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o. Introduction 

The concepts of sufficiency and ancillarity in statistical inference were introduced by 
Fisher. Many authors contributed to the generalization of these concepts (see Bhapkar 
(1989,1991) for references). 
III this paper we treat the problem of data reduction in a measure-theoretic context, 
using generalized definitions of the sufficiency, ancillarity and invariance principles. 
The paper claims that every statistical inference problem can be reduced to an infer­
ence problem in a reference model, as described in section 9. 
In section 1 We give the mathematical prerequisites that are used in the other sections. 
Section 2 describes in general tenns the probability structure of the observational evi­
dence. Section 3 and 4 describe its sufficient reduction and ancillary conditioning. 
Statistical inference ma.y have a given form, e.g. there may be a parameter of interest. 
This interest specification together with sufficiently reduced and conditioned proba­
bility structure constitute an inference model as described in section 5. The interest 
specification makes invariant reduction possible as defined in section 6. Invariant re­
duction as defined by Barnard (1963) is a special case. In section 7 and 8 the concepts 
of partially sufficient reduction and partially ancillary conditioning are introduced. 
These definitions generalize other definitions of partial sufficiency and ancillarity (see 
Bhapkar). In section 9 we propose a sequence in which the transformations described 
in the previous sections must be applied. Through this sequence of transformations 
every probability structure is changed into one or more reference models. Section 10 
gives a number of examples. 

1. Preliminaries 

In this section we collect preliminaries for reference in subsequent sections. There­
fore the reading of the paper can start with section two and the relevant parts of this 
section can be read when they are referenced. 

1.1. Let A be a map from a set X into a set Y. We refer to X as the domain and to Y as 
the codomain of A. The powcrset of X, i.e. the collection of subsets of X, is written 
as P(X). The maps 

A ... : P(X) -+ p(lr) , 

A .... : P(Y) -+ P(X) , 

are defined as 

A .... (A) := pea) E Yla EA.}, 11 eX, 
(1.1.1) 

A ..... (B) := {b E XIA(b) E B}, BeY. 

Let F be a a-field of subsets of the codomain Y, i.e. (Y, F) is a measurable space. We 
refer to 
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(1.1.2) 00(..\) := p .... (ll) C xlB E .1'} 

as the a-field of subsets of the domain X generated by the map ..\ from X into the 
measurable space (Y,.1'). 

1.2. Let X be a set and let A C P(X) be a collection of subsets of X. The intersection 
of the a-fields of subsets of X containing A is said to be the a-field a(A) generated by A. 

1.3. Let (X,.1') be a measurable space. For A C X we write 

(1.3.1) .1'IA:= {lJn AlB E.1'} , 

and we refer to the a-field .1'IA on A as the trace of .1' 011 A. 

1.4. We now formulate a theorem for later usc. 

Theorem. Let..\: X ...... (X1,.1'd be a surjection from a set X into a measurable space 
(X},.1't), and let.1'o C a(.~) be a a-field. We have 

..\ ..... ..\_(A) = A for all A E 00(..\) • 

ii P_(A)IA E .1'o} C .1'1 is a a-field. 

Proof. Let A E 00(..\). There exists BE .1'1 such that A = ..\ ..... (E). Since the map ..\ is 
a surjection, it follows tha.t 

and we can then conclude that 

which proves i. 

It is easily verified that 

The collection 011 the right-hand side is a a-field, which completes the proof of the 
theorem. 

1.5. Let X be a set and let ,: be an iudex set such that to every i E I there correspond a 
measurable space (Xi,.1'i) and a map Ai : X ...... Xi. The a-field on X generated by the 
collection 
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of ma.ps on X is written as a(A) anu 

(1.5.1) 

see 1.2 and (1.1.2). 

1.6. Let (X1 ,.1"t) and (X2,F2) be two measurable spaces. A bijection A : Xl -+ X2 is 
said to be a measurable isomorphism between (X1,F1 ) and (X2,F2), if both A and its 
inverse A-I are measurable. If (Xl, .1'1) = (X2 ,F2 ), then we refer to A as a measurable 
automorphism on (X1,.rl)' 
Let A be a measurable isomorphism between (Xt,F1) and (X2 ,F2). Note that the 
bijection A-+ : .1'1 -+ .1'2 satisfies 

(1.6.1) A_(A n B) == A_(A) n A_(D) 

for all A, BE Fl. 

1.7. Let 6 be a measurable automorphism on the measurable space (X, F); see 1.6. The 
O'-field 

(1.7.1) J(6) := {A E Fj6_(A) == A} 

is called the O'-field of invariant sets uuder 6. 

