The Structure of Claw-Free Perfect Graphs

Maria Chudnovsky* Matthieu Plumettaz

December 17, 2013

Abstract

In 1988, Chvátal and Sbihi [4] proved a decomposition theorem for claw-free perfect graphs. They showed that claw-free perfect graphs either have a clique-cutset or come from two basic classes of graphs called elementary and peculiar graphs. In 1999, Maffray and Reed [6] successfully described how elementary graphs can be built using line-graphs of bipartite graphs using local augmentation. However gluing two claw-free perfect graphs on a clique does not necessarily produce claw-free graphs. In this paper we give a complete structural description of claw-free perfect graphs. We also give a construction for all perfect circular interval graphs.

1 Introduction

The class of claw-free perfect graphs was studied extensively in the past. The first structural result for this class was obtained by Chvátal and Sbihi in [4], where they proved that every claw-free Berge graph can be decomposed via clique-cutsets into two types of graphs: "elementary" and "peculiar". The structure of the peculiar graphs was determined precisely by their definition, but that was not the case for elementary graphs. Later Maffray and Reed [6] proved that an elementary graph is an augmentation of the line-graph of a bipartite multigraph, thereby giving a precise description of all elementary graphs. Their result, together with the result of Chvátal and Sbihi, gave an alternative proof of Berge's Strong Perfect Graph Conjecture for claw-free Berge graphs (the first proof was due to Parthasarathy and Ravindra [7]). However, this still does not describe the class of claw-free perfect graphs completely, as gluing two claw-free Berge graphs together via a clique-cutset may introduce a claw.

The purpose of this paper is to give a complete description of the structure of claw-free perfect graphs. Chudnovsky and Seymour proved a structure theorem for general claw-free graphs [2] and quasi-line graphs (which are a subclass of claw-free graphs) in [3]. Later we will show that every perfect claw-free graph is a quasi-line graph, however not all quasi-line graphs are perfect. The result of this paper refines the characterization of quasi-line graphs [3] to obtain a precise description of perfect quasi-line graphs. But before going further, we need to present some definitions.

Let $G=(V, E)$ be a graph. A clique in G is a set $X \subseteq V$ such that every two members of X are adjacent. A set $X \subseteq V$ is a stable set in G if every two members of X are antiadjacent. For $X \subseteq V$, we define the subgraph $G \mid X$ induced on X as the subgraph with vertex set X and edge set all edges of G with both ends in X. The chromatic number of G, denoted by $\chi(G)$, is defined as the smallest number of stable sets covering the vertices of G. The graph G is said to be perfect if for every induced subgraph G^{\prime} of G, the chromatic number of G^{\prime} is equal to the maximal clique size of G^{\prime}.

In this paper we study perfect graphs, which by the strong perfect graph theorem [1], is equivalent to studying Berge graphs (the definition of Berge graphs, and more generally Berge trigraphs will be given

[^0]later). Since it is easier in many cases to prove that a graph is Berge than to prove that the graph is perfect, in the rest of the paper we will only deal with Berge graphs. In fact, we will work with slightly more general objects than graphs called trigraphs. A trigraph G consists of a finite set $V(G)$ of vertices, and a map $\theta_{G}: V(G)^{2} \rightarrow\{-1,0,1\}$, satisfying:

- for all $v \in V(G), \theta_{G}(v, v)=0$.
- for all distinct $u, v \in V(G), \theta_{G}(u, v)=\theta_{G}(v, u)$
- for all distinct $u, v, w \in V(G)$, at most one of $\theta_{G}(u, v), \theta_{G}(u, w)$ equals 0 .

For distinct $u, v \in V(G)$, we say that u, v are strongly adjacent if $\theta_{G}(u, v)=1$, strongly antiadjacent if $\theta_{G}(u, v)=-1$, and semiadjacent if $\theta_{G}(u, v)=0$. We say that u, v are adjacent if they are either strongly adjacent or semiadjacent, and antiadjacent if they are either strongly antiadjacent or semiadjacent. Also, we say that u is adjacent to v if u, v are adjacent, and that u is antiadjacent to v if u, v are antiadjacent. For a vertex a and a set $B \subseteq V(G) \backslash\{a\}$, we say that a is complete (resp. anticomplete) to B if a is adjacent (resp. antiadjacent) to every vertex in B. For two disjoint $A, B \subset V(G)$, we say that A is complete (resp. anticomplete) to B if every vertex in A is complete (resp. anticomplete) to B. Similarly, we say that a is strongly complete to B if a is strongly adjacent to every member of B, and so on.

Let G be a trigraph. A clique is a set $X \subseteq V(G)$ such that every two members of X are adjacent and X is a strong clique if every two members of X are strongly adjacent. A set $X \subseteq V(G)$ is a stable set if every two members of X are antiadjacent and X is a strong stable set if every two members of X are strongly antiadjacent. A triangle is a clique of size 3 , and a triad is a stable set of size 3 .

For a trigraph G and $X \subseteq V(G)$, we define the trigraph $G \mid X$ induced on X as follows. Its vertex set is X, and its adjacency function is the restriction of θ_{G} to X^{2}. We say that G contains H, and H is a subtrigraph of G if there exists $X \subseteq V(G)$ such that H is isomorphic to $G \mid X$.

