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Abstract The relationship between Lax and bihamiltonian formulations of dynamical

systems on finite- or infinite-dimensional phase spaces is investigated. The Lax-

Nijenhuis equation is introduced and it is shown that every operator that satisfies

that equation satisfies the Lenard recursion relations, while the converse holds for an

operator with a simple spectrum. Explicit higher-order Hamiltonian structures for the

Toda system, a second Hmailtonian structure of the Euler equation for a rigid body in

n-dimensional space, and the quadratic Adler-Gelfand-Dickey structure for the KdV

hierarchy are derived using the Lax-Nijenhuis equation.

Résumé On étudie la relation entre formalisme de Lax et formalisme bihamiltonien

sur des espaces de phases de dimension finie ou infinie. On introduit l’équation de

Lax-Nijenhuis et l’on montre que tout opérateur qui satisfait cette équation satis-

fait les relations de récurrence de Lenard, tandis que la réciproque est valable pour

un opérateur à spectre simple. On calcule des structures hamiltoniennes d’ordre

supérieur pour le système de Toda, une deuxième structure hamiltonienne pour les

équations d’Euler d’un corps solide dans l’espace à n dimensions, et la deuxième

structure de Adler-Gelfand-Dickey pour la hiérarchie KdV en utilisant l’équation de

Lax-Nijenhuis.
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I. Introduction

We present an explanation of a long-standing problem, what is the relationship
between the Lax formulation of an integrable system and the existence of a bihamil-
tonian structure?

When considering differential equations in Lax form1 on a finite- or infinite-
dimensional phase-space manifold, according to the problem at hand, one introduces
either a matrix of a given size, or a differential operator of a given degree, or, more
generally, a pseudo-differential operator whose coefficients are functions of the phase-
space coordinates. In other words, the “Lax operator” is an A-valued map on phase
space, where A is an associative algebra that has to be determined in each problem.

We study the case where the phase-space manifold admits a pair of compatible
Poisson structures, i.e., has a bihamiltonian structure2−4. (See also Refs. 5-7, and
Ref. 8 for a complete exposition and further references.) The term “Poisson struc-
ture” is most frequently used for finite-dimensional manifolds such as the phase space
of dynamical systems defined by evolution ordinary differential equations, while the
term “Hamiltonian structure” is commonly used in the case of infinite-dimensional
manifolds, e.g., manifolds of functions, such as the phase spaces of systems described
by evolution partial differential equations. When two Poisson structures satisfying a
compatibility condition are present, the term “bihamiltonian structure” will be ap-
plied. We shall mainly consider the finite-dimensional case, but the extension to the
infinite-dimensional situation is straightforward, in the setting of the formal calculus
of variations in the sense of Gelfand, Dickey and Dorfman. (See Refs. 9, 10 and 8.)

As the defining property of a matrix-valued Lax operator, L, in the presence of
a bihamiltonian structure (P, Q) we take the so-called Lenard recursion relations,

(1.1) Q(d tr
Lk

k
) = P (d tr

Lk+1

k + 1
) .

When L has distinct eigenvalues, λi, these relations imply that

Q(dλi) = λiP (dλi) ,

and in all cases they imply the pairwise involutivity of the eigenvalues of L with
respect to both Poisson brackets. Moreover, the traces of powers of L, and hence
the eigenvalues of L, are conserved along the flow of each evolution equation in Lax
form, L̇ = [L, B].

The recursion relations for differential equations in Lax form first appeared in
the context of evolution partial differential equations, and they are actually due to
Lax1. (It is surprising that it has become customary to call them the Lenard recursion
relations, probably because, in his paper of 1976, Lax11 refers to Lenard’s contribution
to the derivation of the infinite family of higher-order Korteweg-de Vries equations
as reported in the 1974 article by Gardner, Greene, Kruskal and Miura12. Actually,
Gardner et al. derive this “infinite family of equations that leave the eigenvalues of the
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Schrődinger equation invariant in time” and they also give “an alternate derivation
of this family due to Lenard”, and both derivations reveal the recursion operator
explicitly but do not relate it to any Hamiltonian property. In that same paper, Lax
ascribes the involutivity property of the conserved quantities to Gardner (Ref. 13),
where it is not explicit at all! Actually the factorization of the recursion operator as
the composition of a Poisson and a symplectic operator is in Lax11, Magri2, Gelfand
and Dorfman3, and Fokas and Fuchssteiner14.)

In this paper, we show that, under suitable conditions on its spectrum, a Lax
operator on a bihamiltonian manifold satisfies a universal equation which we call the
Lax-Nijenhuis equation because the vanishing of the Nijenhuis torsion of the recursion
operator of a bihamiltonian structure appears as a particular case of this property.
Conversely, if L satisfies the Lax-Nijenhuis equation, then L is a Lax operator. We
then study the converse problem of determining compatible Hamiltonian structures
from Lax-Nijenhuis equations. We treat the Toda system (see Refs. 15-20) and the
KdV hierarchy (see Refs. 21, 22, 16), and, more generally, Lax equations that are
Hamiltonian with respect to a Poisson bracket defined by an R-matrix (see Ref. 23).

In section 2 we recall the definition of Hamiltonian and bihamiltonian structures
and we prove that functions that satisfy recursion relations (1.1), where P and Q

are compatible Poisson structures, are pairwise in involution with respect to either
Hamiltonian structure. Nijenhuis operators appear in the theory of bihamiltonian
structures (P, Q) when one considers the (1,1)-tensor N = QP−1, where the first
Poisson structure is assumed to be invertible, i.e., symplectic. (See Refs. 24-27.) We
analyze the properties of Nijenhuis operators and we observe that the vanishing of
the Nijenhuis torsion28 of a (1,1)-tensor implies the fundamental equation (2.5) that
is the prototype of the Lax-Nijenhuis equation that we introduce in (3.6).

Section 3 contains the main results concerning the relationship between Lax and
bihamiltonian formulations of dynamical systems. It is natural to require that the
traces of powers of the Lax operator satisfy the Lenard recursion relations (definition
3.1). It then follows that, under the assumption of the simplicity of its spectrum,
such a Lax operator satisfies the Lax-Nijenhuis equation (3.6). Conversely, we show in
proposition 3.5 that, if an operator satisfies the Lax-Nijenhuis equation, it satisfies the
Lenard recursion relations, and therefore the traces of its powers are in involution.
In addition, we prove that this property remains valid for negative and fractional
powers, when they are defined.

The hereditary properties of Nijenhuis operators and of Lax operators compatible
with a bihamiltonian structure are derived in section 4. We show that the Lax
formulation exists for all vector fields,

Xk = Qαk = Pαk+1 ,

where αk is a sequence of differential 1-forms satisfying the Lenard recursion relations,
provided that X0 admits a Lax formulation. When all αk’s are closed, the Xk’s
constitute a bihamiltonian hierarchy, i.e., a sequence of commuting bihamiltonian
vector fields, and we state a further commutation property in proposition 4.3.

The fifth and last section is devoted to examples. For the non-periodic Toda
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system, we explicitly determine a sequence of skewsymmetric higher-order bivectors
satisfying Lax-Nijenhuis equations. The first three elements of this sequence coincide
with the known linear, quadratic and cubic Poisson structures. We treat the case of
the Euler equations for the n-dimensional rigid body rotating about a fixed point, and
some generalizations of it. We then study the Lax-Nijenhuis equation for the KdV
equation, and, more generally, for the first equation in the n-th KdV hierarchy, where
the Lax operator takes values in a manifold of n-th order differential operators in the
graded, associative algebra of formal pseudodifferential operators, and we obtain the
second Adler-Gelfand-Dickey Hamiltonian structure from the first one. Finally, this
construction is further generalized to determine the quadratic bracket associated with
the linear Poisson bracket defined by an R-matrix, i.e., a solution of the modified
classical Yang-Baxter equation.

For background and many results on integrable systems, we refer to Refs. 29
and 30. See Ref. 31 for a discussion closely connected with ours, but undertaken
from a different point of view.

II. Lenard recursion relations on a bihamiltonian manifold

In this section, we recall some well-known results on Lenard recursion relations
which we shall need for the study of Lax operators in section 3. First we introduce
the concept of a bihamiltonian manifold.

A Poisson manifold (also called a Hamiltonian manifold) is a manifold equipped
with a Poisson bracket. We recall that a Poisson bracket can be defined in terms of a
field of bivectors (a bivector for short) called the Poisson bivector. If P is a bivector
on a manifold M , we identify P with the linear bundle map,

P : T ∗M → TM,

defined by 〈β, Pα〉 = P (α, β), for α, β ∈ T ∗M . We set Xf = Pdf , for any function
f ∈ C∞(M), and we call Xf the Hamiltonian vector field with Hamiltonian f . We
also define the Poisson bracket,

{f, g}P = Xf · g,

for f and g ∈ C∞(M). Recall that a bivector P on M is a Poisson bivector if and
only if one of the following equivalent conditions is satisfied:

(1) [P, P ] = 0, where [ , ] is the Schouten bracket,
(2) the Poisson bracket { , }P satisfies the Jacobi identity,
(3) [Xf , Xg] = X{f,g}P

, for f, g ∈ C∞(M).

These conditions are equivalent because, by the definition of the Schouten and Poisson
brackets,

−
1

2
[P, P ](df, dg, dh) = {f, {g, h}P}P + {g, {h, f}P}P + {h, {f, g}P}P

= ([Pdf , Pdg]− Pd(P (df, dg))).h = ([Xf , Xg] − X{f,g}P
).h,

for f, g, h ∈ C∞(M).
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Definition 2.1.— A bihamiltonian manifold (M, P, Q) is a manifold M equipped
with Poisson structures, P and Q, which are compatible, i.e., such that any linear
combination of P and Q is a Poisson structure. A (locally) bihamiltonian vector field
on (M, P, Q) is a vector field leaving P and Q invariant.

Thus, on a bihamiltonian manifold there exists a pencil of Poisson structures,
Pλ = Q − λP , for λ ∈ R ∪ {∞}. A sufficient condition for a vector field X to be
(locally) bihamiltonian is that there exist closed differential 1-forms α and β such
that X = Pβ = Qα. In particular, if there exist functions f and g such that
X = P (dg) = Q(df), then X is bihamiltonian.

Lemma 2.2.— Let P and Q be Poisson structures on M . Then P and Q are
compatible if and only if one of the following equivalent conditions is satisfied:

(i) [P, Q] = 0,

(ii) 	 ({f, {g, h}P}Q+{f, {g, h}Q}P ) = 0, where 	 denotes the sum over the circular
permutations of f, g, h,

(iii) [Xf , Yg] + [Yf , Xg] = X{f,g}Q
+ Y{f,g}P

,

for f, g ∈ C∞(M), where Xf = Pdf , Yf = Qdf .