1.8. Let (Xl,Fl) and (X2,F2) be two measurable spaces. A bijection A: .1'1 -+ .1'2 is said 
to be an isomorphism between the u-fields .1'1 and .1'2, if 

(1.8.1) A(A n B) == A(A) n A(B) 

for all A, B E Fl. If (Xl, .1'1) == (X2, .1'2), then we refer to A as an automorphism on 
the O'-field Fl. It follows from (1.6.1) that a measurable isomorphism between (Xl, .1'1) 
and (X2' .1'2) induces an isomorphism between the O'-fields .1'1 and .1'2. The converse, 
however, is not true in general. 

1.9. Let 1 be an automorphism 011 the O'-field .1' of a measurable space (X, F); see 1.8. The 
0'- field 

(1.9.1) Jb) := {A E Fh(A) == A} 

is called the O'-field of ir_va.l'iant sets under 1. 

1.10. Let (X,F) be a measurable space. The set of probability measures 011 .1' is denoted 
by F. For A E .1' consider the ma.p 
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(1.10.1) AA(p) := peA) E [0,1], p E 1 

from 1 into the unit interval. The O'-field of Borel subsets of the unit interval is written 
as 8[0,1]. The O'-field generated by the collection 

of maps from 1 into the measurable space ([0,1],8[0,1]) is denoted by F; see (1.5.1). 
We refer to (1, F) as the space of probability measures on the O'-field F. Let Pc 1 
be a collection of probability measures on F. We refer to (P, FIP) as a space of prob­
ability measures on Fi see (1.3.1). 

1.11. Let (X,F) be a measurable space and let Fa C F be a O'-field. Furthermore, let 
(P, FIP) be a space of probability measures on Fi see 1.10. The marginal probability 
measure on Fo corresponding to pEP is denoted by <pep). We refer to the map 

(1.11.1) <P: (P,FIP) - (Fo,Fo) 

as the marginalization map on P corresponding to Fo. Here (10 , Fo) is the space of 
probability measures in Fo; see 1.10. The O'-field O'(<p) generated by the map <P from 
Pinto (10 ,Fo) is the smallest O'-field on P such that the map 

from Pinto ([0,1],8[0, 1]) is measurable for all A E Fo. 
Hence, 

(1.11.2) O'(<p) c FIP . 

Let Fo C Fl C F be two O'-fields. The marginalization maps on P corresponding to 
Fo and Fl are written as <Po and <PI respectively. We have 

2. Probability structure 

Consider an experiment. The set of possible outcomes of the experiment is denoted by 
n. The O'-field of events 011 n is written as ~. The measurable space (n,~) is said to 
be the sample space of the experiment. Let (E, E) be the space of probability measures 
on ~; see 1.10. The probability distribution on ~ corresponding to the outcome of the 
experiment is not knowll. However, a subset PeE is given such that the probability 
distribution of the outcome of the experiment is in the set P. The space (P, ~IP) of 
probability measures on ~ is referred to as the probability model for the outcome of 
the experiment; see 1.10. 

Consider the O'-ring 
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(2.1) N:= {A E Elp(A) = 0 for all pEP} 

of the so-called negligible subsets of the sample space. All equalities and inclusions 
between sets in E have to be interpreted modulo N, i.e. for all A, BEE 

(2.2) A c B :¢> A \ BEN. 

The two measurable spaces 

sample space: (n, E), 

probability model: (P, EIP) 

are said to constitute the probability structure of the experiment. 

3. Sufficiency 

Let (0, E) be the sample space and (P, EIP) the probability model of a probabil­
ity structure. Consider a statistic 5 on the sample space, i.e. a measurable map from 
(0, E) into a measurable space (01 , Ed. The O'-field on 0 generated by 5 is denoted 
by 0'(5) C Ej see (1.1.2). The marginalization map from P into the space (0'(5), 0'(5» 
of probability measures on 0'(5) is written as !Pi see 1.11. The conditional probability 
measure on E given 5 = Wl E 01 corresponding to PEP is denoted by tfJ(Wl,p) and 
for Wl E 0 1 we write 

For fixed WI E 0 1 we consider the map 

where (E, E) is the space of probability measures on E. The q-field on P(Wl) generated 
by '!fI( Wt, .) is denoted by 0'( '!fI( Wt, .». 
The statistic 5 is said to be sufficient, if the conditional probability measure tfJ(Wl,p) 
is independent of p E P(Wt) for all WI E 0 1 , i.e. 

for all WI E 0 1 • The sufficient statist.ic 5 is said to be minimal sufficient, if for all 
sufficient statistics 5' on (0, E) we have 

(3.4) 0'(5') c q(5) =? 0'(5') = 0'(5) . 

