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Abstract—Compressive sensing is the theory of sparse signal
recovery from undersampled measurements or observations.
Exact signal reconstruction is an NP hard problem. A convex
approximation using the l1-norm has received a great deal of
theoretical attention. Exact recovery using the l1 approximation is
only possible under strict conditions on the measurement matrix,
which are difficult to check. Many greedy algorithms have thus
been proposed. However, none of them is guaranteed to lead to the
optimal (sparsest) solution. In this paper, we present a new greedy
algorithm that provides an exact sparse solution of the problem.
Unlike other greedy approaches, which are only approximations
of the exact sparse solution, the proposed greedy approach,
called Kernel Reconstruction, leads to the exact optimal solution
in less operations than the original combinatorial problem. An
application to the recovery of sparse gene regulatory networks
is presented.

Index Terms—Compressive Sensing; Sparse Recovery; Greedy
Algorithms; Gene Regulatory Networks.

I. INTRODUCTION

We consider the problem of recovering a sparse vector x ∈
Rm from under-determined measurements or observations y ∈
Rm×n, m < n,

y = Φx, (1)

where Φ is the m×n measurement matrix. We assume that x
is k-sparse and the matrix Φ is full rank. A vector x is called
k-sparse if ‖x‖0 ≤ k, where the ‖x‖0 := |supp(x)| = {j :
xj 6= 0}. It has become common to call ‖.‖ the `0-norm. For
k ∈ {1, 2, · · · , n},

Σk = {x ∈ Cn : ‖x‖0 ≤ k} (2)

denotes the set of k-sparse vectors. Inferring the sparse vector
x is equivalent to solving the `0-minimization problem [1]:

min ‖x‖0 subject to y = Φx, (3)

where ‖·‖0 is the number of nonzero elements in the vector x.
Compressive Sensing (CS) is the theory of reconstructing large
dimensional signals from a small number of measurements by
taking advantage of the signal sparsity. CS has been widely
used and implemented in many applications including com-
putized tomography [1], wireless communication [2], image
processing [3] and camera design [4].

Unfortunately, the optimization problem in (3) is NP-hard.
It has been shown, however, that if the measurement matrix Φ
satisfies the null space property (NSP), then sparse recovery

is possible via `1 minimization [5]. The `1-minimization
approach considers the solution of

min ‖z‖1 subject to Az = y, (4)

whcih is a convex optimization problem and can be seen as a
convex relaxation of (3).

The NSP is difficult to show directly. The restricted isometry
property (RIP) may be easier to handle. A matrix A is said to
satisfy the RIP of order k if the smallest number δk such that

(1− δk)‖‖22 ≤ ‖Az‖22 ≤ (1 + δk)‖z‖22, (5)

for all z ∈ Σk, satisfies δk ∈ (0, 1). The RIP implies the NSP
as shown in [5]. If Φ satisfies the RIP of order 3k with δ3k <
1/3, then recovery of all k-sparse vectors by `1-minimization
is guaranteed. The RIP is also a difficult condition to check.
It can be shown that δk can be equivalently defined as

δk = max
T⊂{1,··· ,n},#T≤k

‖A∗TAT − Id‖2, (6)

where AT denotes the column submatrix of A corresponding
to the columns indexed by T .

Since both the NSP and RIP conditions are difficult to
check, many greedy algorithms have been suggested to infer
the sparse signal [6] [7] [8]. In particular, a family of thresh-
olding algorithms has been suggested. The Hard Thresholding
(HT) algorithm [6] makes an initial guess at the support of x
and then projects the measurements y onto this support. An
iterative version called Iterative Hard Thresholding (IHT) up-
dates the residual and estimates a new x at every iteration until
the stopping criterion is satisfied. Another version of lower
complexity per iteration has been suggested called Matching
Pursuit (MP). In particular, the Orthogonal Matching Pursuit
(OMP) [9] is an iterative greedy algorithm that selects at each
step the column which is most correlated with the current
residuals. This algorithm estimates the nonzero entries in
the vector x along with their indices. The combination of
the orthogonalization of OMP [9] with the selection of a
full candidate support set in HT leads to two-stage greedy
algorithms, such as Compressive Sampling Matching Pursuit
(CoSaMP) [8] and Subspace Pursuit (SP)[13]. These two-stage
greedy algorithms incorporate a least squares problem in each
iteration [10].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357538195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

The greedy algorithms and the `p-minimization approaches,
for 0 < p ≤ 1, have shown good performance in recovering
sparse signals. However, none of them guarantees an exact
recovery, and error bounds on their approximate solutions
are unknown. Moreover, greedy algorithms require a priori
knowledge of the exact number k of nonzero elements in the
vector x. In this paper, we present a new greedy algorithm that
guarantees exact recovery of any sparse signal with unknown
sparsity level k.