Proof. In fact, each of these conditions is the polarization of the corresponding
condition for a single Poisson structure, and each is obtained by bilinearity from the
corresponding conditions for P, Q and P + Q.

For a Hamiltonian system on a symplectic manifold - the phase space - to be
completely integrable in the sense of Liouville and Arnold32, there must exist a num-
ber of independent conserved quantities, equal to half the dimension of the symplectic
manifold, which are pairwise in involution. Here we consider the case where the phase
space is a bihamiltonian manifold, and we show that when a sequence of functions
defined on it satisfies the Lenard recursion relations, these functions are pairwise in
involution. We shall denote the positive integers by N

∗.

Proposition 2.3.— Let P and Q be Poisson structures on a manifold, M , and let
(fk), k ∈ N

∗, be a sequence of complex-valued functions on M that satisfy the Lenard
recursion relation,

(2.1) Q(dfk) = P (dfk+1) ,

for k ∈ N
∗. Then the functions, fk, are pairwise in involution with respect to both

Poisson brackets.

Proof. Let m be a nonegative integer, and let (Cm) be the property that, for all
k ≥ 1, P (dfk, dfk+m) = 0 and Q(dfk, dfk+m) = 0. Clearly (C0) holds. Now for any
k ≥ 1, m ≥ 0,

P (dfk, dfk+m+1) = −〈dfk, P (dfk+m+1)〉 = −〈dfk, Q(dfk+m)〉 ,
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and
Q(dfk, dfk+m+1) = 〈dfk+m+1, Q(dfk)〉 = 〈dfk+m+1, P (dfk+1)〉 .

Thus it is clear that (Cm+1) holds if (Cm) holds. Therefore (Cm) is proved for all
nonnegative integers, m. Thus P (dfk, df`) = Q(dfk, df`) = 0 for any k, ` ∈ N

∗.

We remark that this proof uses only (2.1) and the skew-symmetry of P and Q.
However, the assumption that P and Q are compatible Poisson structures is essential
in order to guarantee the existence of functions, fk, fulfilling the Lenard recursion
relations (2.1). The question of the existence of such functions in the case of an
arbitrary bihamiltonian structure is a difficult problem which is beyond the scope of
the present paper. Here, we shall demonstrate their existence in a special case, that
of a bihamiltonian manifold, (M, P, Q), where P is an invertible Poisson structure,
i.e., a symplectic structure. The field of (1,1)-tensors,

(2.2) N = QP−1 ,

is called the recursion operator or the Nijenhuis operator of the bihamiltonian struc-
ture. The first name is justified by the fact that N maps symmetries of a bihamil-
tonian system into symmetries of the same system (see section 4), while the second
name is justified by the well-known result proved in lemma 2.5 below. Nijenhuis
operators provide the basic examples of the Lax-Nijenhuis operators to be defined in
subsection 3.2.

We recall that the Nijenhuis torsion of a field of (1,1)-tensors N on a manifold
M is the vector-valued 2-form T (N) on M defined by

(2.3) T (N)(X, Y ) = [NX, NY ] − N([NX, Y ] + [X, NY ]) + N2[X, Y ],

for all vector fields X, Y on M .

Definition 2.4.— A field of (1,1)-tensors with vanishing Nijenhuis torsion is called
a Nijenhuis tensor or Nijenhuis operator.

Lemma 2.5.— If (P, Q) is a bihamiltonian structure on M , and Q = NP , where
N is a (1,1)-tensor on M , then the Nijenhuis torsion, T (N), of N vanishes on the
image of P . In particular, if (P, Q) is a bihamiltonian structure, with P invertible,
then the recursion operator, N = QP−1, is a Nijenhuis operator.

Proof. Assume that Q = NP . It is enough to show that T (N) vanishes on any pair
of vectors (Pdf, Pdg) where f, g ∈ C∞(M). In fact, using the notations of lemma
2.2,

T (N)(Pdf, Pdg) = [NPdf, NPdg]−N([NPdf, Pdg] + [Pdf, NPdg]) + N2[Pdf, Pdg]

= [Yf , Yg] − N([Yf , Xg] + [Xf , Yg]) + N2[Xf , Xg] .

Using the results of lemma 2.2, we obtain

T (N)(Pdf, Pdg) = Y{f,g}Q
− N(X{f,g}Q

+ Y{f,g}P
) + N2X{f,g}P

,

6



which vanishes since NXh = Yh, for h ∈ C∞(M).

The condition that T (N) = 0 is equivalent to the condition that

(2.4) LNXN − NLXN = 0 ,

for all vector fields X on M , where LX denotes the Lie derivative with respect to X .
In fact,

T (N)(X, Y ) = LNX(NY ) − NLNXY − N(LX(NY ) − N(LXY ))

= (LNXN)Y − N(LXN)Y .

Whence

Proposition 2.6.— Let N be a Nijenhuis tensor on a manifold M . Then

(2.5) LNXN − LX(
N2

2
) = [N,

1

2
LXN ] ,

for all vector fields, X , on M .

Proof. Relation (2.5) follows from the preceding expression of T (N) and the as-
sumption that T (N) = 0.

For the Nijenhuis operator, N = QP−1, of a bihamiltonian structure, (P, Q),
where P is invertible, equation (2.5) becomes

(2.6) LQαN − LPα(
N2

2
) = [N, N̂(α)]

for all differential forms α on M , where N̂(α) = 1
2
LPα

N . This property is the
prototype of that of Lax operators on bihamiltonian manifolds.
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III. Lax operators

We first describe the development of the notion of Lax operator from the simplest
case to that of Lax operators on Hamiltonian and bihamiltonian phase spaces. We
then motivate our definition of Lax-Nijenhuis operators.

3.1 Lax operators on Hamiltonian and bihamiltonian phase spaces

A dynamical system, dx
dt

= X(x), on a manifold M is said to admit a Lax
formulation if there exist square matrices L and B, by no means unique, whose
coefficients depend on x, such that the given dynamical system is equivalent to

(3.1)
dL

dt
= [L, B] ,

where [L, B] = LB − BL is the usual commutator. Usually, L is called the Lax
operator or the Lax matrix. In fact, both L and B are maps from the manifold M

(the space of dependent variables) to the associative algebra of square matrices of
a given size. The existence of a Lax formulation for a given dynamical system is
important because it implies the existence of a sequence of conserved quantities,

(3.2) Jk =
1

k
trLk ,

for k ∈ N
∗, where tr denotes the trace of a matrix. (These conserved quantities need

not be functionnally independent.) In fact,

dJk

dt
=

1

k
trLk−1 dL

dt
=

1

k
trLk−1[L, B] =

1

k
tr(LkB − Lk−1BL) = 0 .

If, moreover, the Lax mapping L is defined on a phase space with a Hamiltonian
structure, i.e., on a Poisson manifold, then it is natural to require that the traces of
powers of L, which are conserved quantities, be pairwise in involution. In this case,
this requirement becomes part of the definition of a Lax operator.

Let us now consider the case where the phase space is a bihamiltonian manifold
(M, P, Q). We have seen in section 2 that, on a bihamiltonian manifold, recursion
relations (2.1) for functions fk imply the pairwise involutivity of these functions. It
is natural to require that a Lax operator L defined on a bihamiltonian phase space
(M, P, Q) be such that quantities Jk defined by (3.2), proportional to the traces of
powers of L, satisfy the so-called Lenard recursion relations

(3.3) Q(dJk) = P (dJk+1) ,

for k ∈ N
∗. So, we are led to introduce the following definition of Lax operators on

a bihamiltonian phase space (M, P, Q).
Recall that a trace on an associative algebra A over the field of real or complex

numbers is a linear form, tr, on A, such that

(3.4) trL1L2 = trL2L1 ,

for all L1, L2 in A.
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Definition 3.1.— Let (M, P, Q) be a bihamiltonian manifold. A Lax mapping
compatible with (P, Q) is an A-valued function L on M , where A is an associative
algebra with unit and trace, such that the functions, Jk = 1

k
trLk, k ∈ N

∗, satisfy the
Lenard recursion relations (3.3).

Under this definition, by proposition 2.3, the traces of the powers of a Lax
mapping compatible with (P, Q) are pairwise in involution with respect to both P

and Q.

3.2 Lax-Nijenhuis operators

To understand what relates L to P and Q, we shall consider the simplest case
where L is a matrix, but we shall first review some facts about the geometry of
associative algebras.

Let A be an associative algebra with a trace. We assume that the symmetric
bilinear form on A, (L1, L2) = trL1L2, defines an isomorphism of A with its dual
A∗ and, by means of this isomorphism, we identify A∗ with A. We equip A with the
Lie-algebra structure defined by the associative product,

[L1, L2] = L1L2 − L2L1 .

Since trL1L2L3 = trL3L1L2, the symmetric bilinear form ( , ) is invariant, i.e.,

(L1, [L2, L3]) = ([L1, L2], L3) .

Thus the coadjoint action of the Lie algebra A on A∗ is identified with the adjoint
action of A on itself, and the tangent space at L in A to the coadjoint orbit of L is
{[L, B] | B ∈ A}. (See also VIII.4 of Ref. 33 for the role of coadjoint orbits in the
theory of Lax operators.)

Proposition 3.2.— Let A be the algebra of square n × n matrices, where n is a
positive integer. Let L be an A-valued Lax operator compatible with the bihamilto-
nian structure (P, Q). We assume that L is semi-simple. Then, at each point where
the eigenvalues of L are distinct, and for each differential 1-form α on M , there exists
a matrix L̃(α) such that

(3.5) LQαL − LLPαL = [L, L̃(α)] .

Proof. Let α be any differential 1-form on M . Then, by the definition of a Lax
operator, L, compatible with (P, Q), and the skew-symmetry of P and Q, for all
1-forms α and for all k ∈ N

∗,

1

k
trLQαLk =

1

k + 1
trLPαLk+1 ,

whence
trLk−1(LQαL − LLPαL) = 0 .

9



This condition expresses the fact that for all k, the vector field with value LQαL −
LLPαL at L leaves trLk invariant, which implies that it leaves all eigenvalues of L

invariant. This condition is clearly satisfied if LQαL−LLPαL is tangent to the coad-
joint orbit of L, and the converse holds if L is semi-simple with distinct eigenvalues.
Thus, under the assumptions of the proposition on the spectrum of L, for each α

there exists a matrix, L̃(α), such that equation (3.5) is satisfied.