In general there exists a unique minimal sufficient statistic 5. Let 5 be the unique 
minimal sufficient statistic. So for every sufficient statistic 5' we have 
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(3.5) 0'(8) c 0'(8') . 

We now tra.nsform the given proba.bilit.y structure and we refer to this transformation 
as the sufficient reduction of t.he probability structure under consideration. 
The sample space of the new probability structure is 

(3.6) (0,0'(8» . 

The probability model of the new probability structure can be written as 

where 

P1 := {<p(p) E a(S)lp E P} . 

The conditional probabili ty mcasur(~ ~(Wl,]') is independent of pEP and therefore 
the ma.p 

is a measurable isomorphism; see 1.6. 
If 

(3.9) 0'(8) = 1: , 

then the sufficient reduction of the probability structure is said to be trivial. 
For an illustration of the concepts in this section we refer to example 10.1. 

4. Conditioning 

Let (0,1:) be the sample space and (P, 1:IP) the probability model of a probabil­
ity structure. Consider a statistic C from the sample space into a measurable space 
(011 1:1)' The O'-field on ° generated by C is denoted by O'(C) C 1:; see (1.1.2). 
The marginalization map from P into the space (O'(C), 0'( C» of probability measures 
on O'(C) is written as <Pi see 1.11. The O'-field on P generated by <P is written as 
O'(<p) C 1:IP. The statistic C is said to be an ancillary statistic, if the probability 
distribution of C is independent of pEP, Le. 

(·1.1) 0'(<p)={0,P}. 

The ancillary statistic C is said to be a maximal ancillary statistic, if for all ancillary 
statistics C' on (0,1:) we have 

(4.2) O'(C) c O'(C') => a(C) = a(C') . 
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In general there does not exist a unique ma.ximal ancillary statistic. 

Let C be a maximal ancillary statistic from (n, E) into (nt, Et ). The conditional 
probability measure 011 E given C = Wt E nl corresponding to pEP is denoted by 
'I/J(wt,p) and for Wt E nl we write 

(4.3) P(WI}:= {p E PI¢(Wt,p) exists} . 

For fixed WI E nl we consider the map 

where (E, E) is the space of probability measures on E. 

The probability distribution of the maximal ancillary statistic C is independent of 
pEP and therefore we can consider the experiment as a mixture of experiments cor­
responding to the possible values of C in nt • So we transform, for every Wt E {h, the 
given probability structure in the following way. 
Fix Wt E nt • The sample space of the new probability structure is 

(4.5) (n, E) . 

The probability model of the new probability structure can be written as 

(4.6) (PIAI1, EIP(1) , 

where 

If 

(4.7) O'(C) = {0, n} , 

then the maximal ancillary statistic C is said to be trivial. For an illustration of the 
concepts in this section we refer to the examples 10.2 and 10.3. 

5. Inference mode], 

Let (n, E) be the sample space and let (P, EIP) be the probability model of a prob­
ability structure such that the sufficient reduction is trivial, Le. for every sufficient 
statistic 8 on (n, E) we have 

(5.1) 0'(8) = E , 
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and every ancillary statistic is trivial, i.e. for every ancillary statistic C on (O,~) we 
have 

(5.2) a( C) = {0,O} . 

Let Po be the probability distribution of the outcome of the experiment. It may be 
that one is interested only in a specific aspect of Po, i.e. a a-field R C ~IP is specified 
such that every inferential statement can be written as Po E A with A E R. We refer 
to 'R as the a-field of intercst. 

The map (4.4) is not a measurable isomorphism in general, and therefore the ini­
tial specification of tbe a-field 'R of interest must take place in a probability structure 
satisfying (5.2). 
The triple 

sample space: (n,~) , 
probability model: (1', EIP) , 
a-field of interest: 'R C EIP , 

is said to constitute an inference model for the experiment. 

6. Invariance 

Let (n, E) be the sample space, (1', EIP) the probability model and R C ~I'P the 
a-field of interest of an inference model. The set of automorphisms of the a-field E is 
denoted by r; see 1.8, and the sct of measurable automorphisms of (1', EIP) by .6; see 
1.6. Introduce the set 

(6.1) V:::; ((1',c) E r X .6lc(p)(r(A») = peA) for all p E P,A E E} . 

For (1', b) E V let J (1') C E be the o-field of invariant sets under 1', and let J (6) c ~IP 
be the o-field of invariant sets under h; see (1.9.1) and (1.7.1). The marginalization 
map on P corresponding to J(r) is written as 'P,,"{, i.e. for (1',6) E V 

(6.2) 'P-r : (1', ~IP) -> (Jh), J(1'» , 

where (Jh), J(1'» is the space of probability measures on J(r); see 1.11. The a-field 
on l' generated by i.p""{ is denoted by a( i.p""{) C EIP. 

