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Abstract

In 1988, Chvátal and Sbihi [4] proved a decomposition theorem for claw-free perfect graphs. They
showed that claw-free perfect graphs either have a clique-cutset or come from two basic classes of
graphs called elementary and peculiar graphs. In 1999, Maffray and Reed [6] successfully described
how elementary graphs can be built using line-graphs of bipartite graphs using local augmentation.
However gluing two claw-free perfect graphs on a clique does not necessarily produce claw-free graphs.
In this paper we give a complete structural description of claw-free perfect graphs. We also give a
construction for all perfect circular interval graphs.

1 Introduction

The class of claw-free perfect graphs was studied extensively in the past. The first structural result
for this class was obtained by Chvátal and Sbihi in [4], where they proved that every claw-free Berge
graph can be decomposed via clique-cutsets into two types of graphs: “elementary” and “peculiar”. The
structure of the peculiar graphs was determined precisely by their definition, but that was not the case for
elementary graphs. Later Maffray and Reed [6] proved that an elementary graph is an augmentation of the
line-graph of a bipartite multigraph, thereby giving a precise description of all elementary graphs. Their
result, together with the result of Chvátal and Sbihi, gave an alternative proof of Berge’s Strong Perfect
Graph Conjecture for claw-free Berge graphs (the first proof was due to Parthasarathy and Ravindra
[7]). However, this still does not describe the class of claw-free perfect graphs completely, as gluing two
claw-free Berge graphs together via a clique-cutset may introduce a claw.

The purpose of this paper is to give a complete description of the structure of claw-free perfect graphs.
Chudnovsky and Seymour proved a structure theorem for general claw-free graphs [2] and quasi-line
graphs (which are a subclass of claw-free graphs) in [3]. Later we will show that every perfect claw-free
graph is a quasi-line graph, however not all quasi-line graphs are perfect. The result of this paper refines
the characterization of quasi-line graphs [3] to obtain a precise description of perfect quasi-line graphs.
But before going further, we need to present some definitions.

Let G = (V,E) be a graph. A clique in G is a set X ⊆ V such that every two members of X are
adjacent. A set X ⊆ V is a stable set in G if every two members of X are antiadjacent. For X ⊆ V , we
define the subgraph G|X induced on X as the subgraph with vertex set X and edge set all edges of G
with both ends in X. The chromatic number of G, denoted by χ(G), is defined as the smallest number
of stable sets covering the vertices of G. The graph G is said to be perfect if for every induced subgraph
G′ of G, the chromatic number of G′ is equal to the maximal clique size of G′.

In this paper we study perfect graphs, which by the strong perfect graph theorem [1], is equivalent to
studying Berge graphs (the definition of Berge graphs, and more generally Berge trigraphs will be given
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later). Since it is easier in many cases to prove that a graph is Berge than to prove that the graph is
perfect, in the rest of the paper we will only deal with Berge graphs. In fact, we will work with slightly
more general objects than graphs called trigraphs. A trigraph G consists of a finite set V (G) of vertices,
and a map θG : V (G)2 → {−1, 0, 1}, satisfying:

• for all v ∈ V (G), θG(v, v) = 0.

• for all distinct u, v ∈ V (G), θG(u, v) = θG(v, u)

• for all distinct u, v, w ∈ V (G), at most one of θG(u, v), θG(u,w) equals 0.

For distinct u, v ∈ V (G), we say that u, v are strongly adjacent if θG(u, v) = 1, strongly antiadjacent if
θG(u, v) = −1, and semiadjacent if θG(u, v) = 0. We say that u, v are adjacent if they are either strongly
adjacent or semiadjacent, and antiadjacent if they are either strongly antiadjacent or semiadjacent. Also,
we say that u is adjacent to v if u, v are adjacent, and that u is antiadjacent to v if u, v are antiadjacent.
For a vertex a and a set B ⊆ V (G)\{a}, we say that a is complete (resp. anticomplete) to B if a is
adjacent (resp. antiadjacent) to every vertex in B. For two disjoint A,B ⊂ V (G), we say that A is
complete (resp. anticomplete) to B if every vertex in A is complete (resp. anticomplete) to B. Similarly,
we say that a is strongly complete to B if a is strongly adjacent to every member of B, and so on.

Let G be a trigraph. A clique is a set X ⊆ V (G) such that every two members of X are adjacent and
X is a strong clique if every two members of X are strongly adjacent. A set X ⊆ V (G) is a stable set
if every two members of X are antiadjacent and X is a strong stable set if every two members of X are
strongly antiadjacent. A triangle is a clique of size 3, and a triad is a stable set of size 3.

For a trigraph G and X ⊆ V (G), we define the trigraph G|X induced on X as follows. Its vertex set
is X, and its adjacency function is the restriction of θG to X2. We say that G contains H, and H is a
subtrigraph of G if there exists X ⊆ V (G) such that H is isomorphic to G|X.

A claw is a trigraph H such that V (H) = {x, a, b, c}, x is complete to {a, b, c} and {a, b, c} is a triad.
A trigraph G is said to be claw-free if G does not contains a claw.

A path in G is a subtrigraph P with n vertices for n ≥ 1, whose vertex set can be ordered as
{p1, . . . , pn} such that pi is adjacent to pi+1 for 1 ≤ i < n and pi is antiadjacent to pj if |i− j| > 1. We
generally denote P with the following sequence p1 − p2 − . . .− pn and say that the path P is from p1 to
pn. For a path P = p1 − . . .− pn and i, j ∈ {1, . . . , n} with i < j, we denote by pi − P − pj the subpath
P ′ of P defined by P ′ = pi − pi+1 − . . .− pj .

A cycle (resp. anticycle) in G is a subtrigraph C with n vertices for some n ≥ 3, whose vertex set
can be ordered as {c1, . . . , cn} such that ci is adjacent (resp. antiadjacent) to ci+1 for 1 ≤ i < n, and cn
is adjacent (resp. antiadjacent) to c1. We say that a cycle (resp. anticycle) C is a hole (resp. antihole),
if n > 3 and if for all 1 ≤ i, j ≤ n with i+ 2 ≤ j and (i, j) 6= (1, n), ci is antiadjacent (resp. adjacent) to
cj . We will generally denote C with the following sequence c1− c2− . . .− cn− c1. The length of C is the
number of vertices of C. Vertices ci and cj are said to be consecutive if i+ 1 = j or {i, j} = {1, n}.

Now, we can finally give the definition of a Berge trigraph. A trigraph G is said to be Berge if G does
not contain any odd holes nor any odd antiholes.

A trigraph G is cobipartite if there exist nonempty subsets X,Y ⊆ V (G) such that X and Y are
strong cliques and X ∪ Y = V (G).

For X,A,B,C ⊆ V (G), we say that {X|A,B,C} is a claw if there exist x ∈ X, a ∈ A, b ∈ B and c ∈ C
such that G|{x, a, b, c} is a claw and x is complete to {a, b, c}. Similarly, we say that X1−X2−. . .−Xn−X1

is a hole (resp. antihole) if there exist xi ∈ Xi such that x1−x2− . . .−xn−x1 is a hole (resp. antihole).
To simplify notation, we will generally forget the bracket delimiting a singleton, i.e. instead of writing
{{x}|A, {y}, B} we will simply denote it by {x|A, y,B}.

Let A,B be disjoint subsets of V (G). The set A is called a homogeneous set if A is a strong clique, and
every vertex in V (G)\A is either strongly complete or strongly anticomplete to A. The pair (A,B) is called
a homogeneous pair in G if A,B are nonempty strong cliques, and for every vertex v ∈ V (G)\(A ∪ B),
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v is either strongly complete to A or strongly anticomplete to A, and either strongly complete to B or
strongly anticomplete to B.

Let V1, V2 be a partition of V (G) such that V1 ∪ V2 = V (G), V1 ∩ V2 = ∅, and for i = 1, 2 there is a
subset Ai ⊆ Vi such that:

• Ai and Vi\Ai are not empty for i = 1, 2,

• A1 ∪A2 is a strong clique,

• V1\A1 is strongly anticomplete to V2, and V1 is strongly anticomplete to V2\A2.

The partition (V1, V2) is called a 1-join and we say that G admits a 1-join if such a partition exists.
Let A1, A2, A3, B1, B2, B3 be disjoint subsets of V (G). The 6-tuple (A1, A2, A3|B1, B2, B3) is called

a hex-join if A1, A2, A3, B1, B2, B3 are strong cliques and

• A1 is strongly complete to B1 ∪B2, and strongly anticomplete to B3, and

• A2 is strongly complete to B2 ∪B3, and strongly anticomplete to B1, and

• A3 is strongly complete to B1 ∪B3, and strongly anticomplete to B2, and

•
⋃

i(Ai ∪Bi) = V (G).

Let G be a trigraph. For v ∈ V (G), we define the neighborhood of v, denoted N(v), by N(v) = {x :
x is adjacent to v}. The trigraph G is said to be a quasi-line trigraph if for every v ∈ V (G), N(v) is the
union of two strong cliques.

Here is an easy fact:

1.1. Every claw-free Berge trigraph is a quasi-line trigraph.

Proof. Let G be a claw-free Berge trigraph and let v ∈ V (G). Since G is claw-free, we deduce that G|N(v)
does not contain a triad. Since G is Berge, we deduce that G|N(v) does not contain a odd antihole. Thus
G|N(v) is cobipartite and it follows that N(v) is the union of two strong cliques. This proves 1.1.

A trigraph H is a thickening of a trigraph G if for every v ∈ V (G) there is a nonempty subset
Xv ⊆ V (H), all pairwise disjoint and with union V (H), satisfying the following:

• for each v ∈ V (G), Xv is a strong clique of H,

• if u, v ∈ V (G) are strongly adjacent in G then Xu is strongly complete to Xv in H,

• if u, v ∈ V (G) are strongly antiadjacent in G then Xu is strongly anticomplete to Xv in H,

• if u, v ∈ V (G) are semiadjacent in G then Xu is neither strongly complete nor strongly anticomplete
to Xv in H.

A basic result about thickenings is the following.

1.2. Let G be a trigraph and H be a thickening of G. If F is a thickening of H then F is a thickening
of G.

Proof. For v ∈ V (H), let XF
v be the strong clique in F as in the definition of a thickening. For v ∈ V (G),

let XH
v be the strong clique in H as in the definition of a thickening. For v ∈ V (G), let Yv ⊆ V (F ) be

defined as Yv =
⋃

y∈XH
v
XF

y . Clearly, the sets Yv are all nonempty, pairwise disjoint and their union is

V (F ). Since XH
v is a strong clique, we deduce that Yv is a strong clique for all v ∈ V (G). If u, v ∈ V (G)

are strongly adjacent (resp. antiadjacent) in G, then XH
u is strongly complete (resp. anticomplete) to XH

v

in H and thus Yu is strongly complete (resp. anticomplete) to Yv in F . If u, v ∈ V (G) are semiadjacent in
G, then XH

u is neither strongly complete nor strongly anticomplete to XH
v in H and hence Yu is neither

strongly complete nor strongly anticomplete to Yv in F . This proves 1.2.
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Next we present some definitions related to quasi-line graphs [3].
A stripe is a pair (G,Z) of a trigraph G and a subset Z of V (G) such that |Z| ≤ 2, Z is a strong

stable set, N(z) is a strong clique for all z ∈ Z, no vertex is semiadjacent to a vertex in Z, and no vertex
is adjacent to two vertices of Z.

G is said to be a linear interval trigraph if its vertex set can be numbered {v1, . . . , vn} in such a
way that for 1 ≤ i < j < k ≤ n, if vi, vk are adjacent then vj is strongly adjacent to both vi, vk.
Given such a trigraph G and numbering v1, . . . , vn with n ≥ 2, we call (G, {v1, vn}) a linear interval
stripe if G is connected, no vertex is semiadjacent to v1 or to vn, there is no vertex adjacent to both
v1, vn, and v1, vn are strongly antiadjacent. By analogy with intervals, we will use the following notation,
[vi, vj ] = {vk}i≤k≤j , (vi, vj) = {vk}i<k<j , [vi, vj) = {vk}i≤k<j and (vi, vj ] = {vk}i<k≤j . Moreover we will
write xi < xj if i < j.

Let Σ be a circle in the sphere, and let F1, . . . , Fk ⊆ Σ be homeomorphic to the interval [0, 1], such
that no two of F1, . . . , Fk share an end-point. Now let V ⊆ Σ be finite, and let G be a trigraph with
vertex set V in which, for distinct u, v ∈ V ,

• if u, v ∈ Fi for some i then u, v are adjacent, and if also at least one of u, v belongs to the interior
of Fi then u, v are strongly adjacent,

• if there is no i such that u, v ∈ Fi then u, v are strongly antiadjacent.