We shall now allow L to be a section of an associative algebra bundle with trace,
A, over M . By this, we mean a vector bundle over M such that each fiber Ax of
A, for x in M , is an associative algebra with unit and trace, depending smoothly on
x. Obviously an A-valued function L on M corresponds to the case where A is the
trivial vector bundle, A = M ×A. However, we formulate our definition in this more
general situation in order to include the case of the Nijenhuis operators that was
considered in section 2. At each point x in M , End(TxM) is an associative algebra
with trace, to which we can apply the preceding remarks. Equation (3.5) means
that for each differential form α on M , and for each x in M , the vertical vector,
(LQαL − L(LPαL))(x), is tangent to the coadjoint orbit of L(x) in Ax. It is easy to

show that this is equivalent to the fact that the vertical vector, (LQαL−LPα(L2

2
))(x),

is tangent to this orbit. We assume that M has a bihamiltonian structure, (P, Q).
Motivated by the discussion in the previous subsections, we define:

Definition 3.3.— A section L of an associative algebra bundle A with trace over
a bihamiltonian manifold (M, P, Q) is a Lax-Nijenhuis operator if, for all differential

forms α on M , LQαL−LPα(L2

2 ) is tangent to the coadjoint orbit of L(x) in the fiber
Ax of A, for each x in M .

Identifying a section of T ∗A over L with a section of TA over L and using the
identification of the dual of the vertical space at x, (V (Ax))∗ = A∗

x, with the vertical
space V (Ax) = Ax, we obtain immediately

Proposition 3.4.— A section L : M → A is a Lax-Nijenhuis operator if there
exists a lifting of L into a section L̂ : T ∗M → T ∗A such that

(3.6) LQαL −LPα(
L2

2
) = [L , L̂(α)] ,

for each section α of T ∗M .

Equation (3.6) is called the Lax-Nijenhuis equation.

Examples. By (2.6), the recursion operator of a bihamiltonian manifold (M, P, Q)
with P invertible is a Lax-Nijenhuis operator.

Proposition 3.2 shows that any matrix-valued Lax operator with a simple spec-
trum, compatible with (P, Q) is a Lax-Nijenhuis operator.

3.3 Properties of Lax-Nijenhuis operators

We shall now prove that the traces of powers of any matrix-valued Lax-Nijenhuis
operator on a bihamiltonian manifold, (M, P, Q), satisfy the Lenard recursion rela-
tions (3.3), and that the operator is therefore, by definition 3.1, a Lax operator
compatible with (P, Q).
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Proposition 3.5.— Let L be a matrix-valued Lax-Nijenhuis operator on a bi-
hamiltonian manifold (M, P, Q). Then the functions Jk = 1

k
trLk, k ∈ N

∗, satisfy the
Lenard recursion relations (3.3), and L is a Lax operator compatible with (P, Q).
Moreover, if L is invertible, relation (3.3) holds when k is a negative integer, and,

if L admits a fractional power, L
1

r , relation (3.3) also holds when k is an integral
multiple of 1

r
.

Proof. Relation (3.6) implies that, for any k ∈ N
∗,

Lk−1LQαL − Lk−1LPα(
L2

2
) = [L, Lk−1L̂(α)] ,

for any α. Taking traces of both sides implies that

LQα(
1

k
trLk) = LPα(

1

k + 1
trLk+1) ,

whence, with the notation of (3.2),

〈Qα, dJk〉 = 〈Pα, dJk+1〉 .

Since this relation holds for any differential form α, we obtain relation (3.3) by the
skew-symmetry of P and Q. It follows from definition 3.1 that L is a Lax operator
compatible with (P, Q).

We now show that relation (3.3) holds for negative and fractional powers of Lax-
Nijenhuis operators, when they are defined. When α is a fixed differential form, we
introduce the convenient notations

LPαL =
dL

dt1
, LQαL =

dL

dt2
, L̂(α) = B .

Using the following elementary formulae, valid for L, B ∈ A and k ∈ N
∗,

(3.7) [Lk, B] =
k−1∑

j=0

[L, LjBLk−1−j] =
k−1∑

j=0

Lj [L, B]Lk−1−j

and

(3.8)
dLk

dt
=

k−1∑

j=0

Lj dL

dt
Lk−1−j ,

we obtain from (3.6), by induction on k,

(3.9)
dLk

dt2
−

1

2
(L

dLk

dt1
+

dLk

dt1
L) = [Lk, B],
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for k a positive integer. Let us prove that, if L is invertible, (3.9) is also valid for k

a negative integer. In fact, for k = −1,

dL−1

dt2
−

1

2
(L

dL−1

dt1
+

dL−1

dt1
L)

= −L−1 dL

dt2
L−1 +

1

2
(
dL

dt1
L−1 + L−1 dL

dt1
)

= −
1

2
L−1(L

dL

dt1
+

dL

dt1
L)L−1 +

1

2
(
dL

dt1
L−1 + L−1 dL

dt1
) − L−1[L, B]L−1

= −BL−1 + L−1B = [L−1, B] ,

and, more generally, formula (3.9) for k < −1 is proved by recursion.
We now assume that L admits a fractional power D, namely Dr = L , for some

positive integer r. Then using (3.7) and (3.8), we obtain

0 =
dDr

dt2
−

1

2
(Dr dDr

dt1
+

dDr

dt1
Dr) − [Dr, B]

=
r∑

j=1

(Dr−j dD

dt2
Dj−1 −

1

2
(DrDr−j dD

dt1
Dj−1 +Dr−j dD

dt1
Dj−1Dr)−Dr−j [D, B]Dj−1),

thus

(3.10)

r∑

j=1

Dr−j(
dD

dt2
−

1

2
(L

dD

dt1
+

dD

dt1
L) − [D, B])Dj−1 = 0 .

Still more generally, if Dr = L, and h is a positive integer, we can prove

(3.11)

r∑

j=1

Dr−j(
dDh

dt2
−

1

2
(L

dDh

dt1
+

dDh

dt1
L) − [Dh, B])Dj−1 = 0 .

In fact, we first write (3.10), left-multiply by Dh−1−i, then right-multiply by Di and
sum from i = 0 to h − 1. In the resulting equality, we use (3.7) and (3.8), to obtain
(3.11). Taking traces in (3.11) and using

1

b
trDa dDb

dt
=

1

a + b
tr

dDa+b

dt
,

we obtain,

(3.12)
1

r + h − 1
tr

dDr+h−1

dt2
=

1

2r + h − 1
tr

dD2r+h−1

dt1
.

Setting r+h−1
r

= k, we obtain relation (3.3) for any k that is an integral multiple of
1
r
. Combining the previous results, we see that this formula also holds for negative

rational numbers, when such powers of L are defined.
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IV. Bihamiltonian hierarchies and Lax formulation

We have emphasized the striking analogies between the properties of a Lax
operator compatible with a bihamiltonian structure and those of a Nijenhuis operator.
In this section, we shall continue by considering the “hereditary properties” of both
types of operators.

The simplest hereditary property of a Nijenhuis operator, N , is that it maps
symmetries of N into symmetries of N . In fact, if a vector field X is a symmetry of
N , i.e., is such that

LXN = 0 ,

then, by relation (2.4), and as a consequence of the vanishing of the torsion of N ,

LNXN = 0 .

Thus, if X is a symmetry of N , so are NX and, more generally, NkX , for k ∈ N.
The property has been “inherited” by the iterated vector fields NX, N2X ,...

We now consider a sequence of differential 1-forms, αk, k ∈ N, on a bihamiltonian
manifold, (M, P, Q), that satisfy the recursion relations,

(4.1) Qαk = Pαk+1 .

Let us consider the sequence of vector fields,

(4.2) Xk = Qαk = Pαk+1 .

If P is invertible, then, by lemma 2.5, N = QP−1 is a Nijenhuis operator and it
satisfies

(4.3) Xk+1 = NXk .

If we now assume that the vector field X0 is a symmetry of the Nijenhuis operator
N , then so is Xk, for each k ∈ N, by the hereditary property of N , recalled above.

Let us now examine the corresponding property for Lax-Nijenhuis operators. Let
L be a matrix-valued Lax-Nijenhuis operator on a bihamiltonian manifold (M, P, Q),
in the sense of definition 3.3, and let αk and Xk be forms and vectors as above. We
assume that the vector field X0 is such that there exists a matrix-valued mapping A0

on M satisfying

(4.4)
dL

dt0
= [L, A0], where

dL

dt0
= LX0

L .

We shall prove by recursion that, for any vector field Xk in the associated sequence,
there exists a matrix-valued mapping Ak on M satisfying

(4.5)
dL

dtk
= [L, Ak], where

dL

dtk
= LXk

L .

13



In fact, let us assume (4.5) for 0, 1, . . . , k − 1. Then, from (3.6), we obtain

LXk
L = LQαk

L = LPαk

L2

2
+ [L, L̂(αk)]

=
1

2
(LLXk−1

L + (LXk−1
L)L) + [L, L̂(αk)]

= [L,
1

2
(LAk−1 + Ak−1L) + L̂(αk)] .

Setting Ak = 1
2(LAk−1 + Ak−1L) + L̂(αk), we obtain (4.5) for k.

Remark. Setting L̂(αk) = Ck, k ∈ N, an explicit expression for Ak, k ∈ N
∗, is

Ak =
1

2k

k∑

h=0

(
k

h

)
LhA0L

k−h +

k−1∑

h=0

h∑

p=0

1

2h

(
h

p

)
LpCk−hLh−p .

In fact, this formula is valid for k = 1 and is proved by recursion.

The following proposition summarizes this discussion.

Proposition 4.1.— Let αk , k ∈ N, be a sequence of differential 1-forms on the
bihamiltonian manifold (M, P, Q), with αk satisfying recursion relations (4.1) and let
Xk = Qαk = Pαk+1 = d

dtk
be the corresponding sequence of vector fields. If the

vector field X0 = d
dt0

admits a Lax formulation,

dL

dt0
= [L, A0] ,

where L is a matrix-valued Lax-Nijenhuis operator, then for each k ∈ N, there exists
a matrix-valued mapping Ak on M satisfying (4.5).

In particular, we shall consider the case when there exists a sequence of closed
differential 1-forms αk satisfying recursion relations (4.1). When P is invertible, we
set N = QP−1, and we denote the transpose of N by tN . Then (4.1) is written

αk+1 = (tN)(αk) or αk = (tN)kα0 ,

and (4.3) is written

Xk = Nk(X0) .

Proposition 4.2.— Let (M, P, Q) be a bihamiltonian manifold with P invertible.
Assume that the differential 1-forms α0 and α1 are closed. Then all αk’s are closed
and the vector fields Xk, k ∈ N, are (locally) bihamiltonian vector fields which com-
mute in pairs.