Consider a sta.tistic I on the sample space. The a-field on n generated by I is de­
noted by a(1) C E; Sc€ (1.1.2). The marginalization map from Pinto the space 
(;(1),a(l» of probability measurcs on 0(1) is written as 'Pi see 1.11. The a-field on 
P generated by i.p is denoted by o( i.p) c EIP. The statistic I is said to be invariant, if 
there exists a set B C V such that for all (1',6) E B 

(6.3) a(1) C J(1') and 'R C 0(1,') . 
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Let I be an invariant statistic. We show that 

(6.4) 'R c q(<p) c q(<p..,) c J(6) c EIP 

for all C"Y, 6) E B. We prove (6.4). 
For C"Y, 6) E V, A E J( ')') and 0 ::; x ::; 1 consider 

W:= {p E 'PIP(A)::; x} E q(<p..,) . 

For pEW we get 

6(p)(A) = 6(p)(')'(A») = peA) ::; x , 

o-l(p)(A) = 0-1(p)C"Y-1(A» = peA) ::; x . 

We conclude that 

WE J(6), 

and therefore 

(6.5) q(!p..,) c J(6) for all b,8) E V . 

The statement (6.4) now follows from (6.3), (6.5) and (1.11.3). 

The invariant statistic I is said to be minimal invariant, if for all invariant statistics l' 
we have 

(6.6) q(1') C q(l) ::} q(1') = q(1) . 

We now discuss the existence of a unique invariant statistic. Introduce the set 

(6.7) Q := ((')',6) E VIR c q(!p..,)} • 

and the q-field 

(6.8) Em:= n JC"Y) c I: . 
('Y.6)EQ 

Let 1m be a statistic such that 

(6.9) q(Im) = Em , 

and let <Pm be the marginalization ma.p from P into the space (Em' Em) of probability 
measures on Em. The q-field on 'P generated by !Pm is denoted by q( !Pm) C EIP. We 
have 
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(6.10) a(<f?m) C n a(<f?'Y)' 
('Y.6)eQ 

We now conclude the following. 
If 1m is invariant, i.e. 

then 1m is the unique minimal invariant statistic. 

vVe transform the given inference model and refer to this transformation as the in­
variant reduction of the inference model under consideration. 
Let I be a minimal invariant statistic on the sample space. The sample space of the 
new inference model is 

(6.12) (n,a(I». 

The probability model of the new inference model can be written as 

where 

For A E "R. c a( <f?) we have by use of theorem 104 

and 

"R.I := {<f?-+(.4)IA E 'R} is a a-field on PI . 

Tberefore the a-field 'Rl C a(J)IP1 is the a-field of interest in the new inference model. 
If 

(6.14) a(I) = E , 

then the invariant reduction of the inference model is said to be trivial. 
For an illustration of the concepts in this section we refer to the examples lOA and 
10.5. 
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7. Partial sufficiency 

Let (0, E) be the sample space, (P, ~IP) the probability model and 'R C EIP the 
O'-field of interest of an inference model. Consider a statistic R from (0, E) into a 
measurable space (Oil E1 ). The O'-field on 0 generated by R is denoted by O'(R) C Ej 
see (1.1.2). The marginalization map from P into the space (O'(R), O'(R) of probabil­
ity measures on O'(R) is written as !Pi see 1.11. The O'-field on P generated by !P is 
written as O'(!p) c EIP. The conditional probability measure on E given R = WI E 0 1 

corresponding to pEP is denoted by tfJ(Wl,JJ) and for W1 E 0 1 we write 

For fixed WI E 0 1 we consider the map 

where (E, E) is the space of probability measures on E. The O'-field on P(Wl) generated 
by tfJ( WI, .) is denoted by O'(.,pc WI, .». 
The statistic R is said to be partially sufficient if the interesting aspect of pEP 
is a function of the marginal probability distribution !pep), i.e. 

(7.3) 'RCO'(!p) , 

and the conditional probability distribution tfJ(wt,p) is independent of the marginal 
probability distribution !P(l» for all WI E 0 1 , i.e. 

for all Wl E 0 1 , 

The partially sufficient statistic R is said to be minimal partially sufficient, if for all 
partially sufficient statistics R' on (0, E) we have 

(7.5) O'(R') C O'(R) =* O'(R') = O'(R) . 

We conjecture that there exists a unique minimal partially sufficient statistic in gen­
eral. 
Let R be a minimal partially sufficient statistic. We now transform the given inference 
model and refer to this transformation as the partially sufficient reduction of the in­
ference model under consideration. 
The sample space of the new inference model is 

(7.0) (O,O'(R» . 