II. THE KERNEL RECONSTRUCTION ALGORITHM

We consider the linear operator Φ : Cn −→ Range(Φ). We
have Cn = Range(ΦT ) ⊕ Ker(Φ), where dim(Ker(Φ)) = s.
Let x0 ∈ Range(ΦT ) be a particular solution. We have

y0 = PRange(Φ)ΦPRange(ΦT )x0

=⇒ x0 =
(
PRange(Φ)ΦPRange(ΦT )

)−1
y0. (7)

Let B = Null(Φ) be the n × s matrix whose columns are
the s vectors that span the subspace Ker(Φ). A solution of the
under-determined problem in (1) can be written as

x = x0 +

s∑
j=1

ajbj , (8)

where bj’s are the kernel vectors or the columns of the matrix
B, and the aj’s are the coefficients of the linear combination.
It is easy to check from Eq. (8) that Φx = Φx0 = y. Writing
Eq. (8) in matrix form, we obtain

x = x0 +Ba, (9)

where a = (a1, · · · , as)T . Thus, to find x we need to compute
the vector a. To do this, we assume that the sparsest solution
x∗ contains at least s = dim(Ker(Φ)) zeros, or equivalently
that the vector x ∈ Σn−s. Since rank(B) = s, there exists s
linearly independent rows of B that span a space that we call
L. Let P s be the projection matrix that projects x onto the
space L. Thus, P sx = 0, and a can be computed as follow

P sx = 0

⇐⇒ P sx0 + P sBa = 0

=⇒ a = −
(
P sB

)−1
P sx0. (10)

Generically any s rows of B will be linearly independent.
However, we do not know exactly which entries of x are
equal to zero and thus we do not know which form of P s to
choose. Therefore, a combinatorial search should be performed
in order to find all possible linearly independent rows of B
and find out which basis leads to the sparsest solution.

The computational complexity of the proposed Kernel Re-
construction algorithm is O(ns) since it requires

(
n
s

)
opera-

tions in order to find the s linearly independent rows of B
corresponding to the exact sparest solution. As a comparison,
the computational complexity of the original `0-based problem
is O(nk) since it requires

∑k
`=1

(
n
`

)
operations to find the

exact solution. Recall that in order to have an exact solution,
we should have m ≥ k+ 1. For a full rank matrix Φ, we have

s = n−m. Therefore, it is easy to show that s ≤ n− k − 1.
Thus, for k ≥ dn−1

2 e we have O(ns) << O(nk).

KR algorithm: The Kernel Recon-
struction algorithm is summarized below.

Input: The vector y0 and the full rank matrix Φ ∈ Rm×n

(m < n) satisfying the under-determined model y0 = Φx.
1 Compute the particular solution x0 in Eq. (7).
2 Compute B = Null(Φ).
3 For each s linearly independent rows of B, compute

a in Eq. (10), and then the corresponding solution x
in Eq. (8).

4 Choose the sparsest solution x.

III. APPLICATION TO GENE REGULATORY NETWORKS

A. Simulation results

We compare the proposed KR algorithm to the `1 and `2
approaches as well as the Compressive Sampling Matching
Pursuit (CoSaMP) greedy algorithm [8]. To this aim, we
generate a synthetic model that satisfies Eq. (1) where the
entries of x, y0 and the matrix Φ are random and normally
distributed. In Fig. 1, we plot the percentage error ‖x−x

∗‖2
‖x‖2

versus the number of measurements m for (n, k) = (20, 7).
Observe from Fig. 1 that our approach can exactly recover the
k-sparse signal for m ≥ 7. This is there are at least s = 13
zeros in x for m ≥ 7. For m < 7, we do not have exact
reconstruction because we assume that we have at least s = 14
zeros in x. One can notice that even for the approximate
solution ,i.e., m < 7, the KR algorithm outperforms the other
approaches.

