
CU++ET: An Object Oriented Tool for Accelerating

Computational Fluid Dynamics Codes using Graphical

Processing Units

Dominic D.J. Chandar� , Jay Sitaramany

and Dimitri Mavriplisz

The application of graphical processing units (GPU) to solve partial di�erential equa-
tions is gaining popularity with the advent of improved computer hardware. Various lower
level interfaces exist that allow the user to access GPU speci�c functions. One such in-
terface is NVIDIA’s Compute Uni�ed Device Architecture (CUDA) library. CUDA has
been applied previously to solve the Three-Dimensional Euler equations, and a speed-up
of the order of 500 has been reported in literature using multiple GPU units. However,
porting existing codes to run on the GPU requires the user to write kernels that execute
on multiple cores, in the form of Single Instruction Multiple Data (SIMD). In the present
work, a higher level framework has been developed that uses object oriented programming
techniques available in C++ such as polymorphism, operator overloading, and template
meta programming. Using this approach, CUDA kernels can be generated automatically
during compile time. Brie
y, CU++ET allows a code developer with just C/C++ knowl-
edge to write computer programs that will execute on the GPU without any knowledge
of speci�c programming techniques in CUDA. It allows the user to reuse existing C/C++
CFD codes with minimal changes. This approach is tremendously bene�cial for CFD code
development because it mitigates the necessity of creating hundreds of GPU kernels for
various purposes. In its current form, CU++ET provides a framework for parallel array
arithmetic, simpli�ed data structures to interface with the GPU, and smart array indexing.
Using this framework, a higher-order 3D Euler solver (ARC3D-GPU) has been developed
with a performance improvement of about 70x on a single GPU compared to traditional
FORTRAN/CPU execution. An implementation of heterogeneous parallelism, i.e., utiliz-
ing multiple GPUs to simultaneously process a partitioned grid system with communication
at the interfaces using MPI has been developed and tested. An unstructured version of
CU++ET is also demonstrated with its application towards solving the incompressible
Navier-Stokes equations.

I. Introduction and Background

Graphical Processing Units ( GPU ) have recently been used to solve a wide range of problems, and are
becoming the cornerstone of high performance computing. Its exceptional performance compared to CPUs
can be attributed to the fact that GPUs have a large number of cores with multi-threading capability, and are
capable of executing tens of thousands of threads concurrently1. Since the GPU computing architecture relies
on a SIMD model, most of the CFD codes will be able to reap bene�ts through this form of parallelism. The
last few years has seen a steep growth in the application of GPUs towards general-purpose applications, such
as numerical modeling of 
uid 
ows, image processing, and molecular dynamics2. Hagen et al.3 describes
a Three-Dimensional Euler solver on the 7800GTX graphics card. A speed-up of 11.5 was observed on
530,000 points for a Raleigh-Taylor instability problem. Elsen et al.4 reported a speed-up of 20 for an
Euler computation on a full hypersonic vehicle with complex geometry. Brandvik and Pullan5 investigated
two di�erent GPU front end codes, BrookGPU6 and CUDA7 for accelerating a Three-Dimensional Euler

�Postdoctoral Research Associate, Department of Mechanical Engineering, University of Wyoming
yAssistant Professor, Department of Mechanical Engineering, University of Wyoming
zProfessor, Department of Mechanical Engineering, University of Wyoming

1 of 13

American Institute of Aeronautics and Astronautics

20th AIAA Computational Fluid Dynamics Conference
27 - 30 June 2011, Honolulu, Hawaii

AIAA 2011-3222

Copyright © 2011 by Dominic Chandar.  Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



solver. A speed-up of 29 and 16 were obtained for two-dimensional problems with a grid size of 40,000 points
and three-dimensional problems with a grid size of 400,000 points respectively. Cohen et al1 has provided
ample information on improving GPU performance using a Three-Dimensional Raleigh-Bernard convection
problem. A speed-up of 8.5 was obtained for 28 Million points on a Tesla C1060 graphics card. Using a
multi-GPU programming paradigm with MPI, Phillips et al.8 obtained a speedup of 496 using 32 GPUs on
6 Million points for a Two-Dimensional Euler calculation.