The probability model of the new inference model can be written as 
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wbere 

For A Ene 0'( <p) we have by use of theorem 1.4 

and 

Therefore the O'·field 'R' l C 0'(R)IP1 is the O'·field of interest in the new inference model. 
If 

(7.8) O'(R) = 1: , 

then the partially sufficient reduction of the inference model is said to be trivial. For 
an illustration of the concepts in this section we refer to the examples 10.6 and 10.7. 

8. Partial conditioning 

Let (n,1:) be the sample space, (1', EIP) the probability model and n c 1:11' the 
O'·field of interest of an inference model. Consider a statistic A from (n,1:) into a 
measurable space (n1 , Ed. The O'-field on n generated by A is denoted by O'(A) C 1:j 
see (1.1.2). The marginalization map from Pinto the space (o{A),O'(A» of probabil­
ity measures on 0'(.4) is written as <Pi see 1.11. The O'-field on l' generated by <p is 
written as 0'( <p) C 1:11'. The conditional probability measure on 1: given A = W1 E n 1 

corresponding to pEP is denoted by ¢(wt.p) and for WI E nl we write 

(8.1) P(WI):= {p E PltP(wl,p) exists} . 

For fixed WI E n1 we consider the map 

where (E, 1:) is the space of probability measures on E. The O'-field on P(wt) generated 
by tP( WI, .) is denoted by 0'( tP( Wt, .)). 

The statistic A is said to be a· partially ancillary statistic, if the marginal probability 
distribution <p(p) is independent of the interesting aspect of pEP, i.e. 
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and the interesting aspect of l' E P is a function of the conditional probability distri­
bution ,¢(WI,P) for all WI E !h, i.e. 

for all W1 E !h. 
The partially ancilla,ry statistic A is said to be a maximal partially ancillary statistic, 
if for all partially ancillary statistics A' on (n, E) we have 

(8.5) O'(A) C O'(A') => O'(A) = O'(A') . 

In general there does not exist a unique maximal partially ancillary statistic. 

Let A be a maximal partially ancillary statistic from (n, E) into (nil E1)' For ev­
ery ""1 E nl we transform, the inference model in the following way. 
Fix WI E n1 • The sample space of the new inference model is 

(8.6) (n, E) . 

The probability model of the new inference model can be written as 

where 

For A E 'RIP( Wl) c 0'( '¢( W1, .» we have by use of theorem 1.4 

and 

is a O'-field on P"'l. Therefore the O'-fieJd 'R~1 C EIP"'. is the O'-field of interest in the 
new inference model. 
If 

(8.8) O'(A) = {0,n} , 

then the partially ancillary statistic A is said to be trivial. 
For an illustration of the concepts in this section we refer to the examples 10.8 and 
10.9. 
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9. Reference model 

In this section we propose a sequence in which the transformations described in the 
previous sections must be performed. We refer to this scheme of data reduction as the 
SCIRA data reduction, where 

S: sufficiency, 
C: conditioning, 
I: invariance, 
R: partial sufficiency, 
A: partial conditioning. 

Let (n, E) be the sample space and (P, EIP) the probability model of a probability 
structure. By use of the unique minimal sufficient statistic S we transform the proba­
biHty structure [en, E), (P, EIP)] as described in section 3. 

Let (ns, Es) be the sample space and (Ps, EsIPs) the probability model of the new 
probability structure. Hence, for every sufficient statistic S on (ns, Es) we have 

(9.1) O"(S) = Es ; 

see (3.9). By use of a maximal ancilla,ry statistic C we transform the probability struc­
ture [ens, Es), (Ps, EsIPs)] as described in section 4. 

Let (no, Ec) be the sample space and (Po, EoIPo) the probability model of the new 
probability structure. Hence, for every ancillary statistic C on (nc, Ec) ~e have 

(9.2) 0"( C) = {0, nc} ; 

see (4. 7) and for every sufficient statistic S on (nc, Ec) we have 

(0.3) O"(S) = Ec ; 

see (5.2) and (5.1). We now specify the O"-field n C EclPc of interest. The triple 
[(nc, Ec), (Po, EcIPc), n] constitutes the inference model under consideration; see 
section 5. By use of a minimal invariant statistic I on (nc,Ec) we transform the 
inference model under consideration as described in section 6. 

