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ABSTRACT 

The principles and equations of the Monte Carlo 
technique are outlined for determining thermal 

radiation shape factors. Equations for the ray tracings 
and intersection criteria needed to calculate the shape 
factors between plane walls, cylinders and spheres are 
presented. The equations presented and resulting shape 
factors are demonstrated with selected geometric 
configurations for which the shape factors are known. 
Computer results using the Monte Carlo technique of six 
geometric arrangements produced results within 2.2% of 
theoretically known shape factors. 

INTRODUCTION 

Many energy balances encountered in thermal 
engineering problems require the determination of the 
radiative heat transfer. Computationally, radiation heat 
transfer can become quite cumbersome for two reasons. 
First, the radiative component is dependent on the 
fourth power of the surface temperature. This, combined 
with the first power temperatures associated with 
convection and conduction, result in a nonlinear 
analysis. Second, unlike the convective and conductive 
heat loss components, the radiative component depends 
on shape factors which are a function of the spatial 
orientation between surfaces. 

Shape factors are defined as the fraction of radiant 
energy leaving one surface that is incident upon another. 
Shape factors are known for a few common shapes and 
geometric orientations, however, many situations exist 
where shape factors are unknown. For these situations, 
alternate techniques must be used to numerically 
estimate them. 

One technique, called the Monte Carlo method, is a 
statistical model which simulates the radiative emission 
from a surface. The Monte Carlo technique is commonly 
used to describe the complete radiative exchange 
(Howell, 1965; Weiner et al., 1965; Toor and Viskanta, 
1968). For this analysis, the Monte Carlo technique was 
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only used to calculate shape factors. Once shape factors 
are known, a complete energy exchange, including 
conduction and convection, can be computed using an 
energy balance and solution procedure presented in Hoff 
(1987). 

This paper describes the Monte Carlo technique for 
determining shape factors between gray-body surfaces 
that are both diffuse emitters and reflectors of radiant 
energy and where the radiosity (total radiative outflow) is 
uniform throughout the surface. The objective is to 
present and verify the equations and intersection criteria 
which simulate the radiant emission and reflection (ray 
equations) from plane walls, cylinders and spheres. 
Several geometric arrangements involving planes, 
cylinders and spheres were analyzed to compare the 
Monte Carlo results with theoretically known shape 
factors. The ray equations, once verified, can be used to 
calculate the shape factors of more complicated 
geometries by combining these basic shapes. 

MONTE CARLO TECHNIQUE 

The Monte Carlo technique for estimating shape 
factors begins with a mathematical description of the 
radiative emission from a surface. For diffuse surfaces, 
the emission from a surface is assumed to include the 
emitted energy and the reflected energy from all other 
surfaces in an enclosure incident upon the surface. The 
Monte Carlo technique randomly generates values for all 
variables that affect the diffuse emission and reflection of 
radiant energy. These values are used to simulate the 
theoretically known distribution of radiant emission. The 
resulting distribution of energy is used to estimate the 
shape factor from one surface to another. 

The three principle variables that affect the 
distribution of diffuse radiant emission are wavelength 
(A), cone angle (6) and azimuth angle (<t>) (Fig. la). For 
assumed gray-body surfaces, the total emissivity is equal 
to the total absorbtivity which implies that the emissive 
characteristics of a surface are independent of the 
wavelength. Another common assumption (Siegal and 
Howell, 1978) is that the emitted and reflected radiation 
are independent of the azimuth angle. This implies that 
each azimuth angle (0 to 360°) has an equal probability 
of occurring. The only remaining variable to be 
considered in the emitted energy function is the cone 
angle. 

To determine the distribution of the emitted and 
reflected radiation as a function of the cone angle, the 
mathematical description of emitted radiation from a 
surface as a function of the cone angle must be defined. 
The complete development can be found in Siegel and 
Howell (1978). For any surface i, the total emitted energy 
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Fig. 1—Angle references used to describe emission rays and emission points. 