Such a trigraph G is called a circular interval trigraph. We will denote by F ∗i the interior of Fi.
Let G have four vertices say w, x, y, z, such that w is strongly adjacent to x, y is strongly adjacent

to z, x is semiadjacent to y, and all other pairs are strongly antiadjacent. Then the pair (G, {w, z}) is a
spring and the pair (G\w, {z}) is a truncated spring.

Let G have three vertices say v, z1, z2 such that v is strongly adjacent to z1 and z2, and z1, z2 are
strongly antiadjacent. Then the pair (G, {z1, z2}) is a spot, the pair (G, {z1}) is a one-ended spot and the
pair (G\z2, {z1}) is a truncated spot.

Let G be a circular interval trigraph, and let Σ, F1, . . . , Fk be as in the corresponding definition. Let
z ∈ V (G) belong to at most one of F1, . . . , Fk; and if z ∈ Fi say, let no vertex be an endpoint of Fi. We
call the pair (G, {z}) a bubble.

If H is a thickening of G, where Xv (v ∈ V (G)) are the corresponding subsets, and Z ⊆ V (G) and
|Xv| = 1 for each v ∈ Z, let Z ′ be the union of all Xv (v ∈ Z); we say that (H,Z ′) is a thickening of
(G,Z).

The following construction is slightly different from how linear interval joins have been defined for
general quasi-line graphs [3], but the resulting graphs are exactly the same. We may also assume that if
(G,Z) is a stripe then V (G) 6= Z. Any trigraph G that can be constructed in the following manner is
called a linear interval join.

• Let H = (V,E) be a graph, possibly with multiple edges and loops.

• Let η : (E × V ) ∪ E → 2V (G).

• For every edge e = x1x2 ∈ E (where x1 = x2 if e is a loop)

– Let (Ge, Ye) be either

∗ a spot or a thickening of a linear interval stripe if e is not a loop, or

∗ the thickening of a bubble if e is a loop.

Moreover let φe be a bijection between Ye and the endpoints of e.

– Let η(e, xj) = N(φe(xj)) for j = 1, 2 and η(e, v) = ∅ if v is not an endpoint of e.

– Let η(e) = V (Ge)\Ye.
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• Construct G with V (G) =
⋃

e∈E η(e), G|η(e) = Ge\Ye for all e ∈ E and such that η(f, x) is strongly
complete to η(g, x) for all f, g ∈ E and x ∈ V (in particular if x is an endpoint of both f and g,
then the sets η(f, x) and η(g, y) are nonempty and strongly complete to each other).

Moreover, we call the graph H used in the construction of a linear interval join G the skeleton of G,
and we say that e has been replaced by (Ge, Ye).

The following theorem is the main characterization of quasi-line graphs [3]. It is the starting point of
our structure theorem for claw-free perfect graphs.

1.3. Every connected quasi-line trigraph G is either a linear interval join or a thickening of a circular
interval trigraph.

To state our main theorem we need a few more definitions that refine the concepts used in 1.3.
Let G be a circular interval trigraph. The trigraph G is a structured circular interval trigraph if, for

some even integer n ≥ 4, V (G) can be partitioned into pairwise disjoint strong cliques X1, . . . , Xn and
Y1, . . . , Yn such that (all indices are modulo n):

(S1)
⋃

i(Xi ∪ Yi) = V (G).

(S2) Xi 6= ∅ ∀ i.

(S3) Yi is strongly complete to Xi and Xi+1 and strongly anticomplete to V (G)\ (Xi ∪Xi+1 ∪ Yi).

(S4) If Yi 6= ∅ then Xi is strongly complete to Xi+1.

(S5) Every vertex in Xi has at least one neighbor in Xi+1 and at least one neighbor in Xi−1.

(S6) Xi is strongly complete to Xi+1 or Xi−1 and possibly both, and strongly anticomplete to V (G)\(Xi∪
Xi−1 ∪Xi+1 ∪ Yi ∪ Yi−1).

A bubble (G,Z) is said to be a structured bubble if G is a structured circular interval trigraph.
We need to define one important class of Berge circular interval trigraphs. Let G be a trigraph with

vertex set the disjoint union of sets {a1, a2, a3}, B1
1 , B

2
1 , B

3
1 , B

1
2 , B

2
2 , B

3
2 , B

1
3 , B

2
3 , B

3
3 such that |Bj

i | ≤ 1 for
1 ≤ i, j ≤ 3 with adjacency as follows (all additions are modulo 3):

• For i = 1, 2, 3, B1
i ∪B2

i ∪B3
i is a strong clique.

• For i = 1, 2, 3, Bi
i is strongly complete to

⋃3
k=1(Bk

i+1 ∪Bk
i+2).

• For 1 ≤ i, j ≤ 3 with i 6= j, Bj
i is strongly complete to

⋃3
k=1B

k
j .

• For i = 1, 2, 3, Bi+1
i and Bi+1

i+2 are either both empty or both nonempty, and if they are both

nonempty then Bi+1
i is not strongly complete to Bi+1

i+2 .

• For i = 1, 2, 3, ai is strongly complete to
⋃3

k=1(Bk
i ∪ Bk

i+1) and ai is strongly anticomplete to⋃3
k=1B

k
i+2.

• a1 is antiadjacent to a3, and a2 is strongly anticomplete to {a1, a3}.

• If a1 is semiadjacent to a3 then B1
3 ∪B1

2 = ∅.

• There exist xi ∈ V (G) ∩ (B1
i ∪B2

i ∪B3
i ) for i = 1, 2, 3, such that {x1, x2, x3} is a triangle.
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We define C to be the class of all such trigraphs G. We will prove in 2.7 that all trigraphs in C are Berge
and circular inteveral. Moreover we define C′ to be the set of all pairs (H, {z}) such that there exists
i ∈ {1, 2, 3} with z ∈ Xai

, H is a thickening of a trigraph in C with Bi+2
i+1 ∪ B

i+2
i = ∅ and such that

N(z) ∩ (Xai+1
∪Xai+2

) = ∅ (with Xai
as in the definition of a thickening).

A signing of a graph G = (V,E) is a function s : E → {0, 1}. The value v(C) of a cycle C is
v(C) =

∑
e∈C s(e). A graph, possibly with multiple edges and loops, is said to be evenly signed by s if

for all cycles C in G, C has an even value, and in that case the pair (G, s) is said to be an evenly signed
graph.

We need to define three classes of graphs that are going to play an important role in the structure of
claw-free perfect graphs.

F1: Let (G, s) be a pair of a graph G (possibly with multiple edges and loops) and a signing s of G such
that:

• V (G) = {x1, x2, x3},
• there is an edge eij between xi and xj with s(eij) = 1 for all {i, j} ⊂ {1, 2, 3} with i 6= j,

• if e and f are such that s(e) = s(f) = 0, then e is parallel to f .

We define F1 to be the class of all such pairs (G, s).

F2: Let (G, s) be a pair of a graph G (possibly with multiple edges and loops) and a signing s of G such
that |V (G)| = 4|, all pairs of vertices of G are adjacent and s(e) = 1 for all e ∈ E(G). We define
F2 to be the class of all such pairs (G, s).

F3: Let (G, s) be a pair of a graph G (possibly with multiple edges and loops) and a signing s of G such
that:

• V (G) = {x1, x2, . . . , xn} with n ≥ 4,

• there is an edge e12 between x1 and x2 with s(e) = 1,

• {x1, x2} is complete to {x3, . . . , xn},
• {x3, . . . , xn} is a stable set,

• if s(e) = 0, then e is an edge between x1 and x2.

We define F3 to be the class of all such pairs (G, s).

An even structure is a pair (G, s) of a graph G and a signing s such that for all blocks A of G,
(A, s|E(A)) is either a member of F1 ∪ F2 ∪ F3 or an evenly signed graph.

Here is a construction; a trigraph G that can be constructed in this manner is called an evenly
structured linear interval join.

• Let H = (V,E) and the signing s be an even structure.

• Let η : (E × V ) ∪ E → 2V (G).

• For every edge e = x1x2 ∈ E (where x1 = x2 if e is a loop),

– Let (Ge, Ye) be:

∗ a spot if e is in a cycle, x1 6= x2 and s(e) = 1,

∗ a thickening of a spring if e is in a cycle, x1 6= x2, and s(e) = 0,

∗ a trigraph in C′ if e is a loop,

∗ either a spot or a thickening of a linear interval stripe if e is not in a cycle.

– Let φe be a bijection between the endpoints of e and Ye.
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– Let η(e, xj) = N(φe(xj)) for j = 1, 2 and η(e, v) = ∅ if v is not an endpoint of e.

– Let η(e) = V (Ge)\Ye.

• Construct G with V (G) =
⋃

e∈E η(e), G|η(e) = Ge\Ye for all e ∈ E and such that η(f, x) is complete
to η(g, x) for all f, g ∈ E and x ∈ V (in particular if x is an endpoint of both f and g, then the
sets η(f, x) and η(g, y) are nonempty and strongly complete to each other).

As for the linear interval join, we call the graph H used in the construction of an evenly structured linear
interval join G the skeleton of G, and we say that e has been replaced by (Ge, Ye) .

We can now state our main theorem:

1.4. Every connected Berge claw-free trigraph is either

• an evenly structured linear interval join or

• a thickening of a trigraph in C.

The goal of the paper is to prove 1.4, but first we can prove an easy result about evenly signed graphs.
Here is an algorithm that will produce an even signing for a graph:

Algorithm 1

• Let T be a spanning tree of G and root T at some r ∈ V (G).

• Arbitrarily assign a value from {0, 1} to s(e) for all e ∈ T .

• For every e = xy ∈ E(G)\T , let s(e) =
∑

f∈Px
s(f) +

∑
f∈Py

s(f) (mod 2) where Pi is the path
from r to i in T .

1.5. Algorithm 1 produces an evenly signed graph (G, s).

Proof. Let C be a cycle in G. First, we notice that for an edge e in T , s(e) can be expressed with the
same formula used to calculate the signing of an edge outside of T . In fact we have that for all e ∈ E(G),
s(e) =

∑
f∈Px

s(f) +
∑

f∈Py
s(f) (mod 2). Thus,

∑
e=xy∈E(C)

s(e) =
∑

xy∈E(C)

∑
e∈Px

s(e) +
∑
e∈Py

s(e)

 =

= 2 ·
∑

x∈V (C)

(∑
e∈Px

s(e)

)
= 0 (mod 2)

which concludes the proof of 1.5.

The result of 1.5 shows that if we have a graph G, we can find all signings s such that (G, s) is an
evenly signed graph by using Algorithm 1 with all possible assignments for s(e) on the tree T .

The paper is organized as follow. In Section 2, we study circular interval trigraphs that contain special
triangles. Section 3 examines circular interval trigraphs that contain a hole of length 4 while Section 4
covers the case when a circular interval trigraph contains a long hole. In Section 5, we analyze linear
interval joins. Finally in Section 6, we gather our results and prove our main theorem 1.4.
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2 Essential Triangles

In order to prove 1.4, we first prove the following:

2.1. Let G be a Berge circular interval trigraph. Then either G is a linear interval trigraph, or a
cobipartite trigraph, or a thickening of a member of C, or G is a structured circular interval trigraph.

Before going further, more definitions are needed. Let G be a circular interval trigraph defined by
Σ and F1, . . . , Fk ⊆ Σ. Let T = {c1, c2, c3} be a triangle. We say that T is essential if there exist
i1, i2, i3 ∈ {1, . . . , k} such that c1, c2 ∈ Fi1 , c2, c3 ∈ Fi2 and c3, c1 ∈ Fi3 , and such that Fi1 ∪ Fi2 ∪
Fi3 = Σ. Let x, y, q be three points of Σ. We denote by Σq

x,y the subset of Σ such that there exists a
homeomorphism φ : Σq

x,y → [0, 1] with φ(x) = 0 and φ(y) = 1 and such that q ∈ Σq
x,y. Moreover let

Σ
q

x,y = (Σ\Σq
x,y) ∪ {x, y}.

The following two lemmas are basic facts that will be extensively used to prove 2.1.

2.2. Let G be a circular interval trigraph defined by Σ and F1, . . . , Fk. Let x, y, a, b ∈ V (G) such that
x ∈ Σ

y

a,b. If x is antiadjacent to a and b, then y is strongly antiadjacent to x.