Writing codes that run on a GPU require an intermediate low level interface (a GPU front end) that can
transfer data between the CPU and GPU, and perform the required computation on the GPU. NVIDIA’s
CUDA architecture7 is one such interface, that supports native C/C++ language constructs. Similar to the
MPI standard, where commands are concurrently executed on various processors, the CUDA programming
model relies on kernels that execute on multiple threads. Kernels are similar to standard programming
language functions, except for the manner in which these functions are invoked from the main program. One
can write kernels for each arithmetic expression, or wrap a set of expressions into one kernel. A single call
to a kernel will automatically spawn as many as processes the user wants, provided the number of processes
is within the limits of the GPU. The aforementioned method of writing a kernel is widely practiced and is
quite popular among the CUDA community. However, there arises situations where one has to write di�erent
kernels for di�erent expressions, thereby making the code bulky and sometimes di�cult to manage. For
example, a three-dimensional Euler solver will require kernels to compute the 
uxes, derivatives in each
direction, residual, and to do the time stepping. If viscous terms are needed at a later time, another kernel
has to be written. The complexity of the code thus increases as more features are added over a period of
time. To ease the pressure o� the user while writing codes using CUDA, a novel higher level framework has
been developed that encapsulates kernels using operator overloading and Expression Templates (ET)9, and
leaves the user to use normal arithmetic expressions without having the need to manipulate kernels. The
present framework allows users to reuse existing C++ codes without having to make major changes to the
programming strategy.

As a �rst step towards getting the current framework implemented in a larger scale, the following codes
have been developed: (1) ARC3D-GPU code based on ARC3D code10. ARC3D is a 6th order accurate �nite
di�erence based 
ow solver that has been widely used for the inviscid 
ow computations using the Euler
equations. ARC3D is also the compute engine for the o�-body solver used in the HELIOS infrastructure11,
(2) GPUEULER unstructured code12, and (3) GPUINS unstructured incompressible viscous code. In this
paper, emphasis is given to the higher level interface (CU++ET), and how this has been used to develop
the above set of codes.

II. A Comparison of CPU and CU++ET Programs

To start with, we will describe through simple examples, how CU++ET programs bear similarity to
their conventional CPU versions. Implementing a GPU version of the corresponding CPU code is simple
and straightforward. As an example, consider the discretization of a Laplace equation r2u = 0 on a square
0 � x � 1; 0 � y � 1. Using a point Jacobi iterative procedure on a N�N grid, one can write a C++ version
of the discretized equation as shown in listing 1. The CU++ET version is shown in listing 2. As seen, both
versions look alike, except for the fact that the loops have been avoided and the indices for the arrays are now
Index objects for the CU++ET version. This is however not possible with the usual GPU implementation
found in existing GPU front ends. During the compilation stage using the CUDA compiler nvcc7, the
compiler scans through each expression, and builds an abstract object that represents the expression. This
abstract object is unrolled during run time inside a common GPU kernel. All arithmetic expressions that
exist in the code are converted to these abstract objects and use only a single kernel for expression unrolling.
By using this methodology, one avoids the need to write kernels for each expression.

Listing 3 is the full source code for solving the One-Dimensional Di�usion equation ut = uxx using an
explicit Euler time stepping method, and second order central di�erences for the di�usion term. It is clearly
observed that it is very similar to any standard C/C++/FORTRAN code, and one does not need to know
the basic functions of GPU to execute this piece of code.

2 of 13

American Institute of Aeronautics and Astronautics



Listing 1. C++ version of the Jacobi Iteration

//u is a int/float/double array

for ( step = 0 ; step < maxNumberofSteps ; step++ )

{

for ( i = 1 ; i < N-1 ; i++ ) // Loop around internal nodes along Y

{

for ( j = 1 ; j < N-1 ; j++) // Loop around internal nodes along X

{

u(i,j) = 0.25*( u(i,j+1) + u(i,j-1) + u(i+1,j) + u(i-1,j) ;

}

}

}

Listing 2. CU++ET version of the Jacobi Iteration

// Index objects are used to represent the base and bound of the array

Index i(1,N-2), j(1,N-2);

// u is a distributed array object defined as follows:

distArray u(N,N);

for ( step = 0 ; step < maxNumberofSteps ; step++ )

{

u(i,j) = 0.25*( u(i,j+1) + u(i,j-1) + u(i+1,j) + u(i-1,j) ;