14



Proof. Using the fact that N has vanishing Nijenhuis torsion (lemma 2.5), we find
that

dαk(X, Y ) = dαk−1(NX, Y ) + dαk−1(X, NY ) − dαk−2(NX, NY ) ,

for k ≥ 2 and for all vector fields X , Y on M . Thus all the αk’s are closed.

Therefore each vector field Xk is (locally) bihamiltonian,

LXk
P = 0 , LXk

Q = 0 ,

and hence each Xk is a symmetry of N ,

LXk
N = 0 .

(This fact also follows from LX0
N = 0 and the hereditary property of N .)

Thus
[Xk, X`] = LXk

(N `X0) = (LXk
N `)X0 + N `LXk

X0

= −N `LX0
(NkX0)

= −N `(LX0
Nk)(X0) − N `+kLX0

X0 = 0 .

Remark. If X is any (locally) bihamiltonian vector field, then LXN = 0. It follows
that if Y is a symmetry of X , so is NY . This justifies the term “recursion operator”
for the Nijenhuis operator N of a bihamiltonian structure (P, Q), with P invertible.

Remark. Let k and ` be nonnegative integers. For any Nijenhuis operator N and
vector field X , it follows from (2.4) by recursion that

LNX(N `) = NLX(N `)

and that
LNkX(N `) = NkLX(N `) .

For k = `, we recover the well known fact that any positive power of a Nijenhuis op-
erator is a Nijenhuis operator, and that negative and fractional powers of a Nijenhuis
operator, when they are defined, are also Nijenhuis operators.

A sequence of commuting bihamiltonian vector fields is called a bihamiltonian

hierarchy. When Xk, k ∈ N, is a bihamiltonian hierarchy, we obtain further properties
for the sequence of Lax equations (4.5). In fact, writing that LXj

LXk
L−LXk

LXj
L =

0 for all j, k ∈ N, we obtain

0 = LXj
[L, Ak] − LXk

[L, Aj]

= [
∂L

∂tj
, Ak] + [L,

∂Ak

∂tj
] − [

∂L

∂tk
, Aj] − [L,

∂Aj

∂tk
]

= [[L, Aj], Ak] − [[L, Ak], Aj] + [L,
∂Ak

∂tj
−

∂Aj

∂tk
]

= [L, [Aj, Ak] +
∂Ak

∂tj
−

∂Aj

∂tk
] ,
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by the Jacobi identity. Thus the operator, which can be called the curvature of the
connection defined by Ak,

[Aj , Ak] +
∂Ak

∂tj
−

∂Aj

∂tk

commutes with L. Summarizing, we obtain

Proposition 4.3.— When Xk is a bihamiltonian hierarchy with Lax formulation
(4.5), the curvature of the connection with components Ak commutes with the Lax
operator L .

V. Examples

In this section, we give four examples showing how the Lax-Nijenhuis equation
can be used to compute higher-order Hamiltonian structures associated with a Hamil-
tonian system admitting a Lax representation. We write the Lax-Nijenhuis equation
(3.6) in the form

(5.1) LQαL =
1

2
(LLPαL + (LPαL)L) + [L, L̂(α)],

and we use the information on L and the arbitrariness of α to split this equation
into two parts: the first determines the unknown map L̂, up to some still arbitrary
constants, the second part determines LQαL and then Q. The condition of skewsym-
metry on Q then determines the constants. The discussion is quite similar to a
problem with constraints coming from the restrictions imposed on L, where the role
of the Lagrange multipliers is played by the mapping L̂.

5.1 The Toda system

We shall consider the Toda system and its well-known Lax formulation. Let M =
R

2n+1 with coordinates xI = (aj, b`), j = 1, · · · , n, ` = 1, · · · , n+1, I = 1, · · · , 2n+1.
We consider the Poisson bivector P0 defined by

(5.2)
{aj, bj} = −aj , j = 1, 2, · · · , n

{aj, bj+1} = aj , j = 1, 2, · · · , n ,

all other Poisson brackets being equal to 0. Thus the Poisson bivector P0 has matrix

(P IJ
0 ) =




a1 −a1

a2 −a2 0

0
. . .

. . .

0
. . .

. . .

an −an

−a1

a1 −a2 0

a2
. . .
. . .

. . . 0

0
. . . −an

an
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When H =
∑n

j=1 a2
j + 1

2

∑n+1
`=1 b2

` , the Hamiltonian vector field X = P0dH is the

Toda vector field. In fact, the evolution equation dx
dt

= X(x) is the system




daj

dt
= {aj , H} , j = 1, 2, · · · , n ,

db`

dt
= {b`, H} , ` = 1, 2, · · · , n + 1 ,

and, setting a0 = an+1 = 0, this system becomes

(5.3)






daj

dt
= aj(bj+1 − bj) , j = 1, 2, · · · , n ,

db`

dt
= 2(a2

` − a2
`−1), ` = 1, 2, · · · , n + 1 ,

which are the equations of the Toda system in Flaschka coordinates15. A Lax for-
mulation for the Toda system is

dL

dt
= [L, A] ,

where
(5.4)

L =




b1 a1

a1 b2 a2 0
a2 b3 a3

a3
. . .

. . .
. . .

. . .
. . .

0
. . . bn an

an bn+1




, A =




0 a1

a1 0 a2 0
a2 0 a3

a3
. . .

. . .
. . .

. . .
. . .

0
. . . 0 an

an 0




Now let P and Q be Poisson structures such that (5.1) is satisfied for L symmetric
and tridiagonal, as above. We assume that P is known, and we consider Q to be
an unknown, higher-order, Poisson structure. We shall assume that L̂(α) depends

linearly on α, and we shall denote the matrix L̂(dxI) of order n + 1 by CI . Then
(5.1) becomes

(5.5) L(P IJ ∂L

∂xJ
+ 2CI) + (P IJ ∂L

∂xJ
− 2CI)L = 2QIJ ∂L

∂xJ
,

where the summation over J = 1, 2, · · · , 2n + 1 is understood.
We shall assume that CI is a skewsymmetric tridiagonal matrix, for each I =

1, · · · , 2n + 1,

(5.6) CI =




0 cI1

−cI1 0 cI2 0
−cI2 0 cI3

−cI3 . . .
. . .

. . .
. . .

. . .

0
. . . 0 cIn

−cIn 0
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where cI
1, · · · , c

I
n are to be determined. This choice is the simplest possible and it

guarantees that [L, CI ] is a symmetric penta-diagonal matrix. Any other choice of
CI would yield a matrix [L, CI ] with more entries, and so with more constraints to
be imposed.

For each I = 1, · · · , 2n + 1, P IJ ∂L
∂xJ is the symmetric tridiagonal matrix




P I,n+1 P I1 0
P I1 P I,n+2 P I2

P I2 . . .
. . .

. . . P I,2n P In

0 P In P I,2n+1




,

and therefore (P IJ ∂L
∂xJ − 2CI)L is the transpose of L(P IJ ∂L

∂xJ + 2CI). Thus con-
dition (5.5) implies that, for fixed I, matrix CI is such that the symmetric part of
L(P IJ ∂L

∂xJ + 2CI) is tridiagonal. Writing this condition explicitly, one obtains

n−1∑

k=1

(ak(P J,k+1 + 2cJ,k+1) + ak+1(P
Jk − 2cJk)) = 0 .

Solving this system for cJk in terms of P Jk yields the existence of multipliers λJ
k , k =

1, 2, · · · , n, such that
2cJk = P Jk + 2λJ

kak .

We assume that P Jk is divisible by ak. This assumption is satisfied for P = P0

defined by (5.2). Setting λJ
1 = λJ , we obtain

2cJk = P Jk + 2ak(λJ −

k∑

j=2

P Jj

aj

) .

(By convention, here and below the last sum vanishes if k < 2.)
From relations (5.5), we then obtain the coefficients of the higher-order Poisson

structure Q,

QJk =
1

2
ak(P J,n+k + P J,n+k+1) +

1

2
bk(P Jk + 2cJk) +

1

2
bk+1(P

Jk − 2cJk) ,

QJ,n+` = a`(P
J` − 2cJ`) + a`−1(P

J,`−1 + 2cJ,`−1) + b`P
J,n+` .

We now replace the cJk’s by their values in terms of the parameters λJ , and we
impose the conditions that the diagonal terms of Q vanish. These 2n + 1 conditions
imply

2(bk+1 − bk)(λk −

k−1∑

j=2

P kj

aj

) = P k,n+k + P k,n+k+1,
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a2
1λ

n+1 = 0 ,

(a2
` − a2

`−1)


λn+` −

`−1∑

j=2

Pn+`,j

aj


 = a`−1P

n+`,`−1 + a`P
n+`,`,

for ` = 2, · · · , n + 1.
Thus, we have obtained

QJk =
1

2
ak

(
P J,n+k + P J,n+k+1

)
+ bkP Jk + ak(bk − bk+1)


λJ −

k−1∑

j=2

P Jj

aj


 ,

QJ,n+` = 2
(
a`−1P

J,`−1 + a`P
J`) + b`P

J,n+` + 2(a2
`−1 − a2

`

)


λJ −

`−1∑

j=2

P Jj

aj



 ,

where the λJ ’s are given above in terms of ak, b`, P
IJ .

Let us assume that all ak’s are nonvanishing and let us introduce the matrix M

of order 2n + 1, depending on a1, · · · , an, b1, · · · , bn+1, such that M applied to the
column with entries A1, · · · , An, B1, · · · , Bn+1, is the column with entries

(5.7)





Ak =
1

2
ak(Bk + Bk+1) + bkAk + ak(bk+1 − bk)

k∑

j=2

Aj

aj

,

B1 = b1B1, B2 = b2B2 + 2(a1A1 + a2A2),

B` = b`B` + 2(a`−1A`−1 + a`A`) + 2(a2
` − a2

`−1)

`−1∑

j=2

Aj

aj

,

for ` = 3, · · · , n + 1.
We see that

Q = MP + X ⊗ λ ,

where X is the Toda vector field with components

a1(b2 − b1), a2(b3 − b2), · · · , an(bn+1 − bn), 2a2
1, 2(a2

2 − a2
1), · · · ,−2a2

n ,

and λ is the vector with components λ1, · · · , λn, λn+1, · · · , λ2n+1. We observe that,
although Q is skewsymmetric, this expression does not constitute a decomposition of
Q into a sum of skewsymmetric 2-tensors.