Proof. Assume not. Since x is adjacent to y, we deduce that there exists Fi such that x, y ∈ Fi. It follows
that at least one of a, b ∈ F ∗i . By symmetry we may assume that a ∈ F ∗i , but it implies that a is strongly
adjacent to x, a contradiction. This proves 2.2.

2.3. Let G be a circular interval trigraph defined by Σ and F1, . . . , Fk. Let x, y, z ∈ V (G) such that x is
adjacent to y and x is antiadjacent to z. Then there exists Fi such that Σ

z

x,y ⊆ Fi.

Proof. Since x is adjacent to y there is Fi such that x, y ∈ Fi. Since z is antiadjacent to x, we deduce
that z /∈ F ∗i . Thus we conclude that Σ

z

x,y ⊆ Fi. This proves 2.3.

2.4. Let G be a circular interval trigraph defined by Σ and F1, . . . , Fk, and let C = c1− c2− . . .− cn− c1
be a hole. Then the vertices of C are in order on Σ.

Proof. Assume not. By symmetry, we may assume that c1, c2, c3, c4 are not in order on Σ, and thus we
may assume that c4 ∈ Σc2

c1,c3 . Since c3 is antiadjacent to c1 and since c2 is complete to {c1, c3}, we deduce

that there exist Fi and Fj , possibly Fi = Fj , such that Σ
c3
c1,c2 ⊆ Fi and Σ

c1
c2,c3 ⊆ Fj . If c4 ∈ Σ

c3
c1,c2 , then

since c4 ∈ F ∗i , we deduce that c4 is strongly complete to {c1, c2}, a contradiction. If c4 ∈ Σ
c1
c3,c2 , then

since c4 ∈ F ∗j , we deduce that c4 is strongly complete to {c2, c3}, a contradiction. This proves 2.4.

2.5. Let G be a circular interval trigraph defined by Σ and F1, . . . , Fk. If G is not a linear interval
trigraph, then there exists an essential triangle or a hole in G.

Proof. Let Fi1 be such that Fi1 ∩V (G) is maximal and let y /∈ Fi1 . Let x0, x1 ∈ Fi1 such that Σ
y

x0,x1
∩Fi1

is maximal.
Let x2 and Fi2 be such that x2 ∈ Fi2 , x2 /∈ Fi1 and Σ

x0

x1,x2
is maximal.

Starting with j = 3 and while xj−1 /∈ Fi1 , let xj and Fij be such that xj ∈ Fij , xj /∈ Fik , for any

k < j and Σ
x1

xj−1,xj
is maximal. Since G is not a linear interval trigraph, there exists k > 1 such that

xk ∈ Fi1 .
Assume first that k = 3. Clearly Fi1 ∪ Fi2 ∪ Fi3 = Σ, x0, x1 ∈ Fi1 , x1, x2 ∈ Fi2 and x0, x2 ∈ Fi3 .

Hence T = {x0, x1, x2} is an essential triangle.
Assume now that k > 3. Clearly xj−1 is adjacent to xj for j = 1, . . . , k − 1 and xk−1 is adjacent to

x0. By the choice of Fi1 and x0, x1, we deduce that xk−1 is strongly antiadjacent to x1. By the choice of
Fij , xj−1 is antiadjacent to xj+1 mod k for all j = 1, . . . , k− 1. Hence by 2.2, C is a hole. This concludes
the proof of 2.5.
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2.6. Let G be a circular interval trigraph and C a hole. Let x ∈ V (G)\V (C), then x is strongly adjacent
to two consecutive vertices of C.

Proof. Let G be defined by Σ and F1, . . . , Fk and let C = c1 − c2 − . . . − cl − c1. By 2.4, there exists j
such that x ∈ Σ

cj+2

cj ,cj+1
. Since cj is adjacent to cj+1 and antiadjacent to cj+2, we deduce that there exists

i ∈ {1, . . . , k} such that Σ
cj+2

cj ,cj+1
⊆ Fi. Hence x is strongly adjacent to cj and cj+1. This proves 2.6.

In the remainder of this section, we focus on circular interval trigraphs that contain an essential
triangle. For the rest of the section, addition is modulo 3.

2.7. Every trigraph in C is a Berge circular interval trigraph.

Proof. Let G be in C. We let the reader check that G is indeed a circular interval trigraph, it can easily
be done using the following order of the vertices on a circle: B3

1 , B
1
1 , B

2
1 , a1, B

1
2 , B

2
2 , B

3
2 , a2, B

2
3 , B

3
3 , B

1
3 , a3.

(1) There is no odd hole in G.

Assume there is an odd hole C = c1 − c2 − . . . − cn − c1 in G. Since Bi
i is strongly complete to

V (G)\{ai+1}, it follows that V (C) ∩ Bi
i = ∅ for all i. Since G|(B2

1 ∪ B3
1 ∪ B1

2 ∪ B3
2 ∪ B1

3 ∪ B2
3) is a

cobipartite trigraph, we deduce that |{a1, a2, a3} ∩ V (C)| ≥ 1.
Assume first that a1, a3 are two consecutive vertices of C. We may assume that c1 = a1 and c2 = a3.

Since cn is adjacent to c1 and antiadjacent to c2, we deduce that cn ∈ B1
2 ∪ B3

2 . Symmetrically, c3 ∈
B1

3 ∪B2
3 . As a1 is semiadjacent to a3, it follows that B1

2 ∪B1
3 = ∅. Hence, c3 is strongly adjacent to cn,

a contradiction.
Thus, we may assume that c1 = ai and {c2, cn} ∩ {a1, a2, a3} = ∅. Since c2 is antiadjacent to cn,

and c1 is complete to {c2, cn}, we deduce that {c2, cn} = Bi+2
i ∪ Bi+2

i+1 . Without loss of generality, let

c2 ∈ Bi+2
i and cn ∈ Bi+2

i+1 . Since cn−1 is antiadjacent to c2, we deduce that cn−1 = ai+1. Symmetrically,
we deduce that c3 = ai+2. Since ai+2 is not consecutive with ai+1 in C, we deduce that n > 5. But
|{x ∈ V (G) : x antiadjacent to c2}| ≤ 2, a contradiction. This proves (1).

(2) There is no odd antihole in G.

Assume there is an odd antihole C = c1 − c2 − . . . − cn in G. By (1), we may assume that C has
length at least 7. Since Bi

i is strongly complete to V (G)\{ai+1}, it follows that V (C) ∩Bi
i = ∅ for all i.

Assume first that a1 is semiadjacent to a3. Then B1
3 ∪ B1

2 = ∅. Since |V (G)\(B1
1 ∪ B2

2 ∪ B3
3)| =

7, we deduce that V (C) = ({a1, a2, a3} ∪ B2
1 ∪ B3

1 ∪ B2
3 ∪ B3

2). But a2 has only two neighbors in
({a1, a2, a3} ∪B2

1 ∪B3
1 ∪B2

3 ∪B3
2), a contradiction. This proves that a1 is strongly antiadjacent to a3.

Assume now that |V (C) ∩ {a1, a2, a3}| = 1. We may assume that a1 ∈ V (C) and it follows that
V (C) = {a1} ∪

⋃
j 6=k B

k
j . But G|({ai}

⋃
j 6=k B

k
j ) is not an antihole of length 7, since the vertex of B2

1 has

5 strong neighbors in ({ai}
⋃

j 6=k B
k
j ), a contradiction.

Hence we may assume that |V (C) ∩ {a1, a2, a3}| ≥ 2. Since there is no triad in C, we deduce that
|C ∩ {a1, a2, a3}| = 2 and by symmetry we may assume that c1 = a1, c2 = a2 and a3 /∈ C. But since
B2

1 ∪ B3
1 is strongly anticomplete to a2 and B1

3 ∪ B2
3 is strongly anticomplete to a1, we deduce that

{c4, c5, c6} ⊆ B1
2 ∪B3

2 , a contradiction. This proves (2).
Now by (1) and (2), we deduce 2.7.

2.8. Let G be a Berge circular interval trigraph such that G is not cobipartite. If G has an essential
triangle, then G is a thickening of a trigraph in C.

Proof. Let {x1, x2, x3} be an essential triangle and let F1, F2, F3 be such that x1 ∈ F1 ∩F3, x2 ∈ F1 ∩F2,
x3 ∈ F2 ∩ F3 and F1 ∪ F2 ∪ F3 = Σ.

(1) xi is not in a triad for i = 1, 2, 3.
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Assume x1 is in a triad. Then there exist y, z such that {x1, y, z} is a triad. Since x1 ∈ F1 ∩ F3, we
deduce that y, z ∈ F ∗2 and so y is strongly adjacent to z, a contradiction. This proves (1).

By (1) and as G is not a cobipartite trigraph, there exists a triad {a∗1, a∗2, a∗3} and we may assume
that a∗i ∈ Fi\(Fi+1 ∪ Fi+2), i = 1, 2, 3. Let ai ∈ Fi ∩ Σxi

a∗i ,a
∗
i+2

and a′i ∈ Fi ∩ Σ
xi+1

a∗i ,a
∗
i+1

such that ai, a
′
i

are in triads and Σ
a∗i
ai,a′i

is maximal. Let Ai = Σ
a∗i
ai,a′i

, Bi = Σxi

a∗i ,a
∗
i+2
\(Ai ∪ Ai+2), Ai = V (G) ∩ Ai and

Bi = V (G) ∩ Bi. By the definition of a1, a2, a3, a
′
1, a
′
2, a
′
3, no vertex in B1 ∪B2 ∪B3 is in a triad.

(2) {a1, a2, a3} and {a′1, a′2, a′3} are triads.

By the definition, a1 is in a triad. Let {a1, a2, a3} be a triad, then we assume that ai ∈ Ai, i = 2, 3.
By 2.2, a1 is non adjacent to a3. Now, using symmetry, we deduce that {a1, a2, a3} and {a′1, a′2, a′3} are
triads. This proves (2).

(3) For all x ∈ Ai there exist y ∈ Ai+1, z ∈ Ai+2 such that {x, y, z} is a triad.

By symmetry, we may assume that x ∈ A1. If |A1| = 1, then x = a∗1 and {a∗1, a∗2, a∗3} is a triad.
Therefore, we may assume that a1 6= a′1. By (2) and 2.2, x is antiadjacent to a′2 and a3. We may

assume that {x, a′2, a3} is not a triad, then a′2 is strongly adjacent to a3. By (2) and 2.2, a2 is strongly
antiadjacent to a′3. Since x − a2 − a′2 − a3 − a′3 − x is not a hole of length 5, we deduce that x is not
strongly complete to {a2, a′3}. But now one of {x, a′2, a′3}, {x, a2, a3} is a triad. This proves (3).

(4) {x1, x2, x3} is a triangle such that xi ∈ Bi for i = 1, 2, 3.

By (3), xi /∈ A1 ∪A2 ∪A3 for i = 1, 2, 3. By the definition of Bi, it follows that xi ∈ Bi for i = 1, 2, 3.
Moreover, {x1, x2, x3} is an essential triangle. This proves (4).

(5) (A1, A2, A3|B1, B2, B3) is a hex-join.

By the definition of A1, A2, A3, B1, B2, B3, they are clearly pairwise disjoint and
⋃

i(Ai∪Bi) = V (G).
Clearly Ai is a strong clique as Ai ⊂ Fi, i = 1, 2, 3.

If there exist yi, y
′
i ∈ Bi such that yi is antiadjacent to y′i, then {yi, y′i, a∗i+1} is a triad by 2.2, a

contradiction. Thus Bi is a strong clique for i = 1, 2, 3.
By symmetry, it remains to show that B1 is strongly anticomplete to A2 and strongly complete to

A1. Since B1 ⊂ Σ
a∗2
a∗1 ,a

∗
3
, we deduce that B1 is strongly anticomplete to A2 by 2.2 and (3).

Suppose there is a1 ∈ A1 and b1 ∈ B1 such that a1 is antiadjacent to b1. By (3), let a2 ∈ A2 and
a3 ∈ A3 be such that {a1, a2, a3} is a triad. Since a2 is anticomplete to {a1, a3}, and b1 ∈ Σ

a2

a1,a3
, we

deduce by 2.2 that b1 is strongly antiadjacent to a2. Thus {a1, a2, b1} is a triad, a contradiction as
b1 ∈ B1. This concludes the proof of (5).

(6) There is no triangle {a1, a2, a3} with ai ∈ Ai, i = 1, 2, 3

Let ai ∈ Ai, i = 1, 2, 3 be such that a1 is adjacent to ai, i = 2, 3. By (3), let ci ∈ Ai, i = 2, 3 such
that {a1, c2, c3} is a triad. By 2.3, c2 ∈ Σ

a1

a2,a3
. By symmetry, c3 ∈ Σ

a1

a2,a3
. Since {a2|a1, c2, c3} is not a

claw, we deduce that c3 is strongly antiadjacent to a2. By (2) and as a2 ∈ Σ
a′3
a′2,a

′
1
, a′3 is antiadjacent a2.