A claw is a trigraph H such that $V(H)=\{x, a, b, c\}, x$ is complete to $\{a, b, c\}$ and $\{a, b, c\}$ is a triad. A trigraph G is said to be claw-free if G does not contains a claw.

A path in G is a subtrigraph P with n vertices for $n \geq 1$, whose vertex set can be ordered as $\left\{p_{1}, \ldots, p_{n}\right\}$ such that p_{i} is adjacent to p_{i+1} for $1 \leq i<n$ and p_{i} is antiadjacent to p_{j} if $|i-j|>1$. We generally denote P with the following sequence $p_{1}-p_{2}-\ldots-p_{n}$ and say that the path P is from p_{1} to p_{n}. For a path $P=p_{1}-\ldots-p_{n}$ and $i, j \in\{1, \ldots, n\}$ with $i<j$, we denote by $p_{i}-P-p_{j}$ the subpath P^{\prime} of P defined by $P^{\prime}=p_{i}-p_{i+1}-\ldots-p_{j}$.

A cycle (resp. anticycle) in G is a subtrigraph C with n vertices for some $n \geq 3$, whose vertex set can be ordered as $\left\{c_{1}, \ldots, c_{n}\right\}$ such that c_{i} is adjacent (resp. antiadjacent) to c_{i+1} for $1 \leq i<n$, and c_{n} is adjacent (resp. antiadjacent) to c_{1}. We say that a cycle (resp. anticycle) C is a hole (resp. antihole), if $n>3$ and if for all $1 \leq i, j \leq n$ with $i+2 \leq j$ and $(i, j) \neq(1, n), c_{i}$ is antiadjacent (resp. adjacent) to c_{j}. We will generally denote C with the following sequence $c_{1}-c_{2}-\ldots-c_{n}-c_{1}$. The length of C is the number of vertices of C. Vertices c_{i} and c_{j} are said to be consecutive if $i+1=j$ or $\{i, j\}=\{1, n\}$.

Now, we can finally give the definition of a Berge trigraph. A trigraph G is said to be Berge if G does not contain any odd holes nor any odd antiholes.

A trigraph G is cobipartite if there exist nonempty subsets $X, Y \subseteq V(G)$ such that X and Y are strong cliques and $X \cup Y=V(G)$.

For $X, A, B, C \subseteq V(G)$, we say that $\{X \mid A, B, C\}$ is a claw if there exist $x \in X, a \in A, b \in B$ and $c \in C$ such that $G \mid\{x, a, b, c\}$ is a claw and x is complete to $\{a, b, c\}$. Similarly, we say that $X_{1}-X_{2}-\ldots-X_{n}-X_{1}$ is a hole (resp. antihole) if there exist $x_{i} \in X_{i}$ such that $x_{1}-x_{2}-\ldots-x_{n}-x_{1}$ is a hole (resp. antihole). To simplify notation, we will generally forget the bracket delimiting a singleton, i.e. instead of writing $\{\{x\} \mid A,\{y\}, B\}$ we will simply denote it by $\{x \mid A, y, B\}$.

Let A, B be disjoint subsets of $V(G)$. The set A is called a homogeneous set if A is a strong clique, and every vertex in $V(G) \backslash A$ is either strongly complete or strongly anticomplete to A. The pair (A, B) is called a homogeneous pair in G if A, B are nonempty strong cliques, and for every vertex $v \in V(G) \backslash(A \cup B)$,
v is either strongly complete to A or strongly anticomplete to A, and either strongly complete to B or strongly anticomplete to B.

Let V_{1}, V_{2} be a partition of $V(G)$ such that $V_{1} \cup V_{2}=V(G), V_{1} \cap V_{2}=\emptyset$, and for $i=1,2$ there is a subset $A_{i} \subseteq V_{i}$ such that:

- A_{i} and $V_{i} \backslash A_{i}$ are not empty for $i=1,2$,
- $A_{1} \cup A_{2}$ is a strong clique,
- $V_{1} \backslash A_{1}$ is strongly anticomplete to V_{2}, and V_{1} is strongly anticomplete to $V_{2} \backslash A_{2}$.

The partition $\left(V_{1}, V_{2}\right)$ is called a 1-join and we say that G admits a 1-join if such a partition exists.
Let $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ be disjoint subsets of $V(G)$. The 6 -tuple $\left(A_{1}, A_{2}, A_{3} \mid B_{1}, B_{2}, B_{3}\right)$ is called a hex-join if $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ are strong cliques and

- A_{1} is strongly complete to $B_{1} \cup B_{2}$, and strongly anticomplete to B_{3}, and
- A_{2} is strongly complete to $B_{2} \cup B_{3}$, and strongly anticomplete to B_{1}, and
- A_{3} is strongly complete to $B_{1} \cup B_{3}$, and strongly anticomplete to B_{2}, and
- $\bigcup_{i}\left(A_{i} \cup B_{i}\right)=V(G)$.

