −

 (2)

To reduce the computational complexity, a number of
FFT algorithms have been developed by recursively
applying the Cooley-Tukey decomposition algorithm
[1] proposed in 1965.

2.1. Cooley-Tukey (CT) decomposition

The CT decomposition can be expressed as

11-4244-1258-7/07/$25.00 ©2007 IEEE

2 1
1 1 1 2 2 2

1 2

2 1

1 1

1 1 2 2 1 2
0 0

[] [(())] ,
N N

k n k n k n
N N N

n n

X k N k x N n n W W W
− −

= =

+ = +∑ ∑

1 1 1 2 2 2 1 20 , , 0 , ,n k N n k N N N N≤ < ≤ < = × (3)

In this paper, N, N1, and N2 are assumed to be powers
of 2, that is, N = 2l+r, N1 = 2l, and N2 = 2r, where l and r
are positive integers. Note that (3) involves two
summations indexed by n1 and n2, which are referred
as inner DFTs and outer DFTs, respectively. As a
result, we can partition the N-point DFT into the N1-
point and N2-point DFTs. Each output of the inner DFT
is multiplied by twiddle factor 1 2k n

NW .

2.2. Previous FFT algorithms

Various FFT algorithms can be categorized by how

to apply the CT decomposition. Let us begin with the
radix-r FFT algorithms [6] in which the transform of
length N is recursively decomposed into N/r and r until
all the remaining transform lengths become less than or
equal to r. The decomposition is sequentially
conducted starting from the time or frequency domain,
which classifies the decomposition into decimation-in-
time (DIT) or decimation-in-frequency (DIF)
decomposition. Fig. 1 shows the signal flow graphs of
16-point DIF FFT corresponding to the radix-2
algorithm. The value of r, radix, plays a major role in
determining the efficiency and complexity.

The second class is the radix-2n algorithms proposed
to avoid the drawback of high-radix algorithms. The
radix-22 algorithm [2] not only reduces the
computational complexity but also retains the simple
structure of the radix-2 algorithm. Although the overall
signal flow is almost the same as the radix-2 algorithm,
the number of stages requiring twiddle factor
multiplication is reduced to half like the radix-4
algorithm. Due to the low computational complexity as
well as the simple signal flow graph, many FFT

processors recently developed are based on the radix-2n
algorithms [8][9].

3. Common twiddle factor migration

This section introduces common twiddle factors

with their basic properties and explains the proposed
common twiddle factor migration in detail. Starting
from the radix-2 DIF FFT, we describe how to find and
move the common twiddle factor to derive other FFT
algorithms.

3.1. Common twiddle factors

Let us consider a butterfly pair shown in Fig. 2(a).
If there is a factor common in the two input twiddle
factors, it can be moved to the output side without
affecting the functionality of the butterfly pair as
shown in Fig. 2(b). As all twiddle factors of a stage
have the same base, finding a common twiddle factor
at the input side can be achieved by examining the
exponents of the input-side twiddle factors. Moving the
common twiddle factor to the output side is equivalent
to multiplying the original twiddle factors of the output
side by the migrated common factor, and the
multiplication is actually to add the exponent of the
common twiddle factor to those of the output-side
twiddle factors when they have the same base.

Let us consider the signal flow graph of the 16-
point radix-2 DIF FFT shown in Fig. 1. The bases of
the twiddle factors are different depending on the stage.

Figure 1. 16-point radix-2 FFT

(a)

(b)

Figure 2. Butterfly pair (a) before and (b) after moving a
common twiddle factor

2

To make it easy to manipulate the common factors, we
normalize the bases to the largest one of the first stage.
The normalization can be achieved based on the fact of

k
N kNW Wα α= , where k is a non-zero integer. If the bases

are normalized, specifying only the exponents is
sufficient to represent the twiddle factors. For a 2n-
point FFT, n bits are sufficient to represent all the
exponents of twiddle factors.

3.2. Finding common twiddle factors

Suppose that all the twiddle factors of a signal flow

graph are normalized and represented with their
exponents. To extract a common exponent at the input
side of a butterfly pair, the exponents at the input side
can be compared by performing the bit-wise AND
operation. The common exponent obtained by using
this method is called a Boolean common factor.
Though we can imagine a more complex method that
calculates the common factor algebraically, we deal
with only the Boolean common factors in this paper,
for simple manipulation.