Let (nI,EI) be the sample space, (PI,EIIPI) the probabHity model and ni C EIIPI 
the O"-field of interest cf the new inference model. As illustrated by example lOA, 
there may exist a nontrivial invariant statistic on (nI, EI). In that case the invariant 
reduction of the inference model [(nI, EJ), (PI, EIIPI), nI] as described in section 6 
must be applied. Now suppose that every invariant statistic on (nI,EI) is trivial. By 
use of a minimal partially sufficient statistic R on (nI, EI) we transform the inference 
model [(nI, EI), (PI, EIIPI), nIl as described in section 7. 



bRIPR the O'-field of interest of the new inference model. Suppose that every invariant 
or partially sufficient statistic on (fiR, ER) is trivial. If this is not true, then we start 
with the invariant reduction again. By use of a maximal partially ancillary statistic A 
we tranform the inference model [(OR, ER), (PR, ERIPR), RR] as described in section 8. 

Let (OA, bA) be the sample space, (PA, bAIPA) the probability model and RA C 
EAIPA the O'-field of interest of the new inference model. If every invariant or partially 
sufficient or partially ancillary statistic on (OA, :EA) is trivial, then the inference model 
[COA, bA), (PA, bAIPA), RA] is said to be a reference model. If the new inference model 
is not a reference model, then we start with the invariant reduction again. Hence, the 
SCIRA data reduction ultimately yields a reference model. 

The SClRA data reduction scheme is depicted in the figure below. Double arrrows 
should be followed only if the corresponding reduction is nontrivial. 

probability structure l it 'it 'it 
---. s-- C 1-- R-- A ---. reference model 

£ , , 

inference model 

The SCIRA data reduction is illustrated in the examples 10.10 and 10.11. 

The reduction and conditioning transformations described in the previous sections 
seem to be self-evident. However, the specific sequence described above may be open 
to debate. The authors considered alternative sequences but all of these seem to be 
inadequate in the sense that for every sequence there is a crucial example where it 
leads to unsatisfactory results. 
So, in statistical inference, every probability structure should be transformed accord­
ing to SClRA and every statistical inference problem is equivalent to the construction 
of inference rules in a specific reference model. This means that the theory presented 
here may be used to separate statistical inference from the art of decision making. 
This paper does not solve any particular statistical inference problem. However, in a 
forthcoming paper the authors will describe a general method to construct verifiable 
and precise inference rules. Again, like the SCIRA data reduction, this method is 
an elaboration and extension of Fisher's work, especially of his idea of sampling the 
reference set (Fisher (1961)). 

10. Examples 

hi this section we give some examples to illustrate the concepts given in sections 2-9. 
In some of these examples both the set 0 of the sample space (0, E) and the set P of 
the probability model (P, blP) are finite. First we present the notation that we use in 
such examples. 
The probability structure is represented by a matrix M as shown below. 
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P A 
! B 

C M 

1 2 3 
n -+ 

Here the possible outcomes arc denoted by 1,2,3, ... and the probability measures on 
E by A, B, C, .... The a-field of events is equal to the powerset pen). By use of the 
matrix M we can compute probabilities as follows. The probability of the event {j}, 
corresponding to a probability measure pEP on E, is equal to 

(10.1) p({j}) = mij/ (2: mij) , 
jEO 

where i is the number of the row that corresponds to the measure p. 

Example 10.1. 
The probability structure is given by 

A 0 0 5 
B 2 2 1 
elI 3 

123 

Consider the statistic S defined by S(I) = S(2) = 1, and S(3) = 3 (nt = {1,3}). We 
have P(l) = {B,C}, and P(3) = P; see (3.1). The statistic S is sufficient, since 

and 
0'(11'(1, .» = {0, pel)} , 

0'(11'(3,'»= {0,P(3)}. 

After sufficient reduction the probability structure is represented by 

Example 10.2. 

.. 4 0 5 
B 4 1 
C 2 3 

1,2 3 

A well-known exa,mple in the literat.ure concerns the case where there are two measur­
ing instruments available with different measurement standard deviations. A fair coin 
is tossed to decide which to use. The statistic C defined by C = i if the i-th instru­
ment is used (i = 1,2) is an ancillary statistic. Conditioning leads to two probability 
structures. See Dawid (1982) for morc details. 

Example 10.3. 
The probability structure is given by 

IG 



A 1 2 3 4 
B 0 3 4 3 

123 4 

In this example there exist two maximal ancillary statistics. Consider the statistic 
C defined by C(1) = C(2) = 1,C(3) = C(4) = 2 (fit = {1,2}). The statistic C is 
ancillary since 

0'(<;') = {0, P} , 

and is maximal. By conditioning on the value of C we obtain two probability structures. 
They are represented by 

G=l 
A 1 2 0 0 
B 0 3 0 0 

1 234 

C=2 
A 0 0 3 4 
BOO,13 

1 2 3 4 

The ancillary statistic C' defined by C'(l) = C'(3) = 1,C'(2) = C'(4) = 2 is also 
maximal. 