Thus the Lax-Nijenhuis equation yields an explicit determination of the bivector
Q in terms of P . For P = P0, we see that the corresponding vector λ = λ(0) is the
row-matrix with entries

(5.8) λJ
(0) = −

1

2
δJ
n+2 .
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It is easy to check that
P1 = MP0 + X ⊗ λ(0)

coincides with the second Poisson structure of the Toda system17,19,20. For example,
if n = 3, the matrix MP0 is equal to




b1 0 0 a1

2
a1

2 0 0
0 b3 0 0 a2

2
a2

2 0
0 U b4 0 0 a3

2
a3

2
0 0 0 b1 0 0 0

2a1 2a2 0 0 b2 0 0

0 2
a2

3

a2

2a3 0 0 b3 0

0 −2
a2

3

a2

0 0 0 0 b4







a1 −a1 0 0
0 0 a2 −a2 0

0 0 a3 −a3

−a1 0 0
a1 −a2 0
0 a2 −a3 0
0 0 a3




where U = a3

a2

(b4 − b3), and

X ⊗ λ(0) =




a1(b2 − b1)
a2(b3 − b2)
a3(b4 − b3)

2a2
1

2(a2
2 − a2

1)
2(a2

3 − a2
2)

−2a2
3




⊗ t ( 0 0 0 0 −1
2 0 0 ) ,

so that

P1 = MP0+X⊗λ(0) =




0 −1
2
a1a2 0 a1b1 −a1b2 0 0

1
2a1a2 0 −1

2a2a3 0 a2b2 −a2b3 0
0 1

2
a2a3 0 0 0 a3b3 −a3b4

−a1b1 0 0 0 −2a2
1 0 0

a1b2 −a2b2 0 2a2
1 0 −2a2

2 0
0 a2b3 −a3b3 0 2a2

2 0 −2a2
3

0 0 a3b4 0 0 2a2
3 0




.

Repeating the process, we have to compute the bivector

P2 = MP1 + X ⊗ λ(1)

where λ(1) is the vector corresponding to P1. We can show that

λ(1) = Mλ(0) .

For example, if n = 3,

λ(1) = (−
1

4
a1,−

1

4
a2, 0, 0,−

1

2
b2, 0, 0)

20



and P2 is the skewsymmetric matrix

P2 = MP1 + X ⊗ λ(1) =




0 −a1a2b2 0 a1b
2
1 + a3

1 −a1b
2
2 − a3

1 −a1a
2
2 0

0 −a2a3b3 a2
1a2 a2b

2
2 + a3

2 −a2b
2
3 − a3

2 −a2a
2
3

0 0 a2
2a3 a3b3 + a2

3 −a3b
2
4 − a2

3

0 −2a2
1(b1 + b2) 0 0

0 −2a2
2(b2 + b3) 0

0 −2a2
3(b3 + b4)

0




In this case, P2 coincides with the opposite of the third Poisson structure of the Toda
system described in Refs. 17 and 20.

Thus if M is the matrix of order 2n+1 defined by (5.7), the bivectors Pi obtained
from the Lax-Nijenhuis equation satisfy

Pi+1 = MPi + X ⊗ λ(i) ,

where X is the Toda vector field and λ(i) is the vector corresponding to Pi.

In particular, it follows that each coefficient P Jk
i of the bivector Pi is divisible

by ak, so the iteration can be carried out.

Let us show that in fact the skewsymmetry of Pi, Pi+1 implies that

λ(i+1) = Mλ(i) .

Thus we consider

Pi = MPi−1 + X ⊗ λ(i−1) ,

Pi+1 = MPi + X ⊗ λ(i) .

Since Pi+1 is assumed to be skewsymmetric, λ(i) must satisfy

Pi
tM − MPi = X ⊗ λ(i) + λ(i) ⊗ X .

Moreover, from the skewsymmetry of Pi , we obtain

Pi = MPi−1 + X ⊗ λ(i−1) = Pi−1
tM − λ(i−1) ⊗ X ,

whence

Pi
tM − MPi = X ⊗ Mλ(i−1) + Mλ(i−1) ⊗ X .

We thus obtain λ(i) = Mλ(i−1). The following proposition summarizes this discus-
sion.
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Proposition 5.1.— Let M be the matrix of order 2n + 1 defined by (5.7). The
bivectors obtained from the Lax-Nijenhuis equation satisfy

Pi+1 = MPi + X ⊗ M iλ(0) ,

where λ(0) is the vector given by (5.8).

5.2 The n-dimensional rigid body

The Euler equations for the n-dimensional rigid body rotating about a fixed
point can be written

Ṁ = [M, Ω] ,

where M is the angular momentum, a time-dependent element of the Lie algebra
so(n), and

M = JΩ + ΩJ .

Here J is a diagonal matrix with positive entries J1, J2, · · · , Jn defined in terms of the
principal moments of inertia, and Ω is the angular velocity. These equations admit
a Lax formulation, with a spectral parameter,

L̇ = [L, B] ,

where L = M
λ

+ J2 and B = Ω + λJ .
Moreover, it is well-known (see e.g., Refs. 10, 34) that these equations can be

written in Hamiltonian form, with respect to the linear Poisson structure of so(n)
induced by the identification of the Lie algebra so(n) with its dual by means of
the trace of the product of matrices. Making use of this identification, this Poisson
structure P is defined by PM : so(n) → so(n), for each M in so(n), where

PM = adM .

If K(M) = 1
2 tr(MΩ), then the gradient of K (the differential of K identified with a

matrix in so(n)) is the constant matrix Ω, and therefore the Euler equations can be
written as the Hamiltonian equation

Ṁ = P (dK).

Let us use the Lax-Nijenhuis equation in order to find a possible form of a second
Hamiltonian structure that will make this equation a bihamiltonian system. Setting
L̇ = dL

dt1
, it follows from the definitions and from the Euler equation that

d(L2)

dt1
=

1

λ
(L[M, Ω] + [M, Ω]L) ,

and therefore, by a simple computation,

1

2

d(L2)

dt1
=

1

2λ
[L, MΩ + ΩM ] +

1

λ
(MΩL − LΩM) .
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By the definition of L, MΩL − LΩM = MΩJ2 − J2ΩM . This suggests that we
should set

dM

dt2
= MΩJ2 − J2ΩM.

We observe that if M and Ω are skewsymmetric, so is dM
dt2

. In fact, Q defined by

QM (V ) = MV J2 − J2V M,

for M, V ∈ so(n), is the second, compatible Poisson structure on so(n) that was
recently found by Morosi and Pizzocchero34. This second Poisson structure Q is
actually a deformation of the first, linear one, P , under the linear map M → JMJ .
The Euler equation can be written

Ṁ = Q(dH) ,

where H(M) = −1
2 tr(J−1MJ−1Ω) , since the gradient of H is −J−1ΩJ−1.

We now show how to extend this procedure to the determination of Poisson
structures compatible with the linear Poisson structures on the sum of several copies
of a simple Lie algebra, considered in Refs. 30 and 35. Let us consider, for instance,
the Hamiltonian system

dM0

dt1
= [M0, V1]

dM1

dt1
= [M0, V0] + [M1, V1],

where V0, V1 are the components of the gradient of a Hamiltonian function K . We
introduce the Lax matrix depending on the spectral parameter λ,

L =
M0

λ2
+

M1

λ
+ A.

Computing the derivative of the square of this matrix, we find that

1

2

d(L2)

dt1
= [L,

(M0V1 + V1M0)

2λ2
+

(M0V0 + V0M0) + (M1V1 + V1M1)

2λ
]

+
1

λ2
(M0V0M1−M1V0M0+M0V1A−AV1M0)+

1

λ
(M0V0A − AV0M0 + M1V1A − AV1M1).

Therefore the Lax-Nijenhuis equation suggests that we should set

dM0

dt2
= (M0V0M1 − M1V0M0) + (M0V1A − AV1M0)

dM1

dt2
= (M0V0A − AV0M0) + (M1V1A − AV1M1).

A computation shows that this is actually a Poisson structure on the direct sum
of two copies of so(n). It is clearly compatible with the first, because it can be otained
by deforming A into A + λI .
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5.3 The KdV equation

We now enter the field of nonlinear partial differential equations by considering
the Korteweg-de Vries equation

du

dt
= uxxx − 6uux .

We use the notations of the formal calculus of variations9,10,8. As is well-known, the
KdV equation is Hamiltonian since if can be written in the form

∂u

∂t
= ∂

δH

δu
,

where

H(u) = −

∫
(
1

2
u2

x + u3)dx ,

and ∂ = d
dx

is the Gardner Hamiltonian structure13. It admits a Lax representation,
du
dt

= [L, B], with

L = ∂2 − u, B = 4∂3 − 3(u∂ + ∂u) .

We now want to use the Lax-Nijenhuis equation (5.1), where P = ∂, to find the second
Hamiltonian structure of the KdV equation. Since L is a second-order differential
operator, we assume that L̂(α) is a first-order differential operator,

L̂(α) = λ + µ∂ ,

where λ and µ depend linearly on the 1-form α. A simple computation yields:

1

2
LPα(L2) = −αx∂2 − αxx∂ + (uαx −

1

2
αxxx) ,

[L, L̂(α)] = 2µx∂2 + (2λx + µxx)∂ + (λxx + µux) .

By inserting these formulas into the Lax-Nijenhuis equation and by equating the
coefficients of ∂2, ∂ and ∂0, we get:

(2µ − α)x = 0 ,

(2λ + µx − αx)x = 0 ,

− LQα(u) = uαx −
1

2
αxxx + λxx + µux .

The first two equations yield the solution µ = 1
2α, λ = 1

4αx, while the third one
yields the second Hamiltonian structure of the KdV equation,

Qu(α) =
1

4
αxxx − uαx −

1

2
uxα .

The recursion operator is the nonlocal operator, Ru = 1
4∂2 − u − 1

2ux∂−1.

24



5.4 The second Adler-Gelfand-Dickey bracket

We now generalize the previous example to the first equation of the n-th KdV
hierarchy. The unknowns are functions u0, u1, . . . , un−1 on the circle, whose time
evolution is being studied. It admits a Lax formulation,

dL

dt
= [L, B] ,

where
L = ∂n + un−1∂

n−1 + · · ·+ u0 ,

and B is a suitable differential operator of order n + 1. Here L takes values in a
manifold Ln of invertible elements in the algebra An of formal pseudodifferential
operators of order ≤ n on the circle36. This equation is Hamiltonian with respect to
the Poisson structure P on Ln which, in the operator formalism, is defined by

(5.9) PL(α) = [α, L]+ ,

where α is the pseudodifferential operator,

α = ∂−1α0 + ∂−2α1 + · · ·+ ∂−nαn−1 ,

which is considered as a 1-form on Ln. The value of α on any tangent vector U =
Un−1∂

n−1 + · · ·+ U1∂ + U0 is, by definition,

〈α, U〉 =

∫
res∂−1(α ◦ U) =

∫
(α0U0 + · · · + αn−1Un−1)dx .