( c l 

per unit time is (see nomenclature for variable 
definition): 

dQ, i = ei(T) aT] dAi 

where 

[Ib,i/u;eU^.T)cos9idco] 

•[1] 

ei{T) 
aTl 

[2] 

The energy emitted by element dAj per unit time in the 
interval dd, about 6, is: 

d2Q^ . (Oj) = 27r e; (0, T) l'̂  ^ (T) cos 6^ dA^ sin 0̂  dO^ 

[3] 

Thus, the probability of radiant emission in any one cone 
angle direction 0^ can then be expressed as: 

P(^i) d^i = 
<i' Qe,i (gj) 

dQe.i 
•[4] 

Substituting the previously defined terms, inserting the 
definition of the black-body intensity {l\=oT/\/n) and 
recognizing that for diffuse surfaces the emissivity is 
independent of the cone angle, 6,, results in the 
probability density function: 

P(^i) = 2 cos d^ sin e^ .[5] 

This function describes the theoretical distribution of 
radiant emission from a diffuse-gray surface as well as 
the distribution of reflected energy incident upon the 
surface from all other surfaces in the enclosure. The 
random selections of 6^ used must match this density 
function, which can be accomplished by utilizing the 
cumulative distribution of the probability density 
function (Siegel and Howell, 1978). The cumulative 
distribution of equation [5] is by definition the integrated 
probability density function from 0 to n/2 radians and 
has a value of 1. If a random number, R ,̂ is chosen 
between 0 and 1 (inclusive), then the corresponding value 
of the cone angle can be determined by integrating 

equation [5]. Mathematically, this becomes: 

R, = / , , P(^i) d ^ - / , . 2 c o s ^ i S i n 0 i d ^ i [6] 

and solving in terms of the cone angle becomes: 

R^ =sin2^. [7] 

Solving for the cone angle yields the desired result: 

9i = sin-l(Re)°-5 [8] 

The azimuth angle, for which radiant emission and 
reflection were assumed independent, becomes: 

0i = 2 TT R^ [9] 

The Monte Carlo procedure is to select two random 
numbers (Rg and R^ and calculate the cone and azimuth 
angles from each using equations [8] and [9], 
respectively. After the emission angles are determined, 
the complete direction of an emitted ray can be traced 
mathematically to a surface of incidence. By definition 
then, the shape factor is the amount of energy leaving 
one surface that is incident on another. Using this 
technique, the shape factor from surface i to n can be 
calculated as: 

rays incident on surface n 

total rays emitted from surface i 

SHAPE FACTOR DETERMINATION 

[10] 

The procedure to find the shape factors, once the 
emission angles are determined, is to trace the emitted 
ray from the surface of origin to all surfaces of 
intersection. The surfaces which are intersected are 
recorded and the surface corresponding to the shortest 
ray length becomes the surface of incidence for that ray. 

The governing ray equations for an emitted ray 
originating from a plane wall, cylinder or sphere are 
outlined in Table 1. The equations and angle references 
(Figs, la to lc)specify the emitted ray coordinates. The 
conditions necessary to identify valid surface 
intersections are outlined as follows. 
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TABLE 1. 

Emission 
Surface 

Plane Wall 
Loca ted 
at x=0 

Governing Emission Ray Equations 
Cylinder and Sphere 

Governing Ray 
Equa t ions 

X = XQ + r cos d (XQ = 0) 
y = y^ - r sin 0 cos 0 

. z = z + r sin 6 sin 0 

for Plane Wall, 

Equat ion 
Set 

[1] 

Cylinder with 

Axis Parallel to 

x=0 Plane 

Sphere 

x - XQ + r cosd sin (360 -1//) + 
r sin0 cosE cos (360 - \//) 

y = y ^ - r cos0 cos (360 - \//) + 
r s i n 0 cosEs in (360 - \//) [2] 

z = z - r svad sin 0 

whe re ; 

^ o = ^c - ^c sin ^ 

^o = yc - ĉ ^ ŝ ^ 
ZQ = pre-selected 

and ; 
E = 0 i f \ / / < = 1 8 0 

= 180 + 0 ifV/> 180 

X = XQ + r cos 6 cos j3 cos G -
r sin 6 sin 0 sin G + r sin 6 cos 0 sin j8 cos G 

y = y^ + r cos 6 sin /3 -
r sin 6 cos 0 cos /3 [3] 

z - z - r cos d cos /3 sin G - r sin 6 sin 0 cos G 
- r sin 0 cos 0 sin jS sin G 

w h e r e ; 
XQ = pre-selected 
yQ = y^, + rg sin a. cos 7 
ZQ = z^ - rg sin a sin 7 
/? = s i n - l ( ( y ^ - y j / r 3 ) 
1 = tan--^ ((z^ - Z Q ) / ( X Q - x j ) 

and ; 
G = ^ if ZQ < z^ and x^ > x^ 

= ^+7r if ZQ < z^ and XQ < x^, 
= t+7T if ZQ > z^ and x^ < x^ 
= %+2'n if ZQ > z^ and x ^ > x^ 
= 7r/2 ifzQ = z ^ a n d X o = x^ 

Plane Wall Intersection 
The intersection of a ray onto a plane wall is straight 

forward since the equation describing this surface is 
readily known. The intersection test requires the 
substitution of the plane equation into the appropriate 
governing ray equations from Table 1. Given the x, y and 
z coordinates of the emitted ray, the equations can be 
solved for the ray length, r, corresponding to the point of 
intersection. The remaining two equations are then 
solved for the remaining two intersection coordinate 
dimensions. 