}

Listing 3. CU++ET source code for the 1-D Di�usion Equation

// Number of grid points

int N = 100; float dx = 1.0/(N-1), dt = 0.0001;

// Initialize the GPU

distArray :: setCudaProperties(N ,50); ( Tell CU++ET to execute 50 threads per block )

// u is a distributed array object defined as follows:

distArray u(N);

// Set the Boundary condition;

u(0) = 0.0; u(N-1) = 1.0;

// Index objects are used to represent the base and bound of the array

Index i(1,N-2);

for ( step = 0 ; step < 10 ; step++ )

{

u(i) = u(i) + (dt/(dx*dx))*( u(i+1) - 2*u(i) + u(i-1) );

}

// grab the results from the gpu on to cpu memory

u.pull ();

// print the results

u.display ();

// End of code

distArray :: cleanUp ();

III. A Description of the CU++ET Framework

The CU++ET framework is heavily based upon vector array arithmetic using C++ classes, and template
programming as in �gure (1). Generally, all arrays are declared using the main class known as distArray (
distributed array ). This class holds the data for the CPU/GPU version of any array, has simple functions
to transfer data between CPU and GPU, perform arithmetic operations and manages other classes. For
example, this class overloads the operator = on the GPU, so that one can perform u(I) = some function
where I is an Index object which dictates where this assignment operation needs to be performed. The class
Array is declared inside class distArray and points to the GPU version of the array, and is responsible for
the memory management. Each time an instance/object of distArray is created, two copies of the same
array are generated, of which one resides in the CPU and the other in the GPU.

3 of 13

American Institute of Aeronautics and Astronautics



distArray 

 Holds CPU data 
 Data Exchange 
 Operator Overload 

vectorGrid  
Function 

 Array of Vectors 

cartGrid 

 Holds Cartesian Grid 
Data 

Index 

 Array Indexing 
 Index Shifting 

Array 

 Holds GPU Array 
 Memory 

Management 

uGrid 

 Holds Unstructured 
Grid Data 

Math 
classes 

Array (Op) Array 
Op: +-*/ 

FUNC( Array ) 
FUNC: 

sin,pow,exp.. 

 Abstract Array 
Manipulation 

Figure 1. An Overall View of the CU++ET Classes

The CPU version of the array is used only when data needs to be used for post-processing or during a
multi-GPU computation using MPI. The class Index is one of the simplest of all the classes, and it mimics
the Index class of the package A+ +13, a serial array class used for vector arithmetic. This class is used to
store the base and bound of a given array. For example, in listing 2, i, j are Index objects, and the indices
run from 1 to N � 2, i.e., on internal nodes. For structured type of data, an instance of the Index class is
passed as an argument to a distArray as in listing 2 and 3. For unstructured data, if one is interested in
updating the boundary nodes or a speci�c region, this is however not possible using the Index class alone, as
nodal indices are not ordered. Hence indices are stored as distArrays themselves for unstructured problems.
For example in listing (4), we increment the values at the boundary nodes by an arbitrary function. To
simplify the data structure in the case of multiple components of an array, the class vectorGridFunction is
created, and is used to represent an array of distArrays.

At the heart of the CU++ET framework, are the math classes which are solely responsible for automatic
GPU kernel generation. Most of the classes in this category are abstract, in the sense that it’s type is
unknown when the code is written. During compile time, all arithmetic expressions in the code are bundled
into abstract objects which are un-rolled at run time inside the GPU kernel. Figure (2) shows how this is
achieved for the expression in listing 2. Each time when two distArrays are required to be added, it returns
an abstract object of type Gen at compile time. Inside each abstract object’s type de�nition, we overload
the operator [ ] to be able to point to the desired array location. This operation is performed until the
compiler hits the = symbol. We then write one kernel which will accept the abstract object, un-roll the
individual components of this abstract object and perform the required operation. All vector expressions in
this method call only one kernel, thus avoiding the necessity to write many kernels.