Since a3 ∈ Σ
a2

c3,a′3
and by (2), a3 is strongly antiadjacent to a2. This proves (6).

For the rest of the proof of 2.8, let {j, k, l} = {1, 2, 3}.

(7) There is no induced 3-edge path w − x− y − z such that w ∈ Aj, x, y ∈ Ak, z ∈ Al.

Assume that w − x − y − z is an induced 3-edge path such that w ∈ A1, x, y ∈ A2, z ∈ A3. Now
by (5), w − x− y − z − x1 − w is a hole of length 5, a contradiction. This proves (7).
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(8) For i = 1, 2, 3, let yi ∈ Ai. Then yk is strongly antiadjacent to at least one of yj , yl.

Suppose there exist yi ∈ Ai, i = 1, 2, 3 such that y2 is adjacent to y1 and y3. By (6), y1 is strongly
antiadjacent to y3. By (3), there exist z1, z3 ∈ A2 such that z1 is antiadjacent to y1 and z3 is antiadjacent
to y3. Since {y2|y1, y3, z3} and {y2|y1, y3, z1} are not claws, we deduce that y1 is strongly adjacent to
z3, and y3 is strongly adjacent to z1. But y1 − z − 3 − z1 − y3 is a 3-edge path, contrary to (7). This
proves (8).

(9) Aj is strongly anticomplete to at least one of Ak, Al.

Assume not. By symmetry, we may assume there are x ∈ A1, y, z ∈ A2 and w ∈ A3 such that x is
adjacent to y and z is adjacent to w. By (8), x is strongly antiadjacent to w, y is strongly antiadjacent
to w, and z is strongly antiadjacent to x; and in particular y 6= z. But now x− y − z − w is am induced
3-edge path, contrary to (7). This proves (9).

(10) For i = 1, 2, 3, let bi ∈ Bi such that bk is adjacent to bl. Then bj is strongly adjacent to at least one
of bk, bl.

By symmetry, we may assume that j = 1, k = 2 and l = 3. Since b1 − a∗3 − b3 − b2 − a∗1 − b1 is not a
hole of length 5, by (5) we deduce that b1 is strongly adjacent to at least one of b2, b3. This proves (10).

(11) Let x ∈ Bj, then x is strongly complete to one of Bk, Bl.

Assume there is y ∈ Bk such that x is antiadjacent to y. Let z ∈ Bl. If y is antiadjacent to z, then
x is strongly adjacent to z since {x, y, z} is not a triad. By (10), if y is strongly adjacent to z, then x is
strongly adjacent to z. Thus x is strongly complete to Bl. This proves (11).

By (9) and symmetry, we may assume that A2 is strongly anticomplete to A1 ∪A3.
Let Bi

i be the set of all vertices of Bi that are strongly complete to Bi+1 ∪Bi+2. For j 6= i, let Bj
i be

the set of all vertices of Bi\Bi
i that are strongly complete to Bj . By (11), we deduce that Bi =

⋃3
j=1B

j
i .

(12) If Bk
j = ∅, then Bk

l = ∅.

Assume that Bk
j is empty. It implies that Bk

l is strongly complete to Bj∪Bk, contrary of the definition

of Bl
l and Bk

l . This proves (12).

Now, we observe that A2, B
1
1 , B

2
2 , B

3
3 are homogeneous sets and (A1, A3), (B2

1 , B
2
3), (B3

2 , B
3
1), (B1

3 , B
1
2)

are homogeneous pairs. If A1 is strongly anticomplete to A3, then by (4) and (12), G is a thickening of a
member of C. Thus, we may assume that A1 is not strongly anticomplete to A3. Since A1 − A3 − B1

3 −
A2 −B1

2 −A1 is not a hole of length 5, we deduce that either B1
2 = ∅ or B1

3 = ∅. By (12), it follows that
B1

2 ∪B1
3 is empty. Using (4) and (12), we deduce that G is a thickening of a member of C. This concludes

the proof of 2.8.

3 Holes of Length 4

Next we examine circular interval trigraphs that contain a hole of length 4.

3.1. Let G be a Berge circular interval trigraph. If G has a hole of length 4 and no essential triangle,
then G is a structured circular interval trigraph.

Proof. In the following proof, the addition is modulo 4. Let G be defined by Σ and F1, . . . , Fk. Let
x∗1 − x∗2 − x∗3 − x∗4 − x∗1 be a hole of length 4. We may assume that x∗i , x

∗
i+1 ∈ Fi, i = 1, 2, 3, 4.

(1) x∗i is strongly antiadjacent to x∗i+2.
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Assume not. By symmetry we may assume that x∗1 is adjacent to x∗3. Moreover, we may assume that

there exists i ∈ {1, . . . , k} such that Σ
x∗2
x∗1 ,x

∗
3
⊆ Fi. If i = 4, it implies that {x∗1, x∗2, x∗3, x∗4} ⊂ F4, and thus

x∗1−x∗2−x∗3−x∗4−x∗1 is not a hole, a contradiction. Symmetrically, we may assume that i 6= 3. But now
{x∗1, x∗3, x∗4} is an essential triangle since Fi ∪ F3 ∪ F4 = Σ, a contradiction. This proves (1).

For i = 1, 2, 3, 4, let Xi,Yi ⊂ Σ and Xi, Yi ⊂ V (G) be such that:

(H1) each of Xi,Yi is homeomorphic to [0, 1),

(H2) Xi ⊆ V (G) ∩ Xi, Yi ⊆ V (G) ∩ Yi, i = 1, 2, 3, 4,

(H3)
⋃

i(Xi ∪ Yi) = Σ,

(H4) X1,X2,X3,X4,Y1,Y2,Y3,Y4 are pairwise disjoint,

(H5) Yi ⊆ Σ
x∗i+2

x∗i ,x
∗
i+1
, i = 1, 2, 3, 4,

(H6) x∗i ∈ Xi, i = 1, 2, 3, 4,

(H7) X1, X2, X3, X4, Y1, Y2, Y3, Y4 are disjoints strong cliques satisfying (S2)-(S6),

(H8)
⋃

i(Xi ∪ Yi) is maximal.

By (1), such a structure exists. We may assume that V (G)\
⋃

i(Xi ∪ Yi) is not empty. Let x ∈
V (G)\

⋃
i(Xi ∪ Yi). For S ⊆ V (G)\{x}, we denote by SC the subset of S that is complete to x, and by

SA the subset of S that is anticomplete to x.
For i = 1, 2, 3, 4, let xli, x

r
i ∈ Xi be such that x∗i−1, x

l
i, x

r
i , x
∗
i+1 are in this order on Σ and such that

Σ
x∗i+1

xl
i,x

r
i

is maximal.

(2) {xri , xli+1} is complete to Xi ∪Xi+1.

By (S5), there exists a ∈ Xi such that a is adjacent to xri+1. By 2.3 and (S6), there exists Fl such
that {a, xri } ∪Xi+1 ⊆ Fl and thus xri is complete to Xi+1. By symmetry, xli+1 is complete to Xi. This
proves (2) by (H7).

(3) If Xi is not complete to Xi+1, then xli is strongly antiadjacent to xri+1.

Let a ∈ Xi and b ∈ Xi+1 be such that a is strongly antiadjacent to b. By 2.2 and (S6), a is strongly
antiadjacent to xri+1. By 2.2 and (S6), xri+1 is strongly antiadjacent to xli. This proves (3).

(4) x /∈ Σ
xl
i+1

xl
i,x

r
i

for all i.

Assume not. We may assume that x ∈ Σ
xl
2

xl
1,x

r
1
. For i = 1, 2, 3, 4, let Y ′i = Yi, for i = 2, 3, 4, let X ′i = Xi

and let X ′1 = X1 ∪ {x}. Since Y2 ∪ Y3 ∪ X3 is strongly anticomplete to {xr1, xl1} by (S3) and (S6), we
deduce by 2.2 that x is strongly anticomplete to Y2 ∪ Y3 ∪ X3. Since xr1 is adjacent to xr4 by (2), we
deduce by 2.3 that x is strongly complete to Y4 and not strongly anticomplete to X4. By symmetry, x
is strongly complete to Y1 and not strongly anticomplete to X2. Since xl1 is strongly adjacent to xr1, we
deduce that X ′1 is a strong clique. If X1 is strongly complete to X2, it follows from 2.3 that x is strongly
complete to X2. By symmetry, if X1 is strongly complete to X4, then x is strongly complete to X4.
The above arguments show that X ′1, . . . , X

′
4, Y

′
1 , . . . , Y

′
4 are disjoint cliques satisfying (S2)-(S6). More-

over, Xi,Yi i = 1, 2, 3, 4 clearly satisfy (H1)-(H5) with X ′i, Y
′
i i = 1, 2, 3, 4, contrary to the maximality of⋃

i(Xi ∪ Yi). This proves (4).

By (4) and by symmetry, we may assume that x ∈ Σ
x∗3
xr
1,x

l
2

and therefore x ∈ F1. By 2.2 and (S3), x

is strongly anticomplete to Y3. Since x ∈ F1, we deduce that x is strongly complete to Y1.
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(5) XC
3 is strongly anticomplete to XC

4 .

Assume not. We may assume there exist x3 ∈ XC
3 and x4 ∈ XC

4 such that x3 is adjacent to x4.
By (S6), x3 is strongly antiadjacent to x∗1 and therefore by 2.3 there exists Fi, i ∈ {1, . . . , k}, such that
x, x3 ∈ Fi and x∗1 /∈ Fi. By symmetry, there exists Fj , j ∈ {1, . . . , k} such that x, x4 ∈ Fj and x∗2 /∈ Fj .
Moreover, as x∗2 ∈ Fi, we deduce that Fi 6= Fj . By (S6), x∗i is strongly anticomplete to xi+2 for i = 1, 2.
Now, since x3 is adjacent to x4, we deduce from 2.3 that there exists Fl such that x3, x4 ∈ Fl and
l ∈ {1, . . . , k}\{i, j}. Since Σ

x4

x,x3
⊆ Fi, Σ

x3

x,x4
⊆ Fj and Σ

x

x3,x4
⊆ Fk, we deduce that Fi ∪ Fj ∪ Fk = Σ.

Hence, {x, x3, x4} is an essential triangle, a contradiction. This proves (5).

(6) At least one of XC
3 , X

C
4 is empty.

Assume not. Let a ∈ XC
4 . By 2.3 and since a is strongly anticomplete to X2, we deduce that there is

Fi, i ∈ {1, . . . , k}, such that {a, xr4, x} ∈ Fi and thus xr4 ∈ XC
4 . Symmetrically, xl3 ∈ XC

3 . By (5), xr4 is
strongly antiadjacent to xl3. By (S6), X1 is strongly complete to X4, and X2 is strongly complete to X3.
By (2) and (5), x is anticomplete to {xr3, xl4}. But now by (2) and (S6), x−xl4−xl2−xr4−xl3−xr1−xr3−x
is an antihole of length 7, a contradiction. This proves (6).

By symmetry, we may assume that x is strongly anticomplete to X4. By (2) and 2.3, x is strongly
complete to X1 ∪X2.

(7) x is adjacent to xl3.

Assume not. By 2.2, x is strongly anticomplete to X3. Since x − Y2 − xr3 − xr4 − X1 − x and
x−Y4−xl4−xl3−X2−x are not holes of length 5, we deduce that x is strongly anticomplete to Y2 ∪Y4.
Since x−X2 −X3 −X4 −X1 − x is not a cycle of length 5, we deduce that X1 is strongly complete to
X2. For i = 1, 2, 3, 4, let X ′i = Xi, for i = 2, 3, 4, let Y ′i = Yi, and let Y ′1 = Y1 ∪ {x}. The above argu-
ments show that X ′1, . . . , X

′
n, Y

′
1 , . . . , Y

′
n are disjoint cliques satisfying (S2)-(S6). Moreover, it is easy to

find X ′i ,Y ′i, i = 1, 2, 3, 4, satisfying (H1)-(H5), contrary to the maximality of
⋃

i(Xi∪Yi). This proves (7).