In the next examples we have to deal with a O'-field of interest 1l. In the examples 
with a finite set P and a finite set 0, we denote the O'-field of interest as follows. The 
probability measures are written as Al,A2, ... ,An .... ,BI,B2, ... ,BnD , .... This notation 
means that the O'-field of interest 1l is equal to 

(10.2) 1l = 0'( {AI' ... , An .... }, {BlI ... , Bns}, ... ). 

Example 10.4. 
The inference model is given by 

At 1 0 2 1 
A2 0 1 2 1 
A3 1 1 1 1 
Bl 1 1 2 0 

1 2 3 4 

The only nontrivial element of the set V of (6.1) is the pair (-y, 6), where 

1'({1})= {2},1'({2})= {1},1'({3})= {3},1'({4})= {4}, 
and 

Using (6.7) (Choose Q = V), and (6.8)-{6.11), we conclude that there exists a unique 
minimal invariant statistic 1m with O'(lm) = 0'( {I, 2}, {3}, {4}). After invariant reduc­
tion the following inference model results 
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A t ,2 1 2 1 
Aa 2 1 1 
B1 2 2 0 

1,2 3 4 

In this inference model there again exists a nontrivial invariant statistic. Invariant 
reduction leads to the inference model 

Remark. 

3 1 
4 0 

1,2,3 4 

Darnard (1963) demands that the group of transformations on P operates transitively 
on {All A2,Aa}. So, according to this definition invariant reduction is not allowed in 
this case. 

Example 10.5. 
Let X and S2 be independent random variables with X '" N (Il, 0'2) and S2/0'2 '" x2 • 

So, n = JR X JR+ and every probability measure in P can be represented by (1l,0'2). 
The interesting aspect of pEP is 0". The groups of translations on the first component 
of (Il, 0'2) and the first component of (X, S2) respectively, lead to the unique minimal 
invariant statistic defined by leX,S') = S2. In the transformed inference model the 
set n of the sample space can be represented by {s21s2 E JR+} and the set PI of the 
probability model by {0'210'2 E JR+}. 

Example 10.0. 
The inference model is given by 

At 0 4 2 2 2 
A2 2 2 2 2 2 
Aa 1 1 1 3 4 
JJI 1 1 4 1 3 

1 2 3 4 5 

The statistic R is defined by R(J) = R(2) = 1, R(3) = 3, R( 4) = 4, R(5) = 5 (n1 = 
{I, 3, 4, 5}). We have 

and 
O'(cp) = 0'({A1 ,A2 }, {Aa}, {Btl), 

0'( ,p(1,')) = 0'( {Ad, {A2' Aa, Bd) . 

Conditions (7.3) and (7.4) are satisfied, so R is a partially sufficient statistic. R is 
minimal and unique. After partially sufficient reduction the following inference model 
results ' 

Al.2 4 2 2 2 
Aa 2 1 3 4 
8 1 2 4 1 3 

1,2 3 4 5 
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Example 10.7. 
Let Xt,X2 and Y be independent random variables such that X 1 ,X2 tV N(,t,cri), and 
Y tV N(O,cr~), with", E JR,cri E JR+ and cr~ < 1. The minimal sufficient statistic is 
(X(1),X(2), Y), where X(l) and X~2) are order statistics. The set P of the probability 
model is represented by {("" cri, cr2 )1", E JR, cri E JR+, cr~ < I}. The interesting aspect 
of pEP is ",. The statistic R defined by R(X(I),X(2)' Y) = (X(1),X(2» is the unique 
minimal partially sufficient statistic. In the transformed inference model the set PI is 
represented by {(I', crnl", E JR, cri E JR+}. 

Remark. 
The statistic (X(l), X(2» is not weakly p-sufficient in the sense defined by Bhapkar 
(1991), and it is not p-sufficient in the complete sense, because the cr-field of interest 
is a proper subset of cr(tp); see (7.3) and Definition 3.2. of Bhapkar (1991). 

Example 10.S. 
The inference model is given by the transformed model of example 10.6. 

Al 4 2 2 2 
A2 2 1 3 4 
BI 2 4 1 3 

1 234 

The statistic A is defined by A(1) = A(2) = I,A(3) = A(4) = 2 (n1 = {1,2}). We 
have 

and 

cr(tJ1(I,.» = cr( {At, A2}, {Bd) , 

0'(tJ1(2,·» = 0'({Al},{A2},{Bd) , 

cr(<p) = cr({At,Bt},{A2 }). 

Conditions (8.3) and (8.4) are satisfied, so A is a partially ancillary statistic. It is 
also maximal and unique. After conditioning on the value of A the following inference 
models result 

"4 1 A=2 
Al.2 2 1 Al 14 14 
BI 1 2 A2 12 16 

1 2 Bl 7 21 
3 4 

where columns with only zeroes are deleted; see (2.1) and (2.2). 