The Boolean common factors can be classified into
three types. First, a Boolean common factor obtained
by the bit-wise AND operation of the input exponents
is called a max-common factor, as it has the longest
number of non-zero bits among common factors
achievable with the input exponents. We can make
another kind of common factor called a min-common
factor by taking a single non-zero bit from the max-
common factor. Taking more than one non-zero bits in
a max-common factor results in a different common
factor, called a part-common factor in this paper.

Fig. 3(a) redraws the lower part of the second stage
of the 16-point FFT signal flow graph specifying only
the exponents. It shows the relationship between the
input twiddle factors in a stage, where we can see that
the most significant bit (MSB) is always zero, the
second MSB is not common, and the two least
significant bits, colored gray, are common for all the
butterfly pairs and a combination of the two bits is
associated with a separate butterfly pair. Note that the

exponent difference between the input twiddle factors
of a butterfly pair is N/4=4. Fig. 3(b) shows a part of
the third stage that has non-zero exponents at the input
side.

As this relationship is held irrespective of stage
location, we can treat all the butterfly pairs in a stage
as a whole instead of dealing with each butterfly pair
individually. Therefore, all the exponents of max-
common twiddle factors in a stage can be denoted as a
symbolic representation where two MSBs are zero,
(1)i − LSBs are zero for stage i, and between them the
j-th bit of stage i is represented with bi,j.

3.3. Moving range of a common twiddle factor

A max-common factor can move only to the very
next stage, because the migrated max-common factor
is not common any longer at the next stage. In contrast,
a min-common or a part-common factor may be
common at the next stage, implying that it is possible
to move a min-common factor or a part-common factor
by more than one stage.

The maximal moving range of a min-common
factor is defined as the moving span. In general, a min-
common factor corresponding to bi,j has a moving span
of n-2-j, and thus the span is independent of what stage
the bit is in. This implies that the moving span of a
lower significant bit is longer than that of a higher
significant bit. For a part-common factor, the moving
span is determined by choosing the minimal value
among the moving spans of min-common factors
belonging to the part-common factor. When sij
represents the moving span of a min-common factor
corresponding to bi,j , the moving span matrix S = [sij]
with 0 , 0i n j n< ≤ ≤ < is specified as follows.

2 0 - 2
0 ij

n j if j n
s

otherwise
− − ≤ <

=

 (4)

3.4. Moving Operation and Relevant Matrices

 (a) (b)

Figure 3. (a) The lower part of the second stage (b) a part of the third stage in 16-point DIF FFT signal flow graph

3

The common factor migration can be described as a
matrix operation denoted by . Assume that the
exponential term of a stage is represented by (bn-1, bn-2,
…, b0). Prior to describing the operation, let us define
two operand matrices for 2n-point FFT. One operand is
an n n× matrix named symbolic exponent matrix

[]ijE e= , 0 , 0i n j n< ≤ ≤ < , whose entry is specified
as follows.

1 1 -

0
j

ij

if there is an exponent whose b is at the i th stage
e

otherwise

=
 (5)

The twiddle factors of the radix-2 DIF FFT
algorithm are used for constructing E. In practice, the i-
th row vector of E can be obtained by performing the
bit-wise OR operation of all the exponents at the i-th
stage. The symbolic exponent matrix for 2n-point FFT
denoted by E is given as follows.

1, -2 1, -3 11 10

2, -2 2, -3 21

-2, -2 -2, -3

-1, -2

0 ...
0 ... 0

 ...
0 ... 0 0
0 0 ... 0 0
0 0 0 ... 0

 n n

n n

n n n n

n n

e e e e
e e e

E
e e
e

=

 0

 (6)

The other operand is an n n× matrix

[]ijM m= named moving matrix, which is specified as
follows,

 -
0

j

ij

r if the min - common factor corresponding to b

m at the i th stage is to be moved by r stages
if not to be moved

=

 (7)

where 0 ijr s≤ ≤ .

The new symbolic exponent matrix K resulting
from moving operation is expressed as follows,

 K M E= (8)
where the moving operation migrates eij from the i-th
stage to the (i+mij)-th stage. As we can treat all the
butterfly pairs in a stage as a whole instead of dealing
with each butterfly pair individually, we are able to
describe the migration by taking the symbolic
exponent matrix instead of a matrix containing all the
exponents of every stage.