For example, assume that the emission surface is a 
plane located at x = 0 and that the plane located at y = 0 
is to be tesed for intersection. Furthermore, assume that 
ct> = 0, 0 = 45, yo=1.5 and Zo=-1.5. From the governing 
ray equations (Table 1, equation set 1), the length of the 
ray which intersects the y = 0 plane is 2.12, and the x and 
z dimensions of the intersecting point become 1.5 and 
-1.5, respectively. If the point (1.5, 0, -1.5) lies within the 
dimensions of the plane located at y=0 , then the 
intersection point is valid. 

Cylinder Intersection 
The intersection of a cylinder requires that the 

governing ray coordinates of an emitted ray must satisfy 
the circle which defines the circumferential boundary of 
the cylinder. The circle equation that forms a cylinder 
parallel to the x = 0 plane is; 

( x - x j 2 + ( y • y c ) ^ - ^ c [111 

The x and y coordinates of the emitted ray are 
substituted into this equation and solved for the ray 
length of intersection. For example, if the shape factor 
between a plane wall located at x = 0 and a cylinder 
parallel to this plane is desired, a quadratic equation for 
the ray length results, where; 

•b - Vb^ - 4a 

2a 
[12] 

where 
a = cos^ Q H- sin^ Q cos^ ^ 
b = 2 ŷ  sin 0 cos <|> — 2 X^ cos 6 — 2 ŷ  sin B cos <t> 
c = y? + X2 -f y2 - 2 y J , - r2 

A valid intersection is found if the root is real and the 
ray length, r, is greater than 0. If a valid intersection is 
found, the z coordinate of the intersection point is 
calculated and if within the bounds (length) of the 
cylinder, an accepted surface intersection is recorded. 

Spherical Intersection 
The spherical intersection follows in the same manner 

as the cylinder intersection outlined. Given the same 
plane wall emission at x = 0 situation, the conditions 
necessary for a valid intersection are; 

-b - Vb^ - 4ac 

2a 
[13] 

where 
a = 1.0 
b = sin 0 cos <|) (2 yc - 2 ŷ ) + sin 0 sin (|) (2 ẑ  - 2 z,) - 2 

Xc cos Q 
c == Xê  + y,2 + z,2 + ŷ 2 + 2,2-2 y j , - 2 z^ , - r,2 

Grid Spacing for Emitting Surfaces 
In general, the emitting surface must be divided into 

sufficiently small grids. For the plane wall emissions, the 
grid spacing used was 0.03 m in both the y and z 
dimension. For the cylinder emissions, the grid spacing 
used was every Tr/24 radians around the cylinder (i/>) and 
every 0.03 m along its axis. Finally, for the sphere 
emissions, the x-axis of the sphere was divided equally at 
XQ = 0.05 m segments, and at each of these points, rays 
were emitted every Tr/24 radians (y) perpendicular to the 
X-axis. For all three emission surface examples given, 21 
rays were emitted per point. The selected grid spacings 
and emission rays per emission point were selected after 
extensive numerical experiments indicated that the§;e 
values gave error deviations less than 3%, which was 
arbitrarily selected as the acceptable limit. 

Computer Implementation 
Four computer programs were written to simulate the 

shape factors between plane-walls, a cylinder and a 
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TABLE 2. Monte Carlo vs. Theoretical -
Selected Geometric Arrangements 

Geometric 
Set-up 

Plane Wall 
Enclosure 
(Case l ,F ig . la) 

Plane Wall to 
Cylinder of Same 
Length 
(Case 2, Fig. lb) 

Cylinder to 
Plane Wall 
(Case 3, Fig. Ic) 

Sphere to Circle 
(Case 4, Fig. Ic) 

Shape Emitted Density 
Factor Rays (rays/m ) 

^2-1 
^2-2 
^2-3 
F o ^ 
F o s 
F2-6 

F9-I 

^^-^ 

Fs-1-

196,000 33,300 

reciprocity 
employed 

31,250 415 

161,280 3,210 

Monte 
Carlo 

0.1259 
0.0000 
0.1224 
0.3239 
0.2104 
0.2174 

0.2167" 