In equation (5.9) the symbol [L, α]+ means that we consider the differential part of the
pseudodifferential operator obtained by computing the commutator of the operators
L and α by the usual (formal) rules of the algebra of pseudodifferential operators.
See, e.g., Refs. 36, 37.

The Lax-Nijenhuis equation (5.1) then takes the form

LQα(L) =
1

2
(L[α, L]+ + [α , L]+L) + [L, L̂(α)] .

Since L is a monic differential operator of order n and

LQα(L) = LQα(u0) + LQα(u1)∂ + · · ·+ LQα(un−1)∂
n−1,

we can solve this equation by looking for operators

L̂(α) = λ0 + λ1∂ + · · ·+ λn−1∂
n−1 .

(The reasons for this choice and that made in the case of the Toda system are similar.)
Then we observe that the Lax-Nijenhuis equation can also be written in the form

(5.10) LQα(L) = [α, L]+L + [L, M(α)] ,
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if we set

M(α) = L̂(α) +
1

2
[α, L]+ .

To split equation (5.10) in two parts, one determining M(α) and the other determin-
ing LQα(L), we observe that the constraints on L imply that

(LQα(L)L−1)+ = 0 .

Then we get

(LQα(L) · L−1)+ = ([α, L]+ + [L, M(α)L−1])+ = 0

(LQα(L) · L−1)− = ([α, L]+ + [L, M(α)L−1])−

or

(5.11) [L, (M(α)− αL)L−1]+ = 0

(5.12) LQα(L) = [L , M(α)L−1]− · L .

Now [L, (αL)−L−1]+ = 0, since

(L(αL)−L−1 − (αL)−)+ = (L(αL)−L−1)+ = 0 .

In fact, we know that for any strictly pseudodifferential operator X , such that
X+ = 0,

(LXL−1)+ = 0 .

The constraint equation (5.11) can therefore be written in the form

[L, (M(α)− (αL)+)L−1]+ = 0 ,

and the simplest solution of (5.11) is thus

M(α) = (αL)+ .

If we now insert this solution into equation (5.12), we get

LQα(L) = [L, (αL)+L−1]− · L ,

or
QL(α) = (L(αL)+L−1)−L

= L(αL)+L−1L − (L(αL)+L−1)+L

= L(αL)+ − (LαLL−1 − L(αL)−L−1)+L

= L(αL)+ − (Lα)+L .

This is the second Adler-Gelfand-Dickey bracket21,16,10,37.
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5.5 The R-matrix bracket

It is well-known that the Poisson structure (5.9) on Ln is a particular case of
the Poisson structure P defined by

(5.13) PL(α) = R([L, α])− [L, Rα]

associated with any skewsymmetric R-matrix satisfying the modified classical Yang-
Baxter equation,

[RX, RY ] − R([RX, Y ] + [X, RY ]) = −[X, Y ] .

Indeed to obtain (5.9) from (5.13) it is enough to choose as an R-matrix on the
algebra of formal pseudodifferential operators half the difference,

R =
1

2
(π+ − π−),

between the projections π+ and π− onto the positive and negative parts into which
the algebra of formal pseudodifferential operators naturally splits. In fact

R([L, α])− [L, Rα] =
1

2
[L, α]+ −

1

2
[L, α]− +

1

2
[L, α] = [L, α]+ .

Therefore, it is natural to try to generalize the previous example by solving the
Lax-Nijenhuis equation corresponding to

LPα(L) = R([L, α])− [L, R(α)] .

To this end we remark that

LPα(L2) = LR([L, α]) + R([L, α])L− [L, LR(α) + R(α)L]

so that the Lax-Nijenhuis condition takes the form

LQα(L) =
1

2
(LR([L, α]) + R([L, α])L) + [L, L̂(α) −

1

2
(LR(α) + R(α)L)] .

In this case we have no obvious supplementary conditions on L to be used to deter-
mine L̂(α). However to do this we can use the skewsymmetry of Q (as in the Toda
example). The idea is to split the linear operator

ML(α) = LR([L, α]) + R([L, α])L

into its symmetric and skewsymmetric parts. Since

tML(α) = [L, R(αL + Lα)] ,
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we can write

LQα(L) =
1

2
(ML(α) − tML(α)) + [L, L̂(α) +

1

2
(R(αL + Lα)) − LR(α) − R(α)L] .

Now we can choose

L̂(α) =
1

2
(LR(α) + R(α)L) −

1

2
R(αL + Lα)

so as to annihilate the commutator and to get LQα(L) = 1
2 (ML(α) − tML(α)),

a manifestly skewsymmetric mapping. The explicit result that we finally get is

LQα(L) =
1

2
(LR([L, α]) + R([L, α])L− [L, R(αL + Lα)]),

and thus
QL(α) = R(Lα)L − LR(αL) .

This is the well-known form23 of the second (quadratic) Poisson bivector associated
with the R-bracket (5.13).

Conclusion. These examples may help to explain the role of the Lax-Nijenhuis equa-
tion and its limits. This equation does not define the second (“quadratic”) Poisson
bracket, Q, associated with a Lax operator, but it provides a systematic way of de-
riving this bracket. The previous examples show that, in many cases, the form of L

and the form of the first, given Poisson tensor suggest natural choices for the form of
L̂(α) which make Q uniquely defined. This is the value of the method. Its limits are
that it does not provide a proof of the fact that we indeed obtain a second Poisson
tensor compatible with the given one.

In Ref. 38, there appears a Lax formulation for the evolution of the recursion
operator of the KdV hierarchy, whose geometric interpretation along the lines of the
present exposition remains to be clarified.
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nitz ed., Séminaire de Mathématiques Supérieures 102 (Presses de l’Université
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V. Examples

In this section, we give four examples showing how the Lax-Nijenhuis equation
can be used to compute higher-order Hamiltonian structures associated with a Hamil-
tonian system admitting a Lax representation. We write the Lax-Nijenhuis equation
(3.6) in the form

(5.1) LQαL =
1

2
(LLPαL + (LPαL)L) + [L, L̂(α)],

and we use the information on L and the arbitrariness of α to split this equation
into two parts: the first determines the unknown map L̂, up to some still arbitrary
constants, the second part determines LQαL and then Q. The condition of skewsym-
metry on Q then determines the constants. The discussion is quite similar to a
problem with constraints coming from the restrictions imposed on L, where the role
of the Lagrange multipliers is played by the mapping L̂.

5.1 The Toda system

We shall consider the Toda system and its well-known Lax formulation. Let M =
R

2n+1 with coordinates xI = (aj, b`), j = 1, · · · , n, ` = 1, · · · , n+1, I = 1, · · · , 2n+1.
We consider the Poisson bivector P0 defined by

(5.2)
{aj, bj} = −aj , j = 1, 2, · · · , n

{aj, bj+1} = aj , j = 1, 2, · · · , n ,

all other Poisson brackets being equal to 0. Thus the Poisson bivector P0 has matrix

(P IJ
0 ) =




a1 −a1

a2 −a2 0

0
. . .

. . .

0
. . .

. . .

an −an

−a1

a1 −a2 0

a2
. . .
. . .

. . . 0

0
. . . −an

an
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When H =
∑n

j=1 a2
j + 1

2

∑n+1
`=1 b2

` , the Hamiltonian vector field X = P0dH is the

Toda vector field. In fact, the evolution equation dx
dt

= X(x) is the system




daj

dt
= {aj , H} , j = 1, 2, · · · , n ,

db`

dt
= {b`, H} , ` = 1, 2, · · · , n + 1 ,

and, setting a0 = an+1 = 0, this system becomes

(5.3)






daj

dt
= aj(bj+1 − bj) , j = 1, 2, · · · , n ,

db`

dt
= 2(a2

` − a2
`−1), ` = 1, 2, · · · , n + 1 ,

which are the equations of the Toda system in Flaschka coordinates15. A Lax for-
mulation for the Toda system is

dL

dt
= [L, A] ,

where
(5.4)

L =




b1 a1

a1 b2 a2 0
a2 b3 a3

a3
. . .

. . .
. . .

. . .
. . .

0
. . . bn an

an bn+1




, A =




0 a1

a1 0 a2 0
a2 0 a3

a3
. . .

. . .
. . .

. . .
. . .

0
. . . 0 an

an 0




Now let P and Q be Poisson structures such that (5.1) is satisfied for L symmetric
and tridiagonal, as above. We assume that P is known, and we consider Q to be
an unknown, higher-order, Poisson structure. We shall assume that L̂(α) depends

linearly on α, and we shall denote the matrix L̂(dxI) of order n + 1 by CI . Then
(5.1) becomes

(5.5) L(P IJ ∂L

∂xJ
+ 2CI) + (P IJ ∂L

∂xJ
− 2CI)L = 2QIJ ∂L

∂xJ
,

where the summation over J = 1, 2, · · · , 2n + 1 is understood.
We shall assume that CI is a skewsymmetric tridiagonal matrix, for each I =

1, · · · , 2n + 1,

(5.6) CI =




0 cI1

−cI1 0 cI2 0
−cI2 0 cI3

−cI3 . . .
. . .

. . .
. . .

. . .

0
. . . 0 cIn

−cIn 0
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where cI
1, · · · , c

I
n are to be determined. This choice is the simplest possible and it

guarantees that [L, CI ] is a symmetric penta-diagonal matrix. Any other choice of
CI would yield a matrix [L, CI ] with more entries, and so with more constraints to
be imposed.

For each I = 1, · · · , 2n + 1, P IJ ∂L
∂xJ is the symmetric tridiagonal matrix




P I,n+1 P I1 0
P I1 P I,n+2 P I2

P I2 . . .
. . .

. . . P I,2n P In

0 P In P I,2n+1




,

and therefore (P IJ ∂L
∂xJ − 2CI)L is the transpose of L(P IJ ∂L

∂xJ + 2CI). Thus con-
dition (5.5) implies that, for fixed I, matrix CI is such that the symmetric part of
L(P IJ ∂L

∂xJ + 2CI) is tridiagonal. Writing this condition explicitly, one obtains

n−1∑

k=1

(ak(P J,k+1 + 2cJ,k+1) + ak+1(P
Jk − 2cJk)) = 0 .

Solving this system for cJk in terms of P Jk yields the existence of multipliers λJ
k , k =

1, 2, · · · , n, such that
2cJk = P Jk + 2λJ

kak .