4 of 13

American Institute of Aeronautics and Astronautics



Listing 4. Indexing for Unstructured Data

// Declare an array to hold the solution

distArray Q(number_of_nodes );

// Declare an array to hold the boundary node indices and use simple names

distArray bnodeIndex( number_of_boundary_nodes );

Index I(0, number_of_boundary_nodes -1);

#define BI bnodeIndex(I);

// get the boundary node indices

getBoundaryNodeIndex( bNodeIndex );

// Do a small computation on the boundary nodes

// x, y are distArrays that hold the x- and y-coordinates of the grid

// Kernel gets automatically generated at compile time

Q(BI) = Q(BI) + SIN(x(BI))*COS*(y(BI));

  

 U(j,i) = 0.25*( U(j+1,y) + U(j-1,y) + U(j,y+1) + U(j,y-1) ); U(j,i) = 0.25*( U(j+1,y) + U(j-1,y) + U(j,y+1) + U(j,y-1) );

AddArrayArray< Array, Array>AddArrayArray< Array, Array>

GenGen

AddGenArray< Gen , Array >AddGenArray< Gen , Array >

GenGen

AddGenArray< Gen , Array >AddGenArray< Gen , Array >

GenGen

MulRealGen< Real, Gen>MulRealGen< Real, Gen>

Expression Tree
Built at Compile
Time

Expression Tree
Built at Compile
Time

This is the abstract object that the kernel sees This is the abstract object that the kernel sees 

(a)

  

Template < typename ComplexType>
__global__ void computeKernel( ComplexType ctype, float* Result.. )
{
 int TID = threadIDx.x + ....

 Result [ TID ] = ctype [ TID ] ;

}

Template < typename ComplexType>
__global__ void computeKernel( ComplexType ctype, float* Result.. )
{
 int TID = threadIDx.x + ....

 Result [ TID ] = ctype [ TID ] ;

}

MulRealGen< Real, Gen >MulRealGen< Real, Gen >

[ ]  operators overloaded for all 
possible complex types
__device__ real operator [] ( int I)
{
    return  u * v[i] ;
}

[ ]  operators overloaded for all 
possible complex types
__device__ real operator [] ( int I)
{
    return  u * v[i] ;
}

AddGenArray< Gen, Array >AddGenArray< Gen, Array >

AddGenArray< Gen, Array >AddGenArray< Gen, Array >

AddArrayArray< Array, Array >AddArrayArray< Array, Array >

The Tree Expands
During Run Time
The Tree Expands
During Run Time

(b)

Figure 2. (a) Building the Abstract Object during Compilation (b) Run time un-rolling of the Abstract Object

5 of 13

American Institute of Aeronautics and Astronautics



IV. Computational Modeling

IV.A. Compressible Flow

To begin with, the current implementation is tested by solving the Three-Dimensional Euler Equations in a
box, following the ARC3D framework. The governing equations for compressible 
ow are given by

@Q

@t
+
@E

@x
+
@F

@y
+
@G

@z
= 0 (1)

The vectors Q, E, F , and G are all declared as vectorGridFunctions having �ve components, and are given
by:

Q =

0BBBBB@
�

�u

�v

�w

e

1CCCCCA E =

0BBBBB@
�u

�u2 + p

�uv

�uw

(e+ p)u

1CCCCCA F =

0BBBBB@
�v

�uv

�v2 + p

�vw

(e+ p)v

1CCCCCA G =

0BBBBB@
�w

�uw

�vw

�w2 + p

(e+ p)w

1CCCCCA (2)

The �nite-di�erence spatial discretizations can be expressed in pseudo-�nite-volume form as:

@E

@x
=
Êi+1=2 � Êi�1=2

�x
(3)

where Ê represents the total inviscid 
ux evaluated at the cell-face:

Êi+1=2 = ~Ei+1=2 � ~Di+1=2 (4)

In the above expression, ~E represents the physical 
ux and ~D, the arti�cial dissipation. Using central
di�erences of second, fourth and sixth-order accuracy, one can write the physical 
ux as:

~EIIi+1=2 =
1

2
(Ei+1 + Ei) (5)

~EIVi+1=2 = ~EIIi+1=2 +
1

12
(�Ei+2 + Ei+1 + Ei � Ei�1) (6)

~EV Ii+1=2 = ~EIVi+1=2 +
1

60
(Ei+3 � 3Ei+2 + 2Ei+1 + 2Ei � 3Ei�1 + Ei�2) (7)

The arti�cial dissipation terms can be similarly formulated in their discrete forms as:

~DII
i+1=2 =

j�ji+1=2

2
(Qi+1 �Qi) (8)

~DIV
i+1=2 = ~DII

i+1=2 �
j�ji+1=2

12
(Qi+2 + 3Qi+1 � 3Qi �Qi�1) (9)

~DV I
i+1=2 = ~DIV

i+1=2 +
j�ji+1=2

60
(Qi+3 � 5Qi+1 + 5Qi �Qi�2) (10)

Here, � is the spectral radius of the inviscid 
ux Jacobian. In the current implementation, functions are
written for a combination of sixth order physical 
ux + sixth order dissipation, and second order physical

ux + fourth order dissipation. Time integration is performed using a low storage, three-stage Runge-Kutta
scheme described in Kennedy et al.14.