0.1380 

0.0710 

Theo­
retical 

0.1248 
0.0000 
0.1248 
0.3213 
0.2145 
0.2145 

0.2189 

0.1394 

0.0713 

% 
Error 

+0.9 
0 

-1 .9 
+0.8 
-1 .9 
+1.4 

- 1 . 0 

- 1 . 0 

- 0 . 4 

Sphere to Plane 
Wall Enclosure 

Fs-1 
^s-2 

(Case 5, Fig. Id) F^ 4 

Fs-5 
Fs-6 

F5.3 161,280 3,210 

0.1640 
0.1653 
0.1671 
0.1703 
0.1675 
0.1658 

0.1667 
0.1667 
0.1667 
0.1667 
0.1667 
0.1667 

Plane Wall to 
Sphere 
(Case 6, Fig. Id) 

^2-s 49,400 494 

-1 .6 
-0 .8 
+0.2 
+2.2 
+0.5 
-0 .5 

0.0851 0.0855 -0 .5 

plane-wall, a sphere and a plane-wall, and a plane-wall 
and a sphere. The shape factor between a plane-wall and 
a cylinder was calculated using reciprocity from the 
results generated for the shape factor between a cylinder 
and a plane-wall (Table 2). All simulations were 
generated using FORTRAN programs on an IBM XT 
Model 286. The two random numbers generated (R^ and 
R )̂ for each emitted ray were calculated using the linear 
congruential method (Knuth, 1973). 

RESULTS AND DISCUSSION 

A comparison of shape factors estimated using the 
Monte Carlo technique versus theoretically known values 
is presented in Table 2. The geometric orientations used 
(Figs. 2a to 2d) were a six-sided plane-wall enclosure 
(case 1), a plane-wall to a cylinder (case 2), a cylinder to 
a plane-wall (case 3), a sphere to a plane-wall (cases 4 
and 5) and a plane-wall to a sphere (case 6). Total 
computer running time (real time) varied from 
approximately four min for case 3 to 20 min for cases 1, 4 
and 5. 

All of the estimated shape factors in Table 2 were 
within 2.2% of the theoretically known values. The 
largest error occurred in the emission from a sphere to a 
plane wall (case 5) in which the predicted shape factor 
was 0.1703 compared to the theoretical value 0.1667. 
Ironically, the smallest error recorded in Table 2 also 

(0, L83,0) 

(0,8,-8) 

-^ (1 .52,0, -3 .05) 

(5,4,-8) 

(1.52,0,0) 

( a ) ( b ) 

i (0 ,5 , -5) 

(0,10,0) 

(10,10,-10) 

( c ) ^ ( d ) 

Fig. 2—Geometric arrangements used to verify the Monte Carlo technique (all units in meters). 
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TABLE 3. Emission Ray Sample Size vs. Percent 
Error Deviation from Theoretical - Case 3 

Grid Configuration* 

Z-Axis 
Interval 

(m) 

1.0 
1.0 
1.0 
1.0 

0.5 
0.5 
0.5 
0.5 

0.2 
0.2 
0.2 
0.2 

Emission Rays 
per Emission 

Point 

2 
6 

11 
21 

2 
6 

11 
21 

2 
6 

11 
21 

Sample 
Size 

(rays) 

672 
2016 
3696 
7056 

1248 
3744 
6864 

13104 

2880 
8640 

15840 
30240 

Density 

(rays/m^) 

9 
27 
49 
94 

17 
50 
91 

174 

38 
115 
210 
401 

|%Error| 

5.0 
5.0 
4.9 
2.9 

9.8 
3.3 
0.1 
5.1 

0.4 
0.2 
0.3 
1.1 

Average 
%Error 
(S.D.) 

4.5 
(1.0) 

4.6 
(4.1) 

0.5 
(0.4) 

0.1 
0.1 
0.1 
0.1 

2 
6 

11 
21 

5856 
17568 
32208 
61488 

78 
233 
427 
816 

0.2 
0.3 
0.8 
0.4 

0.4 
(0.3) 

circumferential grid spacing constant at TT / 24 radians 

occurred for the emission from a sphere to a plane wall 
(case 5) in which the predicted shape factor was 0.1671 
compared to the known result of 0.1667. These 
oscillations about the theoretical shape factor have been 
described before (Howell, 1965) and are the result of the 
statistical nature of the Monte Carlo technique. 
Suggested remedies are to average the resulting shape 
factors over several numerical simulations. This 
averaging process was not performed for the results 
presented. 

The deviation from the known result remained fairly 
constant for all cases even though the total ray emissions 
and subsequent emission densities varied substantially 
for each emitting surface. For example, in case 1 an 
emission density of 33,000 rays/m^ was used, whereas no 
more than 3,210 rays/m^ were used for cases 2 thru 6. 
This reduction in emission density by 90% did not 
increase the error of the predicted shape factors. The fact 
that a large sample size resulting in a large emission 
density did not necessarily guarantee a more accurate 
result required further analysis. 