4. Derivation of previous FFT algorithms

Most of the previous FFT algorithms can be
explained by the proposed common factor moving
method. Starting from the signal flow graph of the
radix-2 DIF, we describe in this section how to apply
the proposed method to generate the previous FFT
algorithms such as radix-22 and DIT.

4.1. Radix-22 FFT algorithm

The radix-22 algorithm [2] is usually implemented

by employing a butterfly pair accompanied with an
additional multiplexer at every odd stage and a
conventional one at every even stages. As the former
can be implemented without a twiddle factor
multiplier, the number of stages requiring twiddle
factor multiplication is reduced to half. Therefore, the
radix-22 algorithm leads to a more efficient hardware
implementation than the radix-2 algorithm does.

Starting from the radix-2 DIF FFT algorithm, we
first calculate the max-common factors at every odd
stage and then move them to the next even stage at the
right side. The FFT algorithm resulting from this
procedure is exactly the same as the radix-22 algorithm
if the property of / 4N

NW j= − is applied. The following
is the corresponding moving matrix for N=2048.

2048

0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 0 0
0 0

M =

 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

 (9)

4.2. Radix-2 DIT FFT algorithm

Starting from the radix-2 DIF algorithm, we can

derive the radix-2 DIT algorithm by moving every
min-common factor to the last stage indicated by its
moving span. The corresponding moving matrix for
N=1024 is given as follows.

4

1024

0 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 0
0 0 1 2 3 4 5 6 0 0
0 0 1 2 3

M =

 4 5 0 0 0
0 0 1 2 3 4 0 0 0 0
0 0 1 2 3 0 0 0 0 0
0 0 1 2 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 (10)

5. New pipelined FFT algorithms and
simulation results

The previous algorithms such radix-22 and radix-23

algorithms could reduce the hardware complexity, but
they did not seriously take into account the number of
twiddle factors. The CORDIC algorithm [7] enables
the on-demand computation of twiddle factors, but
requires multiple cycles to compute a twiddle factor,
which is not suitable for high performance FFT
processing. To achieve high performance, therefore,
the twiddle factors are usually stored into ROM tables.
In the implementation of a large-point FFT processing
block, the tables become large enough to occupy
significant area.

Among variety of FFT architectures, pipelined
architecture is preferred since it can provide high
performance with a moderate hardware cost [2][7]. Fig.
4 depicts a typical pipelined architecture based on the
single-path delay feedback (SDF). The pipelined
architectures for FFT processing are summarized well
in [2]. In this section, two new pipelined FFT
algorithms derived by applying the proposed common
factor migration are presented.

5.1. Calculation of twiddle factor table size

Let us derive the hardware cost of twiddle factors
required in a pipeline stage of FFT processing. For

simplicity, it is assumed that all the twiddle factors
required in a pipeline stage are stored in a ROM table
with considering the symmetric property of twiddle
factors.

In general, the i-th stage of 2n-point FFT requires
2n i− twiddle factors if the FFT is processed based on
the radix-2 algorithm. This fact can be induced by
looking at the number of 1’s in the symbolic exponent
matrix. If we take into account the π/2 symmetric
property, two MSB bits are ignored in counting the
number of non-zero bits, which means that the i-th
stage of 2n-point FFT requires 2n-1-i twiddle factors.
Therefore, the twiddle factor table required in the stage
can be implemented using a ROM of 2n-1-i entries.
Although all the entries of the ROM are not occupied
by valid twiddle factors, the ROM size defined above
makes sense if we consider the conventional ROM that
has consecutive entries of a power of two.

5.2. Modified radix-22 FFT algorithm

This algorithm is derived by imposing a constraint
on the migration of the some common factors when
deriving the radix-22 algorithm from the radix-2 DIF
algorithm. If the right-most min-common factor at
every odd stage is not allowed to move to its
consecutive even stage in the common factor
migration, the number of twiddle factors required in
the even stage can be reduced to half. The moving
matrix for 2048-point FFT is as follows.