IV.B. Incompressible Flow

We also demonstrate the application of this framework towards solving unsteady incompressible 
ow on
unstructured grids. The compressible version has been discussed previously in Soni et al.12 The equations
governing unsteady incompressible 
ow with moving grid terms are given by:

@U

@t
+ (U � UG) � rU = �rp+ �r2U (11)

r � U = 0 (12)

6 of 13

American Institute of Aeronautics and Astronautics



where U is the velocity vector, P is the pressure normalized by density, and UG is a vector of grid speeds.
We use the Pressure-Poisson formulation (PPE) of Henshaw15, where the divergence constraint Eq.(12) is
replaced by a Pressure-Poisson equation by taking the divergence of the momentum equation.

r � (rP ) = �r � ((U � UG) � rU) +r � (��r�r� U) (13)

For the puporses of discretization, Eq.(11) is written in conservative form for each node i and discretized in
a �nite-volume framework (Fig 3) as follows:

Vi
@Ui
@t

+
X
k

F:ndSk = �
X
k

rU:ndSk (14)

where k represents the dual face index, and F , the non-linear terms that represent the inviscid 
ux (inclusive
of the pressure). Over any dual face k, the non-linear and viscous 
uxes are computed as follows:

Fk =
1

2
(Fe1 + Fe2) (15)

rUk = r �Uk �
�
r �Uk � �12 �

Ue1 � Ue2
jxe1 � xe2j

�
�12 (16)

where

�12 =
xe1 � xe2
jxe1 � xe2j

(17)

r �Uk represents the average of the gradients at nodes e1 and e2. The gradients at any node i are computed
using Green-Gauss theorem. Note that there is no implicit upwinding for the convective terms, and the
additional terms appearing in Eq.(16) are used to damp the high frequency modes occurring due to a central
scheme16. Without this term, the solution will exhibit odd-even type of oscillations.
For temporal discretization, we use a second order Predictor-Corrector method, with the non-linear terms

Figure 3. A Portion of the Unstructured Grid showing the Dual Cell

treated explicitly, and the viscous terms implicitly as described in Henshaw15.

IV.C. GPU Implementation

Implementation in the case of a structured grid follows closely the listing (2),(3). For example, to compute

the derivatives
@E

@x
using Eq.(4),(5), and Eq.(8), listing (5) shows how this is achieved.

7 of 13

American Institute of Aeronautics and Astronautics



Listing 5. Computing Derivatives in the Structured Grid Formulation

// Define a Cartesian Grid

// min , max are the boundaries of the domain

// N-xyz are the number of points in each direction

cartGrid cg(xmin , xmax , ymin , ymax , zmin , zmax , Nx, Ny, Nz);

// Create a Vector Grid Function to hold 5 components of the Euler Equations

vectorGridFunction dEdx(cg ,5), E(cg ,5), Q(cg ,5);

vectorGridFunction sigma_right(cg ,1), sigma_left(cg ,1);

// Index objects to represent the discretization space

Index i(0,Nx -1), j(0,Ny -1), k(0,Nz -1);

// Compute All Derivatives on the GPU

for ( int component = 0 ; component < 5 ; component ++ )

{

int & c = component ;

dEdx[c](i,j,k) = 0.5*(E[c](i+1,j,k) - E[c](i-1,j,k))/dx

- 0.5* sigma_right(i,j,k)*( Q[c](i+1,j,k) - Q[c](i,j,k) )

+ 0.5* sigma_left(i,j,k)*( Q[c](i,j,k) - Q[c](i-1,j,k)) ;

}

A similar methodology is adopted for other derivatives. The expression to the right hand side of the =
symbol is converted to an abstract object during compile time as discussed earlier. This object is then
passed to a GPU kernel, which is then unrolled into individual components at run time. For unstructured
grids however, since the algorithm is not so straightforward, not all parts of the code are written using the
CU++ET format, although we retain the same data structures like distArray. As the algorithm involves
solution to a set of Poisson equations, kernels for gradient and Laplacian computations are explicitly written.
For simple vector operations such as, computing divergence, vorticity, or the R:H:S of the Pressure Poisson
Equation, we use the CU++ET framework, as they are easily translated to generic kernels.