Grid Size and Emission Density 
Emission ray sample size and density is a function of 

both the grid size and the number of emission rays per 
emission point. Table 3 shows the percent error in the 
predicted shape factors for case 3 obtained using various 
grid sizes and number of emission rays per point. The 
emission ray density ranged from 9 to 816 rays/m^. 

The grid spacing was varied from 1.0 to 0.1 m along 
the z-axis of the cylinder (Fig. 2b). The circumferential 
spacing was held constant at yj^n/24 radians. The 
average error for each z-axis interval ranged from 4.6% 
using a 0.5 m interval to 0.4% with a 0.1 m interval. 

The number of emission rays per point was varied 
from 2 to 21 rays. At a z-axis interval of 1.0 m the 
smallest percent error was 2.9% using 21 rays per point. 

At the 0.5 m interval the smallest error occurred using 11 
rays per point. The smallest errors at 0.2 and 0.1 m 
intervals occurred at 6 and 2 rays per point, respectively. 
This shows that increasing the number of emission rays 
per grid point does not necessarily increase the accuracy 
of the predicted shape factors. A relatively small grid 
spacing is required to produce accurate shape factor 
estimates. 

The grid spacing used for the six cases, which resulted 
in all the shape factors having less than 3% error, can be 
analyzed in terms of dimensionless values. For the plane 
wall emissions (case 1), the dimensionless grid spacing 
(AL/L) was 0.016 and 0.010 for the y and z directions, 
respectively. For cylinder emissions (case 3), the 
dimensionless spacing along the z-axis was 0.005 and for 
the sperical emissions (case 5), the dimensionless spacing 
(Ax/rJ was 0.025. Therefore, dimensionless grid 
spacings between 0.005 and 0.025 resulted in shape 
factors within 3% of theoretical. Given the constant 
circumferential spacings of TI/24 radians (cylinder and 
spherical emissions) and the constant sample size of 21 
emitted rays per emission point, the general 
recommendation from this study would be to maintain 
the dimensionless grid spacing less than 0.025. 

The grid spacing guidelines are approximations at 
best. For each geometric configuration encountered, 
several numerical experiments should be performed and 
the resulting average shape factor used. 

It is essential that the surface-area weighted emission 
ray density be uniform throughout the entire surface. If 
this is not achieved, a different number of rays will be 
emitted for one section of the surface, invalidating the 
uniform radiosity assumption prescribed at the outset. 

CONCLUSIONS 

The Monte Carlo technique was demonstrated for 
determining shape factors between plane walls, cylinders 
and spheres. The surfaces were both gray and diffuse 
emitters and reflectors of radiant energy and of uniform 
radiosity throughout. From the results presented, the 
following conclusions can be drawn; 

1. The Monte Carlo technique can be used to 
estimate the thermal radiation shape factors 
between plane-walls, cylinders and spheres 
using simple computer programming 
techniques. 

2. Resulting shape factors using the Monte Carlo 
technique and the presented ray equations for 
various orientations between plane-walls, 
cylinders and spheres were all within 2.2% of 
the theoretically calculated values. 

3. Varying the sample size through adjustments in 
grid spacing intervals and emission levels per 
emission point indicated that a relatively small 
grid spacing interval is of greater importance in 
predicting the shape factor than the number of 
emitted rays. Total sample size is of little 
importance without a uniformly small grid 
spacing. 
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NOMENCLATURE 
A = surface area (m^) 
C = cumulative distribution 
F = shape factor 
I ' = black body radiant intensity (W/m^) 
P = probability density function 
Qe = total emitted radiant energy (W) 
r = emitted ray length (m) 
r̂ , = cylinder radius (m) 
r̂  = sphere radius (m) 
RQ = random number generated for the cone angle 
R<|, = random number generated for the azimuth angle 
T = temperature (C) 
x,y,z = 3-dimensional coordinates (m) 

Greek Symbols: 

£ = total hemispherical emissivity 
£' = total directional emissivity 
o = Stefan-Boltzmann constant (5.6696 x 10"^ W/m^-K"*) 
6 = cone angle of emission (radians, Figure la) 
<t> = azimuth angle of emission (radians, Figure la) 
CO = solid angle (radians) 
ip = circumferential cylinder angle (radians. Figure lb) 
a = z==0 plane spherical angle (radians. Figure Ic) 
y = circumferential sphere angle (radians. Figure Ic) 

Subscripts 

b = 
c = 
i,n = 
o = 

black-body 
surface center 
surface designation 
emission ray origin 
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