By 2.3 and (7), x is strongly complete to Y2. For i = 3, 4, let X ′i = Xi, for i = 1, 2, 3, let
Y ′i = Yi, let Y ′4 = Y A

4 , let X ′1 = X1 ∪ Y C
4 and let X ′2 = X2 ∪ {x}. The above arguments show that

X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n are disjoint cliques satisfying (S2), (S3) and (S5). To get a contradiction, it re-

mains to show that X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n satisfy (S4) and (S6).

First we check (S4). Since X ′3 = X3, X ′4 = X4 and Y ′3 = Y3, and since X ′1\X1 ⊂ Y4 is strongly
complete to X4, it is enough to check the following:

• If Y2 6= ∅ then X ′2 is complete to X ′3.

• If Y1 6= ∅ then X ′1 is complete to X ′2.

For the former, we observe that if x is not strongly complete to X3, then since x−Y2−X3−X4−X1−x
is not a hole of length 5, we deduce that Y2 is empty. For the latter, since x is strongly complete to X1,
it is enought to show that if Y1 is not empty, then Y C

4 is empty. Since XC
3 is not empty, it follows that

Y1 ⊆ Σ
x∗2
x,x∗1

. Now if Y C
4 is not empty, then Y1 is empty by 2.3 and (S4).

To check (S6), we need to prove the following:

(i) If X ′1 is not strongly complete to X ′2 then X ′2 is strongly complete to X ′3.

(ii) If X ′2 is not strongly complete to X ′3 then X ′3 is strongly complete to X ′4.

(iii) If X ′3 is not strongly complete to X ′4 then X ′4 is strongly complete to X ′1.

(iv) If X ′4 is not strongly complete to X ′1 then X ′1 is strongly complete to X ′2.

13



For (i), first assume that x is not strongly complete to X3. By 2.2, we deduce that x is strongly
anticomplete to xr3. Since x − xr2 − xr3 −X4 − Y4 − x and x − xr2 − xr3 −X4 −X1 − x are not cycles of
length 5, we deduce that Y C

4 is empty and that X1 is strongly complete to X2. Thus X ′1 = X1 and since
x is strongly complete to X1, it follow that X ′1 is strongly complete to X ′2. So we may assume that x is
strongly complete to X3. By 2.3 and (S6), it follows that X2 is strongly complete to X3 and thus X ′2 is
strongly complete to X ′3. This proves (i).

For (ii), if X ′3 is not strongly complete to X ′4, then by (3) it follows that xl3 is strongly antiadjacent
to xr4. Moreover by (S4), X2 is strongly complete to X3. Since x− xl3 − xr3 − xr4 −X1 − x is not a cycle
of length 5, we deduce, using (2), that x is strongly complete to X3 and thus X ′3 is strongly complete to
X ′2. This proves (ii).

For (iii) and (iv), we may assume that X ′4 is not strongly complete to X ′1. Since X4 is strongly
complete to Y4, we deduce that X4 is not strongly complete to X1. But by (S6), it implies that X4 is
strongly complete to X3 and thus X ′4 is strongly complete to X ′3, and (iii) follows. Also by (S6), we
deduce that X1 is strongly complete to X2. Moreover by (S4), it follows that Y4 is empty. Since x is
strongly complete to X1, we deduce that X ′1 is strongly complete to X ′2, and (iv) follows.

The above arguments show that X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n are disjoint cliques satisfying (S2)-(S6). More-

over, it is easy to find X ′i ,Y ′i, i = 1, 2, 3, 4, satisfying (H1)-(H5), contrary to the maximality of
⋃

i(Xi∪Yi).
This concludes the proof of 3.1

4 Long Holes

In this section, we study circular interval trigraphs that contain a hole of length at least 6.
A result equivalent to 4.1 has been proved independently by Kennedy and King [5]. The following

was proved in joint work with Varun Jalan.

4.1. Let G be a circular interval trigraph defined by Σ and F1, . . . , Fk ⊆ Σ. Let P = p0−p1−. . .−pn−1−p0
and Q = q0− q1− . . .− qm−1− q0 be holes. If n+ 1 < m then there is a hole of length l for all n < l < m.
In particular, if G is Berge then all holes of G have the same length.

Proof. We start by proving the first assertion of 4.1. We may assume that the vertices of P and Q are
ordered clockwise on Σ. Since P and Q are holes, it follows that n ≥ 4 and m > 5. We are going to prove
the following claim which directly implies the first assertion of 4.1 by induction.

(1) There exists a hole of length m− 1.

We may assume that Q and P are chosen such that |V (Q) ∩ V (P )| is maximal.

(2) If there are i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . , n− 1} such that

qi, qi+1 ∈ Σ
pj+2

pj ,pj+1
\{pj , pj+1}

with qm = q0, pn = p1 and pn−1 = p0, then there is a hole of length m− 1 in G.

We may assume that q1, q2 ∈ Σ
p3

p1,p2
\{p1, p2}. Since q1 is antiadjacent to q3, we deduce that q3 /∈ Σ

p3

p1,p2
.

Since p2 ∈ Σ
q1
q2,q3 , we deduce by 2.3 that p2 is strongly anticomplete to {q0, q5}.

If p2 is adjacent to q4, it follows that Q − q1 − p2 − q4 − Q is a hole of length q − 1. Thus we may
assume that p2 is strongly antiadjacent to q4. But then Q′ = Q− q1 − p2 − q3 −Q is a hole of length m
with |V (Q′) ∩ V (P )| > |V (Q) ∩ V (P )|, a contradiction. This proves (2).

By (2) and since m > n + 1, we may assume that |V (P ) ∩ V (Q)| > 1. Let V (P ) ∩ V (Q) =
{x0, x1, . . . , xs−1}. We may assume that x0, . . . , xs−1 are in clockwise order on Σ. For i ∈ {0, . . . , s− 1},
let Ai = Σ

xi+2 mod s

xi,xi+1 mod s
. Since m > n + 1, there exists k ∈ {0, . . . , s − 1} such that |Ak ∩ V (P )| <
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|Ak ∩ V (Q)|. By (2), it follows that |Ak ∩ V (P )| = |Ak ∩ V (Q)| − 1. Let P ′ be the subpath of P
such that V (P ′) = V (P ) ∩ Ak. Let Q′ be the subpath of Q such that V (Q′) ∩ Ak = {xi, xi+1}. Then
x1 − P ′ − x2 −Q′ − x1 is a hole of length m− 1.

This proves (1) and the first assertion of 4.1. Since every hole in a Berge trigraph has even length,
the second assertion of 4.1 follows immediately from the first. This concludes the proof of 4.1.

4.2. Let G be a Berge circular interval trigraph. If G has a hole of length n with n ≥ 6, then G is a
structured circular interval trigraph.

Proof. Let G be a Berge circular interval trigraph. Let X1, . . . , Xn and Y1, . . . , Yn be pairwise disjoint
cliques satisfying (S2) − (S6) and with |

⋃
i(Xi ∪ Yi)| maximum. Such sets exist since there is a hole of

length n in G. Moreover since G is Berge, it follows that n is even. We may assume that V (G)\
⋃

i(Xi∪Yi)
is not empty. Let x ∈ V (G)\

⋃
i(Xi ∪ Yi).

For S ⊆ V (G)\{x}, we denote by SC the subset of S that is complete to x, and by SA the subset of
S that is anticomplete to x.

(1) If y ∈ XC
i and z ∈ XC

i+1 then y is strongly adjacent to z.

Assume not. We may assume y ∈ XC
1 and z ∈ XC

2 but y is antiadjacent to z. By (S4), Y1 = ∅. By
(S6), X2 is strongly complete to X3, and Xn is strongly complete to X1. Since {x|y, z,∪n−1i=4 Xi∪n−1i=3 Yi} is
not a claw, x is strongly anticomplete to X4, . . . , Xn−1, Y3, . . . , Yn−1. Since x−z−X3− . . .−Xn−1−y−x
is not a hole of length n+ 1, we deduce that x is strongly complete to at least one of X3 or Xn. Without
loss of generality, we may assume that x is strongly complete to X3. Since x−X3 −X4 − . . .−Xn − x
is not a hole of length n− 1, x is strongly anticomplete to Xn. Since {X3|X4, Y2, x} and {X3|X2, X4, x}
are not claws, we deduce that x is strongly complete to Y2 ∪X2.

For i = 3, . . . , n, let X ′i = Xi, for i = 1, . . . , n−1, let Y ′i = Yi. Let X ′2 = X2∪{x}, X ′1 = X1∪Y C
n and

Y ′n = Y A
n . Then X ′1, . . . , X

′
n, Y

′
1 , . . . , Y

′
n are disjoint cliques satisfying (S2)−(S6) but with |

⋃
i(Xi∪Yi)| <

|
⋃

i(X
′
i ∪ Y ′i )|, a contradiction. This proves (1).

(2) If XC
i 6= ∅ and XC

i+2 6= ∅ then XA
i+1 = ∅.

Assume not. We may assume y ∈ XC
n and z ∈ XC

2 and w ∈ XA
1 . Since {x|y, z,∪n−2i=4 Xi} is not a claw

by (S6), x is strongly anticomplete to X4, . . . , Xn−2. Assume that C = x−X3− . . .−Xn−1−x is a hole.
Then C has length n−2, but w is strongly anticomplete to V (C)\{x}, contrary to 2.6. Thus x is strongly
anticomplete to at least one of X3 or Xn−1. By symmetry, we may assume that x is strongly anticomplete
to X3. Since x−X2−X3− . . .−Xn−1−x is not a hole length n− 1, x is strongly anticomplete to Xn−1.
By (S6) and symmetry, we may assume that X1 is strongly complete to X2. But now {z|X3, x, w} is a
claw, a contradiction. This proves (2).

(3) If XC
i 6= ∅, then XC

i+2 = ∅.

Assume not. We may assume there exist y ∈ XC
n and z ∈ XC

2 . By (2), x is strongly complete to
X1. Since {x|y, z,∪n−2i=4 Xi ∪n−2j=3 Yj} is not a claw by (S6), it follows that x is strongly anticomplete to
X4, . . . , Xn−2 and Y3, . . . , Yn−2.

If XC
3 6= ∅, then either {x|X1, X3, Xn−1} is a claw or x−X3 −X4 − . . .−Xn − x is a hole of length

n−1 and therefore odd, hence x is strongly anticomplete to X3. By symmetry, x is strongly anticomplete
to Xn−1. Since {z|X3, x, Y1} and {y|Xn−1, x, Yn} are not claws, x is strongly complete to Y1 ∪ Yn.

For i = 3, . . . , n− 1, let X ′i = Xi and for i = 1, 3, 4, . . . , n− 2, n, let Y ′i = Yi. Let X ′2 = X2 ∪ Y C
2 , let

X ′1 = X1 ∪ {x}, let Y ′2 = Y A
2 , let X ′n = Xn ∪ Y C

n−1 and let Y ′n−1 = Y A
n−1.

Clearly X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n are disjoint cliques such that |

⋃
i(Xi∪Yi)| < |

⋃
i(X

′
i∪Y ′i )|. The above

arguments show that X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n satisfy (S2) and (S5). To get a contradiction, we need to

show that X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n satisfy (S3), (S4) and (S6).
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Since {x|Xn, Y1, Y
C
2 } is not a claw, we deduce that either Y1 = ∅ or Y C

2 = ∅. In both cases, it implies
that Y ′1 is strongly complete to X ′2. Symmetrically, Y ′n is strongly complete to X ′n−1. Hence, (S3) is
satisfied.

It remains to prove the following.

(i) If Y1 6= ∅, then X ′1 is strongly complete to X ′2

(ii) If Yn 6= ∅, then X ′n is strongly complete to X ′1

(iii) X ′2 is strongly complete to at least one of X ′3, X ′1.

(iv) X ′n is strongly complete to at least one of X ′n−1, X ′2.

(v) X ′1 is strongly complete to at least one of X ′n, X ′2.

Assume that Y1 6= ∅. It implies by (S4), that X1 is strongly complete to X2. Since {x|Yn, Y1, Y C
2 } is not

a claw, we deduce that Y C
2 = ∅. Since x− Y1 −XA

2 −X3 − . . .−Xn − x is not a hole of length n+ 1, we
deduce that XA

2 = ∅ and thus X ′1 is strongly complete to X ′2. This proves i) and by symmetry ii) holds.
If Y C

2 6= ∅, it follows by (S4) that X ′2 is strongly complete to X ′3 and iii) holds. Thus we may assume
that Y C

2 is empty. If XA
2 is empty, and since by (S6), X2 is strongly complete to at least one of X1, X3,

it follows that X ′2 is strongly complete to at least one of X ′1, X
′
3. Thus we may assume that XA

2 6= ∅.
Since x− Y1 −XA

2 −X3 − . . .−Xn − x is not a hole of length n+ 1, we deduce that Y1 = ∅.
Assume that there exist w ∈ X2 and v ∈ X3 such that w is antiadjacent to v. Suppose first that

w ∈ XC
2 . Since x− w −XA

2 − v −X4 − . . .−Xn − x is not a cycle of length n+ 1, we deduce that v is
strongly anticomplete to XA

2 . By (S5), there exists a ∈ XC
2 adjacent to v. But {a|x, v,XA

2 } is a claw, a
contradiction. Thus we may assume that w ∈ XA

2 and v is strongly complete to XC
2 . But {z|x, v, w} is a

claw, a contradiction. Hence X2 is strongly complete to X3. This proves iii) and by symmetry iv) holds.
We claim that x is strongly complete to at least one of X2 or Xn. Suppose that p ∈ XA

n and q ∈ XA
2 .