Figure 4. A typical pipelined architecture based on SDF
(i-th stage)

Table 1. Comparison of ROM size and hardware complexity with previous works

1024 2048 8192 FFT length
TEa TE(%) GMb CMc TE TE(%) GM CM TE TE(%) GM CM

Radix-2 508 149 7 1 1020 149 8 1 4092 150 10 1

Radix-22 340 100 4 0 680 100 4 1 2728 100 5 1

Radix-23, 4+2 292 86 3 3 584 86 3 3 2340 86 4 4

Proposed (A)d 178 52.4 4 3 344 50.6 4 4 1368 50.2 5 5

Proposed (B)e 116 34.1 4 0 164 24.1 5 0 516 18.9 6 0
aTotal number of entries in twiddle factor tables
bTotal number of general complex multipliers, cTotal number of constant complex multipliers
dModified radix-22 FFT algorithm, eEvenly-distributed radix-22 FFT algorithm

5

2048

0 0 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0
0 0

M =

 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

 (11)

The reduction in the table size is achieved by
employing an additional constant multiplier at every
second stage. Since the table size reducible is huge and
the complexity of the constant multipliers is low in the
former stages, we can improve the area-efficiency
significantly by applying the modified radix-22
algorithm to only the first several stages with small
increase in computational hardware complexity.

5.3. Evenly-distributed radix-22 algorithm

Even-distribution of non-zero bits can reduce the
computational complexity. If we selectively move min-
common factors at the lower bit positions when
generating the radix-22 FFT algorithm, we obtain a
new FFT algorithm which reduces the table size while
keeping the hardware complexity low. The moving
matrix for 2048-point FFT is presented in (12). The
hardware complexity and the table size of this FFT
algorithm are summarized in Table 1.

2048

0 0 1 1 3 3 3 3 5 7 9
0 0 0 0 2 2 2 2 6 8 0
0 0 1 1 1 1 1 1 7 0 0
0 0

M =

0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

 (12)

6. Conclusion

In this paper, we have presented a new
transformation technique that unifies most of FFT
algorithms. The proposed method is to migrate the
common twiddle factor from a certain stage to other

stage. We have shown that most of radix-2 based FFT
algorithms can be generated by applying the proposed
technique to radix-2 DIF FFT. Furthermore, we have
presented two novel FFT algorithms derived by
applying the proposed algorithm, which can drastically
reduce the total size of twiddle factor tables while not
significantly increasing the hardware complexity. For
example, an 8192-point pipelined FFT processor
designed based on the proposed transformation could
reduce the total size of twiddle factor tables by about
80% when compared to the conventional radix-22 FFT
widely adopted in hardware implementation.

Acknowledgements

This work was supported by Institute of Information

Technology Assessment through the ITRC.

References

[1] J. W. Cooley and J. W. Tukey, “An algorithm for
machine computation of complex Fourier series,” Math,
Comp., vol. 19, pp. 297–301, Apr. 1965.

[2] S. He and M. Torkelson, “Design and Implementation
of a 1024-point pipeline FFT processors,” in Proc.
IEEE Custom Integr. Circuits Conf., May 1998, pp.
131–134.

[3] S. He and M. Torkelson, “Designing pipeline FFT
processor for OFDM (de)modulation,” in Proc. IEEE
URSI Int. Symp. Signals, Syst. Electron., Sept. 1998, pp.
257–262.

[4] Y. Jung, H. Yoon, and J. Kim, “New efficient FFT
algorithm and pipeline implementation results for
OFDM/DMT applications,” IEEE Trans. Consum.
Electron., vol. 49, no. 1, pp. 14–20, Feb. 2003.

[5] P. Duhamel and H. Hollomann, “Split radix FFT
algorithm,” Electron. Lett., vol. 20, no. 1, pp. 14–16, Jan.
1984.

[6] L. R. Rabiner and B. Gold, Theory and Application of
Digital Signal Processing. Englewood Cliffs,
NJ:Prentice-Hall, 1975.

[7] A. M. Despain, “Fourier transform computers using
CORDIC iterations,” IEEE Trans. Comput., vol. C-23,
pp. 993–1001, Oct. 1974.

[8] Y. W. Lin, H. Y. Liu and C. Y. Lee, “A 1-GS/s FFT/
IFFT processor for UWB applications,” IEEE J. Solid-
State Circuits, vol. 40, no. 8, pp. 1726–1735, Aug. 2005.

[9] W. H. Chang and T. Nguyen, “An OFDM-specified
lossless FFT architecture,” IEEE Trans. Circuits Syst. I,
vol. 53, no. 6, pp. 1235–1243, June 2006.

6