V. Results and Discussions

V.A. Compressible Flow Single GPU Computations

The inviscid convection of a vortex is used as a test problem to validate the ARC3D-GPU solver on the
Fermi ( Tesla C2050 ) using single precision arithmetic. A vortex situated initially at an arbitrary location
will convect without dissipation depending on the free-stream conditions. An exact solution exists for this
problem, and is given by:

~U(~r) =
�

2�h
(1� e��h

2

)ê� (18)

where � is the circulation, ~r is the position vector, � is the strength of the vortex, h is the orthogonal distance
from ~r to the axis of the vortex and ê� is the vector orthogonal to the plane containing ~r and the axis of the
vortex. The vortex is initially placed in a box (0 � x � 6,0 � y � 6,0 � z � 0:6)at a location of (3,3) as
given in �gure 4. Using a grid size of 200 � 200� 150 and a sixth order spatial di�erencing scheme for the

Figure 4. Problem setup for the Lamb vortex propagation on a single GPU

8 of 13

American Institute of Aeronautics and Astronautics



physical 
uxes and dissipation terms, for a free-stream Mach number of M = 0:5, the solution is computed
for 200 time steps using a time step of �t = 0:01. Figure 5 shows the contours of density at t = 0, and after
200 time steps.

X

Y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

X

Y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.97

0.975

0.98

0.985

0.99

0.995

Figure 5. Density contours at (a) t = 0 and (b) t = 200 time steps

The vortex has convected with minimal dissipation and its location is consistent with that of the exact
solution (x = 4). Table 1 shows a comparison of the CPU time spent per time step using the present
approach with that of ARC3D. It can be observed that speed-up of 70 is obtained.

Table 1. Timing Comparisons for the Inviscid Vortex Convection Problem

Grid Points Solver CPU time per Time Step (s)

6 Million ARC3D(FORTRAN) 50

6 Million CU++ET 0.7

V.B. Compressible Flow Multi-GPU Computations using MPI

When there are multiple GPUs present on a system, it is possible to use all of the GPUs by dividing the
workload using the Message Passing Interface (MPI) standard. Each GPU comes with a feature index called
the compute capability. For GPUs having compute capability 1.x (Eg. Tesla C1060), one can execute one
kernel at any given instant of time on a single GPU, and for recent GPUs such as Tesla C2050, and C2070,
up to 16 kernels can be executed concurrently. This implies, multiple MPI processes can map a single GPU
simultaneously. However, we do not use this property at the moment, and map one GPU to one MPI process.
We consider the same test case of an inviscid vortex convection, but on a bigger domain. Figure 6 describes
the partition of the domain on two and six processes respectively. The vortex is initially placed in a box

Processor 0
Device 0

Processor 1
Device 1

6 Million points 6 Million points

x=0 x=6x=0 x=12
Communication Zone

x=0 x=6x=0 x=12

Communication Zone

P0
G0

P1
G1

P2
G2

P3
G3

P4
G4

P5
G5

2 Procs
2 GPUs

6 Procs
6 GPUs

Figure 6. Problem setup for the Lamb vortex propagation using Multiple GPUs

(0 � x � 12,0 � y � 6,0 � z � 0:6)at a location (4,3). The grid size for this problem is 400 � 200 � 150.

9 of 13

American Institute of Aeronautics and Astronautics



X

Y

0 2 4 6 8 10 12
0

1

2

3

4

5

6

X

Y

0 2 4 6 8 10 12
0

1

2

3

4

5

6

X

Y

0 2 4 6 8 10 12
0

1

2

3

4

5

6

0.986

0.988

0.99

0.992

0.994

0.996

0.998

Figure 7. Density contours at time (a) t = 0, (b) t = 400 Time Steps and (c) 800 Time Steps using Multiple GPUs