By (S5) and (S6), there is r ∈ X1 that is adjacent to both p and q. But {r|p, q, x} is a claw, a contradic-
tion. This proves the claim. By symmetry we may assume that x is strongly complete to Xn. By (1),
Xn is strongly complete to X1. If Y C

n−1 = ∅, it follows that X ′1 is strongly complete to X ′n and v) holds.
Thus we may assume that Y C

n−1 6= ∅. Since {x|X1, Y
C
n−1, Y

C
2 } is not a claw, we deduce that Y C

2 = ∅.
Since x − Y C

n−1 −Xn−1 − . . . −X3 −XA
2 −X1 − x is not a hole of length n + 1, we deduce that XA

2 is
empty. By (1), X1 is strongly complete to X2 and thus X ′1 is strongly complete to X ′2. This proves v).
This concludes the proof of (3).

Let C = x1 − x2 − . . .− xn − x1 be a hole of length n with xi ∈ Xi. By 2.6, x is strongly adjacent to
two consecutive vertices of C. Without loss of generality, we may assume that x is strongly complete to
{x1, x2}. By (1), x1 is strongly adjacent to x2. By (3), x is strongly anticomplete to X3∪X4∪Xn−1∪Xn.
Since G|({x}

⋃
iXi) does not contain an induced a cycle of length p 6= n by 4.1, we deduce that x is

strongly anticomplete to Xi for i = 5, . . . , n− 2. Similarly, x is strongly anticomplete to Y3 ∪ . . . ∪ Yn−1
otherwise there is a hole of length p 6= n in G.

Since x− Y2 −X3 − . . .−Xn −X1 − x and x− Yn −Xn − . . .−X2 − x are not holes of length n+ 1,
we deduce that x is strongly anticomplete to Y2 ∪ Yn.

Since {XC
2 |XA

1 , x,X3} and {XC
1 |XA

2 , x,Xn} are not claws, it follows that XA
1 is strongly anticomplete

to XC
2 and XC

1 is strongly anticomplete to XA
2 . Suppose there is a ∈ XA

1 . By (S5), there is b ∈ XA
2

adjacent to a. But G|({x1, x2, a, b} is a hole of length 4 strongly anticomplete to X4, contrary to 2.6.
Thus XA

1 = XA
2 = ∅ and by (1), X1 is strongly complete to X2. Since {X1|x, Y1, Xn} is not a claw, we

deduce that x is strongly complete to Y1.
For i = 1, . . . , n, let X ′i = Xi, for i = 2, . . . , n, let Y ′i = Yi and let Y ′1 = Y1∪{x}. The above arguments

show that X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n are cliques satisfying (S2)− (S6) but |

⋃
i(Xi ∪ Yi)| < |

⋃
i(X

′
i ∪ Y ′i )|, a

contradiction. This concludes the proof of 4.2.
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We now have all the tools to prove theorem 2.1.

Proof of 2.1. We may assume that G is not a linear interval trigraph and not a cobipartite trigraph.
By 2.5, there is an essential triangle or a hole in G. Then by 2.8, 3.1 and 4.2, G is either a structured
circular interval trigraph or is a thickening of a trigraph in C. This proves 2.1.

5 Some Facts about Linear Interval Join

In this section we prove some lemmas about paths in linear interval stripes.

5.1. Let G be a linear interval join with skeleton H such that G is Berge. Let e be an edge of H that is
in a cycle. Let η(e) = V (T )\Z where (T,Z) is a thickening of a linear interval stripe (S, {x1, xn}). Then
the lengths of all paths from x1 to xn in (S, {x1, xn}) have the same parity.

Proof. Assume not. Let C = c0−c1− . . .−cn−c0 be a cycle in H such that e = c0cn. For i = 0, . . . , n−1,
let cici+1 = ei, (Gei , {x1i , x2i }) be such that η(ei) = V (Gei)\{x1i , x2i }, φei(ci) = x1i and φei(ci+1) = x2i
as in the definition of a linear interval join. We may assume that φe(cn) = x1 and φe(c0) = xn. Let
O = x1 − o1 − . . .− ol−1 − xn be an odd path from x1 to xn in S and P = x1 − p1 − . . .− pl′−1 − xn be
an even path from x1 to xn in S. For i = 0, 1, . . . , n− 1, let Qi be a path in Gei from x1i to x2i . Let Q′i
be the subpath of Qi with V (Q′i) = V (Qi)\{x1i , x2i }.

Let C1 = Xo1 − . . .−Xol−1
−Q′0 −Q′1 − . . .−Q′n−1 −Xo1 and C2 = Xp1

− . . .−Xpl′−1
−Q′0 −Q′1 −

. . .−Q′n−1 −Xp1 . Then one of C1, C2 is an odd hole in G, a contradiction. This proves 5.1.

Before the next lemma, we need some additional definitions. Let (G, {x1, xn}) be a linear interval
stripe. The right path of G is the path R = r0 − . . . − rp (where r0 = x1 and rp = xn) defined
inductively starting with i = 1 such that ri = xi∗ with i∗ = max{j|xj is adjacent to ri−1} (i.e. from ri
take a maximal edge on the right to ri+1). Similarly the left path of G is the path L = l0 − . . . − lp
(where l0 = x1 and lp = xn) defined inductively starting with i = p − 1 such that li = xi∗ with
i∗ = min{j|xj is adjacent to li+1}.

5.2. Let (G, {x1, xn}) be a linear interval stripe and R be the right path of G. If x, y ∈ V (R), then
x−R− y is a shortest path between x and y.

Proof. Let P = x−p1−. . .−pt−1−y be a path between x and y of length t and let x−rl−. . .−rs+l−2−y =
x− R − y. By the definition of R and since G is a linear interval stripe, we deduce that rl+i−1 ≥ pi for
i = 1, . . . , s− 1. Hence it follows that s ≤ t. This proves 5.2.

5.3. Every linear interval trigraph is Berge.

Proof. Let G be a linear interval trigraph with V (G) = {v1, . . . , vn}. The proof is by induction on the
number of vertices. Clearly H = G|{v1, . . . , vn−1} is a linear interval trigraph, so inductively H is Berge.
Since G is a linear interval trigraph, it follows that N(vn) is a strong clique. But if A is an odd hole or an
odd antihole in G, then for every a ∈ V (A), it follows that N(a)∩V (A) is not a strong clique. Therefore
vn /∈ V (A) and consequently G is Berge. This proves 5.3.

5.4. Let (G, {x1, xn}) be a linear interval stripe. Let S and Q be two paths from x1 to xn of length s and
q such that s < q. Then there exists a path of length m from x1 to xn in G for all s < m < q.

Proof. Let G′ be a circular interval trigraph obtained from G by adding a new vertex x as follows:

• V (G′) = V (G) ∪ {x},

• G′|V (G) = G,

• x is strongly anticomplete to V (G)\{x1, xn},
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• x is strongly complete to {x1, xn}.

Let s < m < q, C1 = x1−S−xn−x−x1 and C2 = x1−Q−xn−x−x1. Clearly, C1 and C2 are holes of
length s+ 2 and q + 2 in G′. By 4.1, there exists a hole Cm of length m+ 2 in G′. Since it is easily seen
from the definition of linear interval trigraph that there is no hole in G, we deduce that x ∈ V (Cm). Let
Cm = x− c1 − c2 − . . .− cm+1 − x. Since N(x) = {x1, xn}, we may assume that c1 = x1 and cm+1 = xn.
But now x1 − c2 − . . .− cm − xn is a path of length m from x1 to xn in G. This proves 5.4.

We say that a linear interval stripe (G, {x1, xn}) has length p if all paths from x1 to xn have length p.

5.5. Let (G, {x1, xn}) be a linear interval stripe of length p. Let L = l0 − . . .− lp and R = r0 − . . .− rp
be the left and right paths. Then r0 < l1 ≤ r1 < l2 ≤ r2 < . . . < lp−1 ≤ rp−1 < lp.

Proof. Since G is a linear interval trigraph and by the definition of right path, it follows that r0 < r1 <
r2 < . . . < rp.

We claim that if li ∈ (ri−1, ri], then li−1 ∈ (ri−2, ri−1]. Assume that li ∈ (ri−1, ri]. Since ri−1 is
adjacent to ri, we deduce that li is adjacent to ri−1. By the definition of the left path, li−1 ≤ ri−1. Since
ri−1 < li and by the definition of the right path, we deduce that ri−2 is strongly antiadjacent to li. Since
G is a linear interval trigraph, we deduce that li−1 > ri−2. This proves the claim.

Now, since lp ∈ (rp−1, rp] and using the claim inductively, we deduce that ri−1 < li ≤ ri for i =
1, . . . , p. This proves 5.5.

5.6. Let (G, {x1, xn}) be a linear interval stripe of length p. Let L = l0−. . .−lp and R = r0−. . .−rp be the
left and right paths. Then [r0, li) is strongly anticomplete to [li+1, lp] and [r0, ri] is strongly anticomplete
to (ri+1, lp] for i = 0, . . . , p.

Proof. Assume not. By symmetry, we may assume that there exist i, a ∈ [r0, li) and b ∈ [li+1, lp] such
that a is adjacent to b. Since li+1 ∈ (a, b] and since G is a linear interval trigraph, we deduce that li+1 is
adjacent to a. But a < li, contrary to the definition of the left path. This proves 5.6.

5.7. Let (G, {x1, xn}) be a linear interval stripe of length p ≥ 3. Let L = l0− . . .− lp and R = r0− . . .−rp
be the left and right paths. If li and ri+1 are strongly adjacent for some 0 < i < p, then G admits a
1-join.

Proof. Let i be such that li and ri+1 are strongly adjacent. Since G is a linear interval trigraph, we
deduce that [li, ri+1] is a strong clique. By 5.6, it follows that [r0, li) is strongly anticomplete to (ri+1, rp].

Suppose there exists x ∈ [li, ri+1] that is adjacent to a vertex a ∈ [r0, li) and b ∈ (ri+1, rp]. By 5.6, it
follows that a is strongly anticomplete to [li+1, lp] and thus x ∈ [li, li+1). Symmetrically, x ∈ (ri, ri+1].
Hence by 5.5, we deduce that x ∈ (ri, li+1). By the definition of the right path and since a is adjacent to
x, we deduce that a /∈ [r0, ri−1]. Hence a ∈ (ri−1, li). By symmetry, b ∈ (ri+1, li+2).

We claim that P = r0 − R − ri−1 − a − x − b − li+2 − L − lp is a path. Since ri−1 < a and by the
definition of the right path, we deduce that ri−2 is strongly antiadjacent to a. Since b < li+2 and by the
definition of the left path, we deduce that b is strongly antiadjacent to li+3. By 5.6 and since a ∈ (ri−1, li)
and b ∈ (ri+1, li+2), it follows that a and b are strongly antiadjacent. Moreover since x ∈ (ri, li+1) and by
the definition of the left and right path, we deduce that x is strongly anticomplete to {ri−1, li+2}. This
proves the claim.

But P is an path of length p+1, a contradiction. Hence for all x ∈ [li, ri+1], x is strongly anticomplete
to at least one of [r0, li), (ri+1, rp].

Let V1 = {x ∈ [li, ri+1] : x is strongly anticomplete to (ri+1, rp]} and V2 = [li, ri+1]\V1. The above
arguments shows that ([r0, li) ∪ V1, (ri+1, rp] ∪ V2) is a 1-join. This proves 5.7.

5.8. Let (G, {x1, xn}) be a linear interval stripe of length p with p > 3, then G admits a 1-join.
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Proof. Assume not. Let L = l0 − . . .− lp and R = r0 − . . .− rp be the left and right paths. If r2 = l2, it
follows that r2 is strongly adjacent to at least one of l1, r3, contrary to 5.7. Thus by 5.5, we may assume
that l2 < r2.