We assume that P Jk is divisible by ak. This assumption is satisfied for P = P0

defined by (5.2). Setting λJ
1 = λJ , we obtain

2cJk = P Jk + 2ak(λJ −

k∑

j=2

P Jj

aj

) .

(By convention, here and below the last sum vanishes if k < 2.)
From relations (5.5), we then obtain the coefficients of the higher-order Poisson

structure Q,

QJk =
1

2
ak(P J,n+k + P J,n+k+1) +

1

2
bk(P Jk + 2cJk) +

1

2
bk+1(P

Jk − 2cJk) ,

QJ,n+` = a`(P
J` − 2cJ`) + a`−1(P

J,`−1 + 2cJ,`−1) + b`P
J,n+` .

We now replace the cJk’s by their values in terms of the parameters λJ , and we
impose the conditions that the diagonal terms of Q vanish. These 2n + 1 conditions
imply

2(bk+1 − bk)(λk −

k−1∑

j=2

P kj

aj

) = P k,n+k + P k,n+k+1,

33



a2
1λ

n+1 = 0 ,

(a2
` − a2

`−1)


λn+` −

`−1∑

j=2

Pn+`,j

aj


 = a`−1P

n+`,`−1 + a`P
n+`,`,

for ` = 2, · · · , n + 1.
Thus, we have obtained

QJk =
1

2
ak

(
P J,n+k + P J,n+k+1

)
+ bkP Jk + ak(bk − bk+1)


λJ −

k−1∑

j=2

P Jj

aj


 ,

QJ,n+` = 2
(
a`−1P

J,`−1 + a`P
J`) + b`P

J,n+` + 2(a2
`−1 − a2

`

)


λJ −

`−1∑

j=2

P Jj

aj



 ,

where the λJ ’s are given above in terms of ak, b`, P
IJ .

Let us assume that all ak’s are nonvanishing and let us introduce the matrix M

of order 2n + 1, depending on a1, · · · , an, b1, · · · , bn+1, such that M applied to the
column with entries A1, · · · , An, B1, · · · , Bn+1, is the column with entries

(5.7)





Ak =
1

2
ak(Bk + Bk+1) + bkAk + ak(bk+1 − bk)

k∑

j=2

Aj

aj

,

B1 = b1B1, B2 = b2B2 + 2(a1A1 + a2A2),

B` = b`B` + 2(a`−1A`−1 + a`A`) + 2(a2
` − a2

`−1)

`−1∑

j=2

Aj

aj

,

for ` = 3, · · · , n + 1.
We see that

Q = MP + X ⊗ λ ,

where X is the Toda vector field with components

a1(b2 − b1), a2(b3 − b2), · · · , an(bn+1 − bn), 2a2
1, 2(a2

2 − a2
1), · · · ,−2a2

n ,

and λ is the vector with components λ1, · · · , λn, λn+1, · · · , λ2n+1. We observe that,
although Q is skewsymmetric, this expression does not constitute a decomposition of
Q into a sum of skewsymmetric 2-tensors.

Thus the Lax-Nijenhuis equation yields an explicit determination of the bivector
Q in terms of P . For P = P0, we see that the corresponding vector λ = λ(0) is the
row-matrix with entries

(5.8) λJ
(0) = −

1

2
δJ
n+2 .
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It is easy to check that
P1 = MP0 + X ⊗ λ(0)

coincides with the second Poisson structure of the Toda system17,19,20. For example,
if n = 3, the matrix MP0 is equal to




b1 0 0 a1

2
a1

2 0 0
0 b3 0 0 a2

2
a2

2 0
0 U b4 0 0 a3

2
a3

2
0 0 0 b1 0 0 0

2a1 2a2 0 0 b2 0 0

0 2
a2

3

a2

2a3 0 0 b3 0

0 −2
a2

3

a2

0 0 0 0 b4







a1 −a1 0 0
0 0 a2 −a2 0

0 0 a3 −a3

−a1 0 0
a1 −a2 0
0 a2 −a3 0
0 0 a3




where U = a3

a2

(b4 − b3), and

X ⊗ λ(0) =




a1(b2 − b1)
a2(b3 − b2)
a3(b4 − b3)

2a2
1

2(a2
2 − a2

1)
2(a2

3 − a2
2)

−2a2
3




⊗ t ( 0 0 0 0 −1
2 0 0 ) ,

so that

P1 = MP0+X⊗λ(0) =




0 −1
2
a1a2 0 a1b1 −a1b2 0 0

1
2a1a2 0 −1

2a2a3 0 a2b2 −a2b3 0
0 1

2
a2a3 0 0 0 a3b3 −a3b4

−a1b1 0 0 0 −2a2
1 0 0

a1b2 −a2b2 0 2a2
1 0 −2a2

2 0
0 a2b3 −a3b3 0 2a2

2 0 −2a2
3

0 0 a3b4 0 0 2a2
3 0




.

Repeating the process, we have to compute the bivector

P2 = MP1 + X ⊗ λ(1)

where λ(1) is the vector corresponding to P1. We can show that

λ(1) = Mλ(0) .

For example, if n = 3,

λ(1) = (−
1

4
a1,−

1

4
a2, 0, 0,−

1

2
b2, 0, 0)

35



and P2 is the skewsymmetric matrix

P2 = MP1 + X ⊗ λ(1) =




0 −a1a2b2 0 a1b
2
1 + a3

1 −a1b
2
2 − a3

1 −a1a
2
2 0

0 −a2a3b3 a2
1a2 a2b

2
2 + a3

2 −a2b
2
3 − a3

2 −a2a
2
3

0 0 a2
2a3 a3b3 + a2

3 −a3b
2
4 − a2

3

0 −2a2
1(b1 + b2) 0 0

0 −2a2
2(b2 + b3) 0

0 −2a2
3(b3 + b4)

0




In this case, P2 coincides with the opposite of the third Poisson structure of the Toda
system described in Refs. 17 and 20.

Thus if M is the matrix of order 2n+1 defined by (5.7), the bivectors Pi obtained
from the Lax-Nijenhuis equation satisfy

Pi+1 = MPi + X ⊗ λ(i) ,

where X is the Toda vector field and λ(i) is the vector corresponding to Pi.

In particular, it follows that each coefficient P Jk
i of the bivector Pi is divisible

by ak, so the iteration can be carried out.

Let us show that in fact the skewsymmetry of Pi, Pi+1 implies that

λ(i+1) = Mλ(i) .

Thus we consider

Pi = MPi−1 + X ⊗ λ(i−1) ,

Pi+1 = MPi + X ⊗ λ(i) .

Since Pi+1 is assumed to be skewsymmetric, λ(i) must satisfy

Pi
tM − MPi = X ⊗ λ(i) + λ(i) ⊗ X .

Moreover, from the skewsymmetry of Pi , we obtain

Pi = MPi−1 + X ⊗ λ(i−1) = Pi−1
tM − λ(i−1) ⊗ X ,

whence

Pi
tM − MPi = X ⊗ Mλ(i−1) + Mλ(i−1) ⊗ X .

We thus obtain λ(i) = Mλ(i−1). The following proposition summarizes this discus-
sion.
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Proposition 5.1.— Let M be the matrix of order 2n + 1 defined by (5.7). The
bivectors obtained from the Lax-Nijenhuis equation satisfy

Pi+1 = MPi + X ⊗ M iλ(0) ,

where λ(0) is the vector given by (5.8).

5.2 The n-dimensional rigid body

The Euler equations for the n-dimensional rigid body rotating about a fixed
point can be written

Ṁ = [M, Ω] ,

where M is the angular momentum, a time-dependent element of the Lie algebra
so(n), and

M = JΩ + ΩJ .

Here J is a diagonal matrix with positive entries J1, J2, · · · , Jn defined in terms of the
principal moments of inertia, and Ω is the angular velocity. These equations admit
a Lax formulation, with a spectral parameter,

L̇ = [L, B] ,

where L = M
λ

+ J2 and B = Ω + λJ .
Moreover, it is well-known (see e.g., Refs. 10, 34) that these equations can be

written in Hamiltonian form, with respect to the linear Poisson structure of so(n)
induced by the identification of the Lie algebra so(n) with its dual by means of
the trace of the product of matrices. Making use of this identification, this Poisson
structure P is defined by PM : so(n) → so(n), for each M in so(n), where

PM = adM .

If K(M) = 1
2 tr(MΩ), then the gradient of K (the differential of K identified with a

matrix in so(n)) is the constant matrix Ω, and therefore the Euler equations can be
written as the Hamiltonian equation

Ṁ = P (dK).

Let us use the Lax-Nijenhuis equation in order to find a possible form of a second
Hamiltonian structure that will make this equation a bihamiltonian system. Setting
L̇ = dL

dt1
, it follows from the definitions and from the Euler equation that

d(L2)

dt1
=

1

λ
(L[M, Ω] + [M, Ω]L) ,

and therefore, by a simple computation,

1

2

d(L2)

dt1
=

1

2λ
[L, MΩ + ΩM ] +

1

λ
(MΩL − LΩM) .
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By the definition of L, MΩL − LΩM = MΩJ2 − J2ΩM . This suggests that we
should set

dM

dt2
= MΩJ2 − J2ΩM.

We observe that if M and Ω are skewsymmetric, so is dM
dt2

. In fact, Q defined by

QM (V ) = MV J2 − J2V M,

for M, V ∈ so(n), is the second, compatible Poisson structure on so(n) that was
recently found by Morosi and Pizzocchero34. This second Poisson structure Q is
actually a deformation of the first, linear one, P , under the linear map M → JMJ .
The Euler equation can be written

Ṁ = Q(dH) ,

where H(M) = −1
2 tr(J−1MJ−1Ω) , since the gradient of H is −J−1ΩJ−1.

We now show how to extend this procedure to the determination of Poisson
structures compatible with the linear Poisson structures on the sum of several copies
of a simple Lie algebra, considered in Refs. 30 and 35. Let us consider, for instance,
the Hamiltonian system

dM0

dt1
= [M0, V1]

dM1

dt1
= [M0, V0] + [M1, V1],

where V0, V1 are the components of the gradient of a Hamiltonian function K . We
introduce the Lax matrix depending on the spectral parameter λ,

L =
M0

λ2
+

M1

λ
+ A.

Computing the derivative of the square of this matrix, we find that

1

2

d(L2)

dt1
= [L,

(M0V1 + V1M0)

2λ2
+

(M0V0 + V0M0) + (M1V1 + V1M1)

2λ
]

+
1

λ2
(M0V0M1−M1V0M0+M0V1A−AV1M0)+

1

λ
(M0V0A − AV0M0 + M1V1A − AV1M1).