Each partitioned chunk of the domain is mapped to a GPU device. The interface between the partitioned
domains is not disjoint, but has three layers of fringe points on each side of the interface (to maintain formal
6th order accuracy), each belonging to each respective domain. When it is required to update the solution
on the boundaries, each process pulls only the fringe layer data from the GPU on to the CPU, and sends
it to the neighboring domain. The neighboring domain receives the data on CPU, then pushes it on to the
GPU, and continues with the computation. This incurs some overhead, as data is copied back and forth
between the CPU and GPU, hence perfect scalability might not be obtained. Figure 7 shows the contours of
density at three di�erent time instants for a Mach number M=5.0, and �t = 0:001. After 400 time steps, the
vortex is situated exactly at the interface of two domains. The smooth contours indicate that communication
between the two domains has been established without errors. Table 2 shows a comparison of the CPU time
spent with that of the previous approaches. It can be seen that, on a grid of 12 Million points with minimal
overhead in the communication, we are able to execute the code in almost the same time as that of a grid
with 6 Million points using two processors. However, due to the communication bottleneck in the six process
case, perfect scalability is not obtained. With CUDA 4.0’s GPU peer to peer memory access on a single
node, this problem can partly be avoided7.

Table 2. Timing Comparisons for the Inviscid Vortex Convection Problem with and without MPI

Grid Points Solver CPU time per Time Step (s)

6 Million ARC3D(FORTRAN) 50

6 Million CU++ET using one GPU 0.70

12 Million CU++ET using one GPU 1.37

12 Million CU++ET + MPI using two GPUs 0.80

12 Million CU++ET + MPI using six GPUs 0.39

V.C. Incompressible Flow Computations

To validate the incompressible 
ow solver on unstructured grids, we consider two cases of a plunging NACA
0012, 0014 airfoil at Reynolds number 500, and 10000 respectively. For Re=500, current computations
are compared with 
ow visualization results of Jones et al.17, and for Re=10000, with the overset grid
computations of Tuncer and Kaya18. A sinusoidal motion of the form h = h0sin(!t) is prescribed for
the airfoil. Table (3) shows various parameters for the two test cases. Solutions are computed for six

Table 3. Computational Parameters for the Plunging Airfoil Case

0012 0014

Reduced Frequency k, !c=Uinf 12.3 2.0

Plunge Amplitude h0 0.12 0.4

Reynolds Number 500 10000

Number of Triangles 30000 32000

10 of 13

American Institute of Aeronautics and Astronautics



cycles of oscillation, and the corresponding vorticity contours for NACA0012 airfoil are shown in �gure(8)
in comparison with the 
ow visualization results of Jones et al.17. A satisfactory comparison is obtained in
terms of the wake de
ection. Computed drag coe�cients are compared with those of Tuncer and Kaya18, and
are shown in �gure(9). All computations using the unstructured grid framework were performed in double

Figure 8. A Comparison of Flow Structures Behind a Plunging Airfoil between GPUINS Computation (left) and
Experiments from Jones et al.17 (right)

0 1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time ( sec )

D
ra

g
 C

o
e

ff
ic

ie
n

t 
( 

C
d
 )

Tuncer and kaya ( 2003 )

GPUINS

Figure 9. Time history of Drag Coe�cient for a Plunging NACA0014 Airfoil at Re 10000

precision as opposed to single precision in the previous section. Over one time step, the serial version of the
same code consumed 6.6s of CPU time, whereas the GPU code took 1.2s, resulting in 5.5x speed-up. Noting
that GPU performance increases with the number of grid points12, it is anticipated that three-dimensional
problems will bene�t to a greater extent, similar to the results from the previous section.

VI. Summary

In this paper, a framework to write CUDA compatible GPU codes using standard C++ language con-
structs has been developed and tested. The novelty of this application lies in the fact that kernel generation
for vector operations with proper indexing is automatic, and is achieved at compile time using C++ ex-
pression templates. Several examples describing the ease of implementation were also discussed. Using this
framework, a three-dimensional Cartesian based Euler solver was developed, and improved performance was
achieved compared to the CPU version of the same code. Using multiple GPU units, with each GPU mapped
to one process using MPI on a single node, further improvements to speed-up was obtained. Noting that
scalability was an issue due to CPU-GPU transfer of data, further computations have been planned using
CUDA 4.0’s peer to peer memory access, where one obviates the necessity to transfer data between CPU and
GPU on a single node, and that GPUs can communicate directly without CPU interference. An unstruc-

11 of 13

American Institute of Aeronautics and Astronautics



tured grid based incompressible Navier-Stokes solver has also been developed partly using the CU++ET
framework, and has proven to reproduce some of the results from available literature. In-depth validation,
and integration of the above solvers using an overset grid framework is planned in the near future.