Example 10.9. 
Consider the probability structure defined in example 10.5. However, the interesting 
aspect of pEP is ",. The statistic A defined by A(X, S2) = S2 is the unique maximal 
partially ancillary statistic. For every 82 we transform the inference model as follows. 
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The set n of the sample space can be represented by {x/x E lR} and the set p.2 of the 
probability model by {(JL,a 2 )/JL E lR,a2 E lR+}. 

Remark 1. 
The statistic A is not weakly p-ancillary in the sense defined by Bhapkar (1989), and it 
is not p-ancillary in a complete sense, because the a-field of interest is a proper subset 
of 0(,,(82,.)); see (8.4) and Definition (2.3) of Bhapkar (1989). 

Remark 2. 
The statistics X and S2 are independent. So, the conditional distribution of X, given 
S2 = 82 , is independent of 82 • 011 the other hand, the distribution of X depends on 
0 2 • Fisher (1961) indicated a met bod to construct inference rules in this and similar 
cases. 

Example 10.10. 
In this example all the transformations of the SCIRA data reduction occur once. The 
initial probability structure is given by 

A 0 4 2 2 1 1 2 4 
B 2 2 2 2 1 1 2 4 
C 1 1 1 3 2 2 2 4 
D 1 1 4 1 1 2 2 4 
E 1 1 4 1 2 1 2 4 

1 2 3 4 5 6 7 8 

Sufficient reduction leads to the probability structure 

A 0 4 2 2 1 1 6 
B 2 2 2 2 1 1 6 
C 1 1 1 3 2 2 6 
D ] 1 4 1 1 2 6 
E 1 1 4 1 2 1 6 

1 2 3 4 5 6 7,8 

There exists a unique maximal ancillary statistic. Conditioning on its value leads to 
the two following probability structures 

1. A,B,C,D,E I 1 
7,8 

2. A 0 4 2 2 1 1 
B 2 2 2 2 1 1 
C 1 1 1 3 2 2 
D 1 1 4 1 1 2 
E 1 1 4 1 2 1 

1 2 3 4 5 6 

In probability structure 1 only a trivial a-field of interest can be specified; see section 
5. 

We specify the 'a-field of interest 'R in probability structure 2 as follows 
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n = 0"( {A,B,C}, {D, E}) . 

Define accordingly A1 := A,.42 := B,Aa := C,Bl := D and B2 := E. There exists 
a unique minimal invariant sta.tistic defined by 1(5) = 1(6) = 5 and l(i) = i for 
i = 1,2,3,4. The transformed inference model is given by the model in example 
10.6, where Bl is replaced by 1/t,2 and the possible outcomes are adjusted accordingly. 
Now the invariant statistics are trivial. The partially sufficient reduction leads to a 
transformed inference model given in example 10.8, where Al is replaced by A1,2, A2 
by Aa and B1 by B1,2' In this model the invariant statistics and the partially sufficient 
statistics are trivial. There exists a unique maximal partially ancillary statistic; see 
also example 10.8. So SCIRA data reduction leads to three reference models 

A1,2,3 1 2 Al,2 14 14 A1,2,3Bl,2 1 

B1.2 2 1 ...13 12 16 7,8 
1,2 3 B1,2 7 21 

4 5,6 

Example 10.11. 
The inference model is given by 

Al 1 3 1 5 7 7 
A2 6 8 6 0 2 2 
Bl 4 3 2 1 0 14 

1 2 3 4 5 6 

This is an example where one bas to apply a partially ancillary reduction twice. The 
invariant and partially sufficient statistics are trivial. The statistic A defined by A( 1) = 
A(2) = A(3) = A(4) = 1,A(.:» = A(6) = 2 (01 = {1,2}) is the unique maximal 
partially ancillary statistic. AIter conditioning on the value of A two inference models 
result 

A=2 A=1 
1. A1,2 1 1 2. Al 1 3 1 5 

Bl 0 2 A2 3 4 3 0 
5 6 Bl 4 3 2 1 

1 2 3 4 

Model 1 is a reference model, since the invariant, partially sufficient and partially 
ancillary statistics are trivial. In model 2 the invariant and partially sufficient statistics 
are trivial; however, there exists a nontrivial partially ancillary statistic A' defined by 
A'(l) = A'(2) = I,A'(3) = A'(4) = 2. After conditioning on the value of A' two 
reference models result 

A' = 1 A' = 2 
Al 7 21 Al 1 5 
A2 12 16 A2 6 0 
Bl 16 12 Bl 4 2 

1 2 3 4 
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