Therefore the Lax-Nijenhuis equation suggests that we should set

dM0

dt2
= (M0V0M1 − M1V0M0) + (M0V1A − AV1M0)

dM1

dt2
= (M0V0A − AV0M0) + (M1V1A − AV1M1).

A computation shows that this is actually a Poisson structure on the direct sum
of two copies of so(n). It is clearly compatible with the first, because it can be otained
by deforming A into A + λI .

38



5.3 The KdV equation

We now enter the field of nonlinear partial differential equations by considering
the Korteweg-de Vries equation

du

dt
= uxxx − 6uux .

We use the notations of the formal calculus of variations9,10,8. As is well-known, the
KdV equation is Hamiltonian since if can be written in the form

∂u

∂t
= ∂

δH

δu
,

where

H(u) = −

∫
(
1

2
u2

x + u3)dx ,

and ∂ = d
dx

is the Gardner Hamiltonian structure13. It admits a Lax representation,
du
dt

= [L, B], with

L = ∂2 − u, B = 4∂3 − 3(u∂ + ∂u) .

We now want to use the Lax-Nijenhuis equation (5.1), where P = ∂, to find the second
Hamiltonian structure of the KdV equation. Since L is a second-order differential
operator, we assume that L̂(α) is a first-order differential operator,

L̂(α) = λ + µ∂ ,

where λ and µ depend linearly on the 1-form α. A simple computation yields:

1

2
LPα(L2) = −αx∂2 − αxx∂ + (uαx −

1

2
αxxx) ,

[L, L̂(α)] = 2µx∂2 + (2λx + µxx)∂ + (λxx + µux) .

By inserting these formulas into the Lax-Nijenhuis equation and by equating the
coefficients of ∂2, ∂ and ∂0, we get:

(2µ − α)x = 0 ,

(2λ + µx − αx)x = 0 ,

− LQα(u) = uαx −
1

2
αxxx + λxx + µux .

The first two equations yield the solution µ = 1
2α, λ = 1

4αx, while the third one
yields the second Hamiltonian structure of the KdV equation,

Qu(α) =
1

4
αxxx − uαx −

1

2
uxα .

The recursion operator is the nonlocal operator, Ru = 1
4∂2 − u − 1

2ux∂−1.
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5.4 The second Adler-Gelfand-Dickey bracket

We now generalize the previous example to the first equation of the n-th KdV
hierarchy. The unknowns are functions u0, u1, . . . , un−1 on the circle, whose time
evolution is being studied. It admits a Lax formulation,

dL

dt
= [L, B] ,

where
L = ∂n + un−1∂

n−1 + · · ·+ u0 ,

and B is a suitable differential operator of order n + 1. Here L takes values in a
manifold Ln of invertible elements in the algebra An of formal pseudodifferential
operators of order ≤ n on the circle36. This equation is Hamiltonian with respect to
the Poisson structure P on Ln which, in the operator formalism, is defined by

(5.9) PL(α) = [α, L]+ ,

where α is the pseudodifferential operator,

α = ∂−1α0 + ∂−2α1 + · · ·+ ∂−nαn−1 ,

which is considered as a 1-form on Ln. The value of α on any tangent vector U =
Un−1∂

n−1 + · · ·+ U1∂ + U0 is, by definition,

〈α, U〉 =

∫
res∂−1(α ◦ U) =

∫
(α0U0 + · · · + αn−1Un−1)dx .

In equation (5.9) the symbol [L, α]+ means that we consider the differential part of the
pseudodifferential operator obtained by computing the commutator of the operators
L and α by the usual (formal) rules of the algebra of pseudodifferential operators.
See, e.g., Refs. 36, 37.

The Lax-Nijenhuis equation (5.1) then takes the form

LQα(L) =
1

2
(L[α, L]+ + [α , L]+L) + [L, L̂(α)] .

Since L is a monic differential operator of order n and

LQα(L) = LQα(u0) + LQα(u1)∂ + · · ·+ LQα(un−1)∂
n−1,

we can solve this equation by looking for operators

L̂(α) = λ0 + λ1∂ + · · ·+ λn−1∂
n−1 .

(The reasons for this choice and that made in the case of the Toda system are similar.)
Then we observe that the Lax-Nijenhuis equation can also be written in the form

(5.10) LQα(L) = [α, L]+L + [L, M(α)] ,
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if we set

M(α) = L̂(α) +
1

2
[α, L]+ .

To split equation (5.10) in two parts, one determining M(α) and the other determin-
ing LQα(L), we observe that the constraints on L imply that

(LQα(L)L−1)+ = 0 .

Then we get

(LQα(L) · L−1)+ = ([α, L]+ + [L, M(α)L−1])+ = 0

(LQα(L) · L−1)− = ([α, L]+ + [L, M(α)L−1])−

or

(5.11) [L, (M(α)− αL)L−1]+ = 0

(5.12) LQα(L) = [L , M(α)L−1]− · L .

Now [L, (αL)−L−1]+ = 0, since

(L(αL)−L−1 − (αL)−)+ = (L(αL)−L−1)+ = 0 .

In fact, we know that for any strictly pseudodifferential operator X , such that
X+ = 0,

(LXL−1)+ = 0 .

The constraint equation (5.11) can therefore be written in the form

[L, (M(α)− (αL)+)L−1]+ = 0 ,

and the simplest solution of (5.11) is thus

M(α) = (αL)+ .

If we now insert this solution into equation (5.12), we get

LQα(L) = [L, (αL)+L−1]− · L ,

or
QL(α) = (L(αL)+L−1)−L

= L(αL)+L−1L − (L(αL)+L−1)+L

= L(αL)+ − (LαLL−1 − L(αL)−L−1)+L

= L(αL)+ − (Lα)+L .

This is the second Adler-Gelfand-Dickey bracket21,16,10,37.
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5.5 The R-matrix bracket

It is well-known that the Poisson structure (5.9) on Ln is a particular case of
the Poisson structure P defined by

(5.13) PL(α) = R([L, α])− [L, Rα]

associated with any skewsymmetric R-matrix satisfying the modified classical Yang-
Baxter equation,

[RX, RY ] − R([RX, Y ] + [X, RY ]) = −[X, Y ] .

Indeed to obtain (5.9) from (5.13) it is enough to choose as an R-matrix on the
algebra of formal pseudodifferential operators half the difference,

R =
1

2
(π+ − π−),

between the projections π+ and π− onto the positive and negative parts into which
the algebra of formal pseudodifferential operators naturally splits. In fact

R([L, α])− [L, Rα] =
1

2
[L, α]+ −

1

2
[L, α]− +

1

2
[L, α] = [L, α]+ .

Therefore, it is natural to try to generalize the previous example by solving the
Lax-Nijenhuis equation corresponding to

LPα(L) = R([L, α])− [L, R(α)] .

To this end we remark that

LPα(L2) = LR([L, α]) + R([L, α])L− [L, LR(α) + R(α)L]

so that the Lax-Nijenhuis condition takes the form

LQα(L) =
1

2
(LR([L, α]) + R([L, α])L) + [L, L̂(α) −

1

2
(LR(α) + R(α)L)] .

In this case we have no obvious supplementary conditions on L to be used to deter-
mine L̂(α). However to do this we can use the skewsymmetry of Q (as in the Toda
example). The idea is to split the linear operator

ML(α) = LR([L, α]) + R([L, α])L

into its symmetric and skewsymmetric parts. Since

tML(α) = [L, R(αL + Lα)] ,
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we can write

LQα(L) =
1

2
(ML(α) − tML(α)) + [L, L̂(α) +

1

2
(R(αL + Lα)) − LR(α) − R(α)L] .

Now we can choose

L̂(α) =
1

2
(LR(α) + R(α)L) −

1

2
R(αL + Lα)

so as to annihilate the commutator and to get LQα(L) = 1
2 (ML(α) − tML(α)),

a manifestly skewsymmetric mapping. The explicit result that we finally get is

LQα(L) =
1

2
(LR([L, α]) + R([L, α])L− [L, R(αL + Lα)]),

and thus
QL(α) = R(Lα)L − LR(αL) .

This is the well-known form23 of the second (quadratic) Poisson bivector associated
with the R-bracket (5.13).

Conclusion. These examples may help to explain the role of the Lax-Nijenhuis equa-
tion and its limits. This equation does not define the second (“quadratic”) Poisson
bracket, Q, associated with a Lax operator, but it provides a systematic way of de-
riving this bracket. The previous examples show that, in many cases, the form of L

and the form of the first, given Poisson tensor suggest natural choices for the form of
L̂(α) which make Q uniquely defined. This is the value of the method. Its limits are
that it does not provide a proof of the fact that we indeed obtain a second Poisson
tensor compatible with the given one.

In Ref. 38, there appears a Lax formulation for the evolution of the recursion
operator of the KdV hierarchy, whose geometric interpretation along the lines of the
present exposition remains to be clarified.
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Astérisque 123 (1985).

[18] W. Oevel and O. Ragnisco, R-matrices and higher-order Poisson brackets for

integrable systems, Physica A 161, 181-220 (1989).

[19] A. Das and S. Okubo, A systematic study of the Toda lattice, Ann. Phys. 190,
215-232 (1989).

44



[20] P. A. Damianou, Master symmetries and R-matrices for the Toda lattice, Lett.
Math. Phys. 20, 101-112 (1990).

[21] I. M. Gelfand and L. A. Dickey, A family of Hamiltonian structures connected

with integrable nonlinear differential equations, preprint 136 (Inst. Appl. Math.
Moscow, 1978), published in English translation in Collected Papers of I. M.

Gelfand, vol. 1 (Springer-Verlag, 1987), pp. 625-646.

[22] B. A. Kupershmidt and G. Wilson, Modifying Lax equations and the second

Hamiltonian structure, Invent. Math. 62, 403-436 (1981).

[23] M. A. Semenov-Tian-Shansky, What is a classical r-matrix?, Funct. Anal. Appl.
17, 259-272 (1983).

[24] F. Magri, A geometrical approach to the nonlinear solvable equations, Lect. Notes
Phys. 120 (Springer-Verlag, 1980), pp. 233-263.

[25] B. Fuchssteiner, The Lie algebra structure of nonlinear evolution equations ad-

mitting infinite-dimensional Abelian symmetry groups, Prog. Theor. Physics,
65 (3), 861-876 (1981).

[26] F. Magri, C. Morosi and O. Ragnisco, Reduction techniques for infinite- dimen-

sional Hamiltonian systems: some ideas and applications, Comm. Math. Phys.
99, 115-140 (1985).

[27] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann.
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