Acknowledgments

We gratefully acknowledge support from the O�ce of Naval Research under ONR Grant N00014-09-1-
1060

12 of 13

American Institute of Aeronautics and Astronautics



References

1Cohen, J.M., and Molemaker, M.J., A Fast Double Precision Code using CUDA , Proceedings of Parallel CFD, Mo�ett
Field, CA, 2009.

2General-Purpose Computation on Graphics Hardware, http : ==gpgpu:org
3Hagen, T.R., Lie, K-.,A and Natvig, J.R., Solving the Euler Equations on Graphics Processing Units, Lecture Notes in

Computer Science, 3994, pp. 220-227, 2006.
4Elsen, E., LeGresley, P., and Darve, E., Large Calculation of the Flow over a Hypersonic Vehicle using a GPU, Journal

of Computational Physics, Vol. 227, No. 24, pp. 10148-10161, 2008.
5Brandvik, T., and Pullan, G., Acceleration of a 3D Euler Solver using Commodity Graphics Hardware, 46th AIAA

Aerospace Sciences Meeting and Exhibit, AIAA-2008-0607, Reno, NV, 2008.
6Buck, I., Data Parallel Computing on Graphics Hardware, Graphics Hardware, 2003.
7NVIDIA CUDA C programming Guide 4.0, http : ==developer:nvidia:com=cuda� toolkit� 40
8Phillips, E.H., Zhang, Y., Davis, R.L., and Owens, J.D., Rapid Aerodynamic Performance Prediction on a Cluster of

Graphics Processing Units, 47th Aerospace Sciences Meeting and Exhibit, AIAA-2009-0565, Orlando, FL, 2009.
9Vandevoorde, D., and Josuttis, N., C++ Templates: The Complete Guide, Pearson Education Inc, 2003.
10Pulliam, T. H. , Euler and Thin Layer Navier Stokes Codes : ARC2D, ARC3D, Computational Fluid Dynamics,

University of Tennessee Space Institute, UTSI E02-4005-023-84, 1984.
11Sankaran, V., Sitaraman, J., Wissink, A., Datta. A., Jayaraman, B., Potsdam, M., Mavriplis, D., Yang, Z., O’Brien,

D., Saberi, H., Cheng, R., Hariharan, N., and Strawn, R., Application of the Helios Computational Platform to Rotorcraft
Flow�elds, 48th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2010-1230, Orlando, FL, 2010.

12Soni, K., Chandar, D.D.J., and Sitaraman, J., Development of an Overset Grid Computational Fluid Dynamics Solver
on Graphical Processing Units, 49th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2011-1268, Orlando, FL.

13Quinlan, D., A++P++ Manual, Lawrence Livermore National Laboratory, UCRL Report No: UCRL-MA-136511, 2000.
14Kennedy, Chistopher A., Carpenter, Mark H., and Lewis, R. Michael., Low-Storage, Explicit Runge-Kutta Schemes for

the Compressible Navier-Stokes Equations, NASA/CR 1999-209349, 1999.
15Henshaw, W.D., Cgins Reference Manual: An Overture Solver for the Incompressible Navier-Stokes Equations on Com-

posite Overlapping Grids, Lawrence Livermore National Laboratory Report LLNL-SM-455871, 2011.
16Crumpton, P.I., Moinier, P., and Giles, M.B., An Unstructured Algorithm for High Reynolds Number Flows on Highly

Stretched Grids, Numerical Methods in Laminar and Turbulent Flow, pp.561-572, Pineridge Press, 1997.
17Jones, K.D., Dohring, C.M., and Platzer, M.F., Experimental and Computational Investigation of the Knoller-Betz E�ect,

AIAA Journal, Vol. 36, No. 7, pp.1240-1246, 1998.
18Tuncer, I.H., and Kaya, M., Thrust Generation Caused by Flapping Airfoils in a Biplane Con�guration, Journal of

Aircraft, Vol. 40, pp.509-515, 2003.

13 of 13

American Institute of Aeronautics and Astronautics