By 5.7, we may assume that l1 is antiadjacent to r2 and l2 is antiadjacent to r3. By 5.5, it follows
that l2 ∈ (r1, r2). Since G is a linear interval trigraph, we deduce that l2 is adjacent to r2. Hence
l0 − l1 − l2 − r2 −R− rp is a path of length p+ 1, a contradiction. This proves 5.8.

5.9. Let (G, {x1, xn}) be a linear interval stripe of length three, and (H,Z) a thickening of (G, {x1, xn}).
Then either H admits a 1-join or (H,Z) is the thickening of a spring.

Proof. Let L = l0− l1− l2− l3 and R = r0− r1− r2− r3 be the left and right paths of G. If l1 is strongly
adjacent to r2 then by 5.7, G admits a 1-join, and so does H.

Thus, we may assume that l1 is not strongly adjacent to r2. Suppose that there exists a ∈ (r1, l2).
Since a > r1, we deduce that a is strongly antiadjacent to r0. Symmetrically, a is strongly antiadjacent
to l3. By 5.5, it follows that a ∈ (l1, l2). Since G is a linear interval trigraph, we deduce that a is adjacent
to l1. Symmetrically, a is adjacent to r2. Hence r0− l1− a− r2− l3 is a path of length 4, contrary to the
fact that (G, {x1, xn}) has length 3. Thus (r1, l2) = ∅.

Since r0 is strongly adjacent to r1 and as G is a linear interval trigraph, we deduce that (r0, r1] is a
strong clique, and moreover, that r0 is strongly complete to (r0, r1]. By 5.6, it follows that r0 is strongly
anticomplete to [l2, l3]. By symmetry and since V (G) = {r0, l3} ∪ (r0, r1] ∪ [l2, l3), the above arguments
show that ((r0, r1], [l2, l3)) is a homogeneous pair. Moreover by 5.5, l1 ∈ (r0, r1] and r2 ∈ [l2, l3). Since l1
is antiadjacent to r2, we deduce that (r0, r1] is not strongly complete to [l2, l3). Since r2 ∈ [l2, l3) and by
the definition of the right path, we deduce that (r0, r1] is not strongly anticomplete to [l2, l3).

Now setting Xw = {l0}, Xx = (r0, r1], Xy = [l2, l3) and Xz = {r3}, we observe that (G, {x1, xn}) is
the thickening of a spring, and therefore (H,Z) is the thickening of a spring. This proves 5.9.

6 Proof of the Main Theorem

In this section we collect the results we have proved so far, and finish the proof of the main theorem.

6.1. Let (G, {x}) be a connected cobipartite bubble. Then (G, {x}) is a thickening of a truncated spot, a
thickening of a truncated spring or a thickening of a one-ended spot.

Proof. Let X and Y be two disjoint strong cliques such that X ∪ Y = V (G). We may assume that
{x} ⊆ X. If {x} ∪ N(x) = V (G), it follows that N(x) is a homogeneous set. Hence (G, {x}) is the
thickening of a truncated spot.

Thus we may assume that {x}∪N(x) 6= V (G). Let Y1 = Y ∩N(x) and Y2 = Y \Y1. Then x is strongly
complete to Y1 and strongly anticomplete to Y2. Observe that (N(x), Y2) is a homogeneous pair. Since
G is connected, we deduce that |N(x)| ≥ 1 and that N(x) is not strongly anticomplete to Y2. If N(x)
is strongly complete to Y2, we observe that (G, {x}) is a thickening of a one-ended spot. And otherwise,
we observe that (G, {x}) is a thickening of a truncated spring. This concludes the proof of 6.1.

6.2. Let (G, {z}) be a stripe such that G is a thickening of a trigraph in C. Then (G, {z}) is in C′.

Proof. Let H be a trigraph in C such that G is a thickening of H. For i, j = 1, 2, 3, let Bj
i ⊆ V (H)

and ai ∈ V (H) be as in the definition of C. For i = 1, 2, 3, let Xai ⊂ V (G) be as in the definition of a
thickening. For b ∈ V (G)\(Xa1

∪Xa2
∪Xa3

) and since there exists i such that Xai
∪Xai+1

⊆ N(b), and
Xai

is not strongly complete to Xai+1
, we deduce that b /∈ {z}. Thus there exists k ∈ {1, 2, 3} such that

z ∈ Xak
. Since

⋃3
i=1(B1

k ∪ Bi
k+1) ⊆ N(z) and since there exists no c ∈ Xak+1

∪ Xak+2
with c strongly

complete to
⋃3

i=1(B1
k ∪Bi

k+1), we deduce that N(z) ∩ (Xak+1
∪Xak+2

) = ∅. Since Bk+2
k+1 is anticomplete

to Bk+2
k and Bk+2

k+1 ∪B
k+2
k ⊆ N(z), we deduce from the definition of C that Bk+2

k+1 ∪B
k+2
k = ∅. Hence we

deduce that (G, {z}) is in C′. This proves 6.2.
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6.3. Let G be a trigraph and let H be a thickening of G. For v ∈ V (G), let Xv be as in the definition of
thickening of a trigraph. Let C = c1 − c2 − . . . − cn − c1 be an odd hole or an odd antihole of H. Then
|V (C) ∩Xv| ≤ 1 for all v ∈ V (G).

Proof. Assume not. We may assume that |V (C) ∩Xx| ≥ 2 with x ∈ V (G).
Assume first that C is a hole. By symmetry, we may assume that c1, c2 ∈ Xx. Since c3 is antiadjacent

to c1 and adjacent to c2, we deduce that there exists y ∈ V (G) such that x is semiadjacent to y and
c3 ∈ Xy. By symmetry, and since x is semiadjacent to at most one vertex in G, we deduce that cn ∈ Xy,
a contradiction since Xy is a strong clique.

Assume now that C is an antihole. By symmetry, we may assume that there exists k ∈ {3, . . . , n− 1}
such that c1, ck ∈ Xx. Moreover we may assume by symmetry that k is even.

(1) For i ∈ {1, . . . , k/2}, if i is odd then ci, ck−i+1 ∈ Xx, and there exists y ∈ V (G) such that if i is even
then ci, ck−i+1 ∈ Xy.

By induction on i. By assumption, c1, ck ∈ Xx. Since c2 is adjacent to ck and antiadjacent to c1, we
deduce that there exists y ∈ V (G) such that x is semiadjacent to y in G and c2 ∈ Xy. By symmetry, and
since x is semiadjacent to at most one vertex in G, we deduce that ck−1 ∈ Xy.

Now let i ∈ {3, . . . , k/2} and assume first that i is odd. By induction, we may assume that
ci−1, ck−i+2 ∈ Xy. Since ci is adjacent to ck−i+2 and antiadjacent to ci−1, we deduce that ci ∈ Xx

since y is semiadjacent only to x in G. By symmetry, we deduce that ck−i+1 ∈ Xx. Now if i is even, the
same argument holds by symmetry. This proves (1).

By (1), there exists z ∈ {x, y} such that ck/2, ck/2+1 ∈ Xz, a contradiction. This concludes the proof
of 6.3.

6.4. Let G be a trigraph and let H be a thickening of G. Then G is Berge if and only if H is Berge.

Proof. If C = c1−c2−. . .−cn−c1 is an odd hole (resp. antihole) in G then C ′ = Xc1−Xc2−. . .−Xcn−Xc1

is an odd hole (resp. antihole) in H.
Now assume that C = c1 − c2 − . . .− cn − c1 is an odd hole or an odd antihole in H. By 6.3, there is

xi ∈ V (G) such that ci ∈ Xxi for i = 1, . . . , n and such that xi 6= xj for all i 6= j. But x1−x2−. . .−xn−x1
is an odd hole or an odd antihole in G. This proves 6.4.

6.5. Let G be a structured circular interval trigraph. Then G is Berge.

Proof. Assume not. For i = 1, . . . , n, let Xi and Yi be as in the definition of structured circular interval
trigraph. Let C = c1− . . .− cn− c1 be an odd hole or an odd antihole in G. Since N(y) is a strong clique
for all y ∈

⋃n
i=1 Yi, we deduce that V (C)∩

⋃n
i=1 Yi = ∅. But by 6.3 and (S1)-(S6), we get a contradiction.

This proves 6.5.

6.6. Let G be a structured circular interval trigraph. Then G is a thickening of an evenly structured
linear interval join.

Proof. Let X1, . . . , Xn, Y1, . . . , Yn and n be as in the definition of structured circular interval trigraph.
Throughout this proof, the addition is modulo n.

Let H = (V,E) be a graph and s be a signing such that:

• V ⊆ {h1, h2, . . . , hn} ∪ {l11, . . . , l
|Y1|
1 } ∪ . . . ∪ {l1n, . . . , l

|Yn|
n },

• if Xi is not strongly complete to Xi+1, then hi+1 /∈ V , and there is exactly one edge ei between hi
and hi+2, and s(ei) = 0,

• if Xi is strongly complete to Xi−1 ∪ Xi+1, then there are |Xi| edges e1i , . . . , e
|Xi|
i between hi and

hi+1, and s(eki ) = 1 for k = 1, . . . , |Xi|,
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• if hi ∈ V , there is one edge between hi and lki−1 with s(hil
k
i−1) = 1 for k = 1, . . . , |Yi−1|.

Then G is an evenly structured linear interval join with skeleton H and such that each stripe associated
with an edge e with s(e) = 1 is a spot. This proves 6.6.

We can now prove the following.

6.7. Let G be a linear interval join. Then G is Berge if and only if G is an evenly structured linear
interval join.

Proof.

⇐ Let G be an evenly structured linear interval join. We have to show that G is Berge. By 5.3, linear
interval stripes are Berge. By 2.7 and 6.4, trigraphs in C′ are Berge. By 6.5, structured bubbles are
Berge. Clearly spots, truncated spots, one-ended spots and truncated springs are Berge. By 6.4
and due to the construction of evenly structured linear interval join, the only holes created are of
even length due to the signing. Thus G is Berge.

⇒ Let G be a Berge linear interval join. Let H be a skeleton of G. We may assume that H is chosen
among all skeletons of G such that |V (H)| is maximum and subject to that with |E(H)| maximum.
Let (Ge, Ye), e = x1x2 (with x1 = x2 if e is a loop) and φe : V (e)→ Ye be associated with H as in
the definition of linear interval join.

(1) If (Ge, Ye) is a thickening of a linear interval stripe such that e is in a cycle in H but e is not
a loop, then Ge does not admit a 1-join.

Assume not. Let Ye = {y, z} and e = x1x2. We may assume that φe(x1) = y and φe(x2) = z.

Let H ′ be the graph obtained from H by adding a new vertex a′ as follows: V (H ′) = V (H)∪ {a′},
H ′|V (H) = H\e and a′ is adjacent to x1 and x2, and to no other vertex.

Let (Fe, Ze) be a linear interval stripe such that (Ge, Ye) is a thickening of (Fe, Ze) and such that
Fe admits a 1-join. Let V1, V2, A1, A2 ⊂ V (Fe) be as in the definition of 1-join. Moreover let
W1,W2 be the natural partition of V (Ge) such that Ge|Wk is a thickening of Fe|Wk for k = 1, 2
and (W1,W2) is a 1-join. We may assume that V (Fe) = {v1, . . . , vn}, V1 = {v1, . . . , vk} and
V2 = {vk+1, . . . , vn}. Let F 1

e be such that V (F 1
e ) = {v1, . . . , vk, v′k+1}, F 1

e |V1 = Fe and v′k+1 is
complete to A1 and anticomplete to V1\A1. Let (G1

e, Y
1
e ) be the thickening of (F 1

e , {v1, v′k+1}) such
that G1

e\Y 1
e = Ge|(W1\Ye). Let F 2

i be such that V (F 2
e ) = {v′k, vk+1, . . . , vn}, F 2

e |V2 = Fe and v′k is
complete to A2 and anticomplete to V2\A2. Let (G2

e, Y
2
e ) be the thickening of (F 2

e , {v′k, vn}) such
that G2

e\Y 2
e = Ge|(W2\Ye).

Now G is a linear interval join with skeleton H ′ using the same stripes as the construction with
skeleton H except for stripe (G1

e, Y
1
e ) and (G2

e, Y
2
e ) associated with the edges a′x1 and a′x2, contrary

to the maximality of |V (H)|. This proves (1).

Let s be a signing of G such that s(e) = 1 if (Ge, Ye) is a spot, and s(e) = 0 if (Ge, Ye) is not a
spot.