B. Application to Gene Regulatory Networks

In this paper, we model the dynamics of genetic profiles as
suggested in [11]. We consider the following linear model for
the gene regulatory network,

Y = AX, (11)

where X = [x1, · · · ,xm] ∈ Rn×m, Y = [y1, · · · ,ym] ∈
Rn×m and A = {aij}1≤i,j≤n, n is the number of genes, m
is the number of measurements or experiments and m < n.
xi ∈ Rn is the vector of gene expression measurements (e.g.,
microarray data) for all n genes at experiment i. The entry aij
of the connectivity matrix A represents the influence of gene
j on gene i. The columns yi represent the rate of change
of the expression of genes and the external perturbations at
time i. Our goal is to estimate the connectivity matrix A.
Genetic regulatory networks are known to be sparse, and thus
the connectivity matrix A is assumed to be sparse.

We use the KR algorithm to infer GRNs. We generate
synthetic genomic networks that satisfies the model in (11)
with n = 10 genes and varying number of measurements m.
We use a sparse model of the connectivity matrix, ‖A‖0 =
0.2n2. The entries of the matrix A are drawn from a standard
normal distribution with zero-mean and unit variance, i.e.,
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Fig. 1. Performance comparison of Kernel Reconstruction with `1,`2-based CS and CoSaMP for n = 10 and k = 3
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Fig. 2. Percentage error v.s. Number of measurements n with n = 10 and δ = 0.2

ai,j ∈ N (0, 1). We estimate the entries of the matrix A row
by row,

Y (i, :) = aT
i X, i = 1, · · · , n, (12)

where Y (i, :) is the ith row of Y . The performance of the
algorithm is assessed through the following measure suggested
in [12]

E =

n∑
i=1

n∑
i=j

ei,j with ei,j =

{
1, if |aij − âij | > δ

0, otherwise, (13)

where aij and âij denote, respectively, the true and es-
timated connectivity entries. δ is a fixed threshold set to
δ = 1

2 min
i,j
|ai,j | 6= 0. The percentage error is equal to E/n2.

Figure 2 shows the percentage error versus the number of
measurements m for n = 10-gene networks and ‖A‖0 =
0.2n2. The proposed KR algorithm exactly recovers the net-
work for m > 3. In particular, the KR algorithm outperforms
the CoSamp greedy algorithm and the `1-minimization ap-
proach for all m.

In Fig. 3 we visualize the estimated directed networks using
the different algorithms. Table I shows the detection of the
known interactions in the original network. One can notice
that our approach was able to detect all the 9 interactions

in the original network, whereas the `1-minimization and
the CoSaMP approaches have respectively detected 6 and 4
interactions.

IV. CONCLUSION

We presented a new algorithm that exactly recovers k-sparse
signals from linear under-determined systems. We assume in
our approach that the sparse solution has at least s zero entries,
where s is the dimension of the kernel of the measurement
matrix Φ. Although the greedy algorithm that we suggest
requires

(
n
s

)
combinatorial operations to find the optimal

solution, it is still computationally less expensive than the
`0-based approach. This combinatorial search is the price to
pay for an exact solution (zero error) to be found. Finally,
we compared our algorithm to the two `p approaches and
the CoSaMP greedy algorithm [8]. In our future work, we
will explore efficient implementations of the proposed kernel
reconstruction algorithm, where we can find the optimal kernel
basis without enumerating all

(
n
s

)
basis.
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Fig. 3. Inference of a gene regulatory network with n = 10, m = 5 and ‖A‖0 = 0.1n2. Blue and red edges denote, respectively, positive and negative
interactions. (a) Ground truth interactions; (b) Kernel Reconstruction algorithm; (c) `1-minimization; (d) CoSaMP [8].

TABLE I
DETECTION PERFORMANCE

(g1,g2) (g2,g10) (g3,g5) (g6,g10) (g7,g9) (g9,g2) (g10,g5) (g10,g8) (g10,g10)
Kernel Reconstruction X X X X X X X X X
`1-minimization × × X X X X × X X

CoSaMP × × X X X × × × X

authors and does not necessarily represent the official views
of the National Institute Of General Medical Sciences or the
National Institutes of Health.
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