It remains to prove that:

(P1) if e is not a loop and is in a cycle and s(e) = 0, then (Ge, Ye) is a thickening of a spring, and

(P2) (H, s) is an even structure,

(P3) if e is a loop, then (Ge, Ye) is a trigraph in C′.
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First we prove (P1). Let e = x1x2 be in a cycle and such that s(e) = 0 and e is not a loop. Let
(Ge, Ye) be a thickening of a linear interval stripe such that e has been replaced by (Ge, Ye) in the
construction. Let Ye = {y, z}. We may assume that φe(x1) = y and φe(x2) = z. By 5.1 and 5.4,
if e ∈ H is in a cycle, then all paths from y to z have the same length. By (1), (Ge, Ye) does not
admit a 1-join, and thus by 5.8 and 5.9, (Ge, Ye) is the thickening of a spring. This proves (P1).

Before proving (P2). We need the following claims.

(2) Let C = c1− c2− c3− c1 be a cycle in H with edge set E(C) = {e1, e2, e3}. If s(e1) = s(e2) = 0
and s(e3) = 1, then there is an odd hole in G.

By (P1), (Ge1 , Ye1) and (Ge2 , Ye2) are springs. It follows that the springs (Ge1 , Ye1) and (Ge2 , Ye2)
together with the spot (Ge3 , Ye3) induce a hole of length 5 in G, a contradiction. This proves (2).

(3) Let C = c1 − c2 − . . .− cn − c1 be a cycle in H such that n > 3 and such that
∑

e∈E(C) s(e) is
odd; then there is an odd hole in G.

The proof of (3) is similar to the proof of (2) and is omitted.

(4) Let {z1, z2, z3} be a triangle in H. For i = 1, 2, 3, let ei be an edge between zi and zi+1 mod 3

such that s(ei) = 1. If y ∈ V (H)\{z1, z2, z3} is adjacent to at least two vertices in {z1, z2, z3}, then
s(f) = 1 for every edge f with one end y and the other end in {z1, z2, z3}.

Assume that there is an edge e4 with one end y and the other end in {z1, z2, z3} with s(e4) = 0. By
symmetry, we may assume that z1 is an end of e4. By symmetry, we may also assume that there is
an edge e5 between y and z2. If s(e5) = 0, we deduce by (2) using y − z1 − z2 − y that there is an
odd hole in G, a contradiction. But if s(e5) = 1, we deduce by (2) using y − z1 − z3 − z2 − y that
there is an odd hole in G, a contradiction. This proves (4).

(5) Let A be a block of H. Assume that there is a cycle C = c1−c2−c3−c1 in H such that s(e) = 1
for all e ∈ E(C). Then all connected components of A\V (C) have size 1.

Let B be a connected components of A\V (C) such that |B| > 1. Since B∪{c1, c2, c3} is 2-connected,
there are at least 2 vertices in B that are not anticomplete to {c1, c2, c3}. Similarly, there are at
least 2 vertices in {c1, c2, c3} that are not anticomplete to B. Hence, we can find bi, bj ∈ B such
that bi is adjacent to ci and bj is adjacent to cj with i 6= j. By symmetry, we may assume that
i = 1 and j = 2. Since B is connected, we deduce that there is a path P from b1 to b2 in B. But
C1 = c3− c1− b1−P − b2− c2− c3 and C2 = c1− b1−P − b2− c2− c1 are cycles of length greater
than 3 and one of them has an odd value, thus by (3) there is an odd hole in G, a contradiction.
This proves (5).

Now we prove (P2). We need to prove that every block of H is either a member of F1 ∪ F2 ∪ F3

or an evenly signed graph. Let A be such a block and assume that (A, s|A) is not an evenly signed
graph. It follows that there exists a cycle C = c1 − c2 − . . . − cn − c1 in A of odd value. By (3)
and (2), we deduce that C has length 3 and s(e) = 1 for all edges e ∈ E(C).

By (2), if |V (A)| = 3 we deduce that A is a member of F1. Hence we may assume that there is
c4 ∈ A. By (5) and by symmetry, we deduce that c4 is adjacent to both c1 and c2. By (4), we
deduce that s(e) = 1 for all edges e between {c1, c2, c3} and c4.

Assume first that c4 is adjacent to c3. Assume that |V (A)| > 4. Since A is connected, there is
y ∈ A\{c1, c2, c3, c4} such that y is not anticomplete to {c1, c2, c3, c4}. Let {i, j, k, l} = {1, 2, 3, 4}.
Since there is a cycle Cijk = ci− cj − ck − ci of length 3 with s(e) = 1 for all edges e ∈ E(Cijk), we
deduce by (5) that y is not adjacent to cl. Hence y is anticomplete to {c1, c2, c3, c4}, a contradiction.
It follows that |V (A)| = 4. Assume now that there is an edge e in A with s(e) = 0. By symmetry,
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we may assume that e is between c1 and c2. Now c1 − c2 − c3 − c4 − c1, is a cycle of length 4 of
odd value. By (3), it follows that G has an odd hole, a contradiction. Hence s(e) = 1 for all edges
e in A and we deduce that A is a member of F2.

Assume now that c4 is not adjacent to c3. By (5), we deduce that E(A\{c1, c2, c3}) = ∅. Similarly
by (5), it follows that E(A\{c1, c2, c4}) = ∅. Since A is 2-connected, it follows that {c1, c2} is
complete to V (A)\{c1, c2}. By (4), we deduce that s(f) = 1 for all edges f between {c1, c2} and
V (A)\{c1, c2}. Hence A is a member of F3. This proves (P2).

Finally we prove (P3). Let e be a loop. Let (Ge, Ye) be a thickening of a bubble such that e has
been replaced by (Ge, Ye) in the construction. Let Ye = {y}. Let (F,W ) be a bubble such that
(Ge, Ye) is a thickening of (F,W ). By 2.1, F is a linear interval trigraph, a cobipartite trigraph, a
structured circular interval trigraph or a thickening of a trigraph in C.
Assume first that F is a linear interval trigraph. Let {v1, . . . , vn} be the set of vertices of F .
Let k ∈ {1, . . . , n} be such that {vk} = W . For vi ∈ V (F ), let Xvi ⊂ V (Gi) be as in the
definition of a thickening. Let l < r be such that N(vk) = {vl, . . . , vr}. Assume that 1 < l
and r < n. Let H ′ be the graph obtained from H by adding two new vertices a1, a2 as follows:
V (H ′) = V (H)∪{a1, a2}, H ′|V (H) = H\e, a1 and a2 are adjacent to φ−1e (y) and to no other vertex.
Let Fl be such that V (Fl) = {v0, v1, . . . , vk}, Fl\v0 = F |{v1, . . . , vk} and v0 is adjacent to v1 and
to no other vertex. Let Fr be such that V (Fr) = {vk, . . . , vn, vn+1}, Fr\vn+1 = F |{vk, . . . , vn}
and vn+1 is adjacent to vn and to no other vertex. Let (Gl

e, Y
l
e ) be the thickening of (Fl, {v0, vk})

such that Gl
e\Y l

e = Ge|
⋃k−1

j=1 Xvj . Let (Gr
e, Y

r
e ) be the thickening of (Fr, {vk, vn+1}) such that

Gr
e\Y r

e = Ge|
⋃n

j=k+1Xvj . Now G is a linear interval join with skeleton H ′ using the same stripes

as the construction with skeleton H except for (Gl
e, Y

l
e ) and (Gr

e, Y
r
e ) instead of (Ge, Ye), contrary to

the maximality of |V (H)|. Hence by symmetry, we may assume that l = 1. Now let H ′ be the graph
obtained from H by adding a new vertex a′ as follows: V (H ′) = V (H)∪{a′}, H ′|V (H) = H\e and
a′ is adjacent to φ−1e (y) and to no other vertex. Let F ′ be such that V (F ′) = {v1, . . . , vn, vn+1},
F ′|V (F ) = F and vn+1 is adjacent to vn and to no other vertex. Let (G′e, Y

′
e ) be the thickening

of (F ′, {v1, vn+1}) such that G′e\Y ′e = Ge\Ye. Now G is a linear interval join with skeleton H ′

using the same stripes as the construction with skeleton H except for (G′e, Y
′
e ) instead of (Ge, Ye),

contrary to the maximality of |V (H)|. Hence F is not a linear interval trigraph.

Assume now that F is a structured circular interval trigraph. Using the same construction as in the
proof of 6.6, it is easy to see that there exist H ′ with |V (H ′)| > |V (H)| and a set of stripes S, such
that G is a linear interval join with skeleton H ′ using the stripes of S, contrary to the maximality
of |V (H)|. Hence F is not a structured circular interval trigraph.

Assume now that F is a cobipartite trigraph. Clearly any thickening of a cobipartite trigraph is a
cobipartite trigraph. By 6.1, (Ge, Ye) is a thickening of a truncated spot, a thickening of a truncated
spring or a thickening of a one-ended spot.

Assume that (Ge, Ye) is a thickening of a one-ended spot. Let Xv ⊂ V (Ge) be as in the definition
of a thickening. Let H ′ be the graph obtained from H by adding a new vertex a′ as follows:
V (H ′) = V (H) ∪ {a′}, H ′|V (H) = H\e, there is |Xv| edges between a′ and φ−1e (y), there is a loop
l on a′ and a′ is adjacent to no other vertex than φ−1e (y). Let the stripes associated with the edges
between a′ and φ−1e (y) be spots and let the stripe associated with the loop on a′ be a thickening
of a truncated spot. Now G is a linear interval join with skeleton H ′ using the same stripes as the
construction with skeleton H except for additional edges, contrary to the maximality of |V (H)|.
Hence (Gi, Yi) is not a thickening of a one-ended spot.

Assume now that (Ge, Ye) is a thickening of a truncated spot. Let H ′ be the graph obtained
from H by adding |V (Ge)| − 1 new vertices a1, . . . , a|V (Ge)|−1 as follows: V (H ′) = V (H) ∪
{a1, . . . , a|V (Ge)|−1}, H ′|V (H) = H\e, and for j ∈ {1, . . . , |V (Ge)| − 1}, aj is adjacent to φ−1e (y)
and to no other vertex. Now G is a linear interval join with skeleton H ′ using the same stripes
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as the construction with skeleton H and such that the stripes associated with the added edges are
spots, contrary to the maximality of |V (H)|. Hence (Ge, Ye) is not a thickening of a truncated spot.

Assume that (Ge, Ye) is a thickening of a truncated spring. Let H ′ be the graph obtained from H
by adding a new vertex a′ as follows: V (H ′) = V (H)∪{a′}, H ′|V (H) = H\e, and a′ is adjacent to
φ−1e (y) and no other vertex. Now G is a linear interval join with skeleton H ′ using the same stripes
as the construction with skeleton H and such that the stripe associated with the edge a′φ−1e (y) is
a spring, contrary to the maximality of |V (H)|. Hence (Ge, Ye) is not a thickening of a truncated
spring.

Finally assume that Ge is a thickening of a trigraph in C. By 6.2, it follows that (Ge, Ye) is in C′.
This concludes the proof of (P3).

Hence G is an evenly structured linear interval join.

This concludes the proof of 6.7.

A last lemma is needed for the proof of 1.4.

6.8. Let G be a cobipartite trigraph. Then G is a thickening of a linear interval trigraph.

Proof. Let Y,Z be two disjoint strong cliques such that Y ∪Z = V (G). Clearly (Y,Z) is a homogeneous
pair. Let H be the trigraph such that V (H) = {y, z} and

• y is strongly adjacent to z if Y is strongly complete to Z,

• y is strongly antiadjacent to z if Y is strongly anticomplete to Z,

• y is semiadjacent to z if Y is neither strongly complete nor strongly anticomplete to Z.

Now setting Y = Xy a nd Z = Xz, we observe that G is a thickening of H. Since H is clearly a linear
interval trigraph, it follows that G is a thickening of a linear interval trigraph. This proves 6.8.

Proof of 1.4. Let G be a Berge claw-free connected trigraph. By 1.3, G is either a linear interval join or a
thickening of a circular interval trigraph. By 2.1, if G is a thickening of a circular interval trigraph, then
G is a thickening of a linear interval trigraph, or a cobipartite trigraph, or a thickening of a member of C,
or G is a structured circular interval trigraph. But by 6.6, if G is a structured circular interval trigraph,
then G is an evenly structured linear interval join. By 6.8, if G is a cobipartite trigraph, then G is a
thickening of a linear interval trigraph. Moreover, any thickening of a linear interval trigraph is clearly
an evenly structured linear interval join. Finally by 6.7, if G is a linear interval join, then G is an evenly
structured linear interval join. This proves 1.4.
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