Let G be a trigraph. For $v \in V(G)$, we define the neighborhood of v, denoted $N(v)$, by $N(v)=\{x$: x is adjacent to $v\}$. The trigraph G is said to be a quasi-line trigraph if for every $v \in V(G), N(v)$ is the union of two strong cliques.

Here is an easy fact:

1.1. Every claw-free Berge trigraph is a quasi-line trigraph.

Proof. Let G be a claw-free Berge trigraph and let $v \in V(G)$. Since G is claw-free, we deduce that $G \mid N(v)$ does not contain a triad. Since G is Berge, we deduce that $G \mid N(v)$ does not contain a odd antihole. Thus $G \mid N(v)$ is cobipartite and it follows that $N(v)$ is the union of two strong cliques. This proves 1.1.

A trigraph H is a thickening of a trigraph G if for every $v \in V(G)$ there is a nonempty subset $X_{v} \subseteq V(H)$, all pairwise disjoint and with union $V(H)$, satisfying the following:

- for each $v \in V(G), X_{v}$ is a strong clique of H,
- if $u, v \in V(G)$ are strongly adjacent in G then X_{u} is strongly complete to X_{v} in H,
- if $u, v \in V(G)$ are strongly antiadjacent in G then X_{u} is strongly anticomplete to X_{v} in H,
- if $u, v \in V(G)$ are semiadjacent in G then X_{u} is neither strongly complete nor strongly anticomplete to X_{v} in H.
A basic result about thickenings is the following.
1.2. Let G be a trigraph and H be a thickening of G. If F is a thickening of H then F is a thickening of G.

Proof. For $v \in V(H)$, let X_{v}^{F} be the strong clique in F as in the definition of a thickening. For $v \in V(G)$, let X_{v}^{H} be the strong clique in H as in the definition of a thickening. For $v \in V(G)$, let $Y_{v} \subseteq V(F)$ be defined as $Y_{v}=\bigcup_{y \in X_{v}^{H}} X_{y}^{F}$. Clearly, the sets Y_{v} are all nonempty, pairwise disjoint and their union is $V(F)$. Since X_{v}^{H} is a strong clique, we deduce that Y_{v} is a strong clique for all $v \in V(G)$. If $u, v \in V(G)$ are strongly adjacent (resp. antiadjacent) in G, then X_{u}^{H} is strongly complete (resp. anticomplete) to X_{v}^{H} in H and thus Y_{u} is strongly complete (resp. anticomplete) to Y_{v} in F. If $u, v \in V(G)$ are semiadjacent in G, then X_{u}^{H} is neither strongly complete nor strongly anticomplete to X_{v}^{H} in H and hence Y_{u} is neither strongly complete nor strongly anticomplete to Y_{v} in F. This proves 1.2.

Next we present some definitions related to quasi-line graphs [3].
A stripe is a pair (G, Z) of a trigraph G and a subset Z of $V(G)$ such that $|Z| \leq 2, Z$ is a strong stable set, $N(z)$ is a strong clique for all $z \in Z$, no vertex is semiadjacent to a vertex in Z, and no vertex is adjacent to two vertices of Z.
G is said to be a linear interval trigraph if its vertex set can be numbered $\left\{v_{1}, \ldots, v_{n}\right\}$ in such a way that for $1 \leq i<j<k \leq n$, if v_{i}, v_{k} are adjacent then v_{j} is strongly adjacent to both v_{i}, v_{k}. Given such a trigraph G and numbering v_{1}, \ldots, v_{n} with $n \geq 2$, we call $\left(G,\left\{v_{1}, v_{n}\right\}\right)$ a linear interval stripe if G is connected, no vertex is semiadjacent to v_{1} or to v_{n}, there is no vertex adjacent to both v_{1}, v_{n}, and v_{1}, v_{n} are strongly antiadjacent. By analogy with intervals, we will use the following notation, $\left[v_{i}, v_{j}\right]=\left\{v_{k}\right\}_{i \leq k \leq j},\left(v_{i}, v_{j}\right)=\left\{v_{k}\right\}_{i<k<j},\left[v_{i}, v_{j}\right)=\left\{v_{k}\right\}_{i \leq k<j}$ and $\left(v_{i}, v_{j}\right]=\left\{v_{k}\right\}_{i<k \leq j}$. Moreover we will write $x_{i}<x_{j}$ if $i<j$.

Let Σ be a circle in the sphere, and let $F_{1}, \ldots, F_{k} \subseteq \Sigma$ be homeomorphic to the interval $[0,1]$, such that no two of F_{1}, \ldots, F_{k} share an end-point. Now let $V \subseteq \Sigma$ be finite, and let G be a trigraph with vertex set V in which, for distinct $u, v \in V$,

- if $u, v \in F_{i}$ for some i then u, v are adjacent, and if also at least one of u, v belongs to the interior of F_{i} then u, v are strongly adjacent,
- if there is no i such that $u, v \in F_{i}$ then u, v are strongly antiadjacent.

Such a trigraph G is called a circular interval trigraph. We will denote by F_{i}^{*} the interior of F_{i}.
Let G have four vertices say w, x, y, z, such that w is strongly adjacent to x, y is strongly adjacent to z, x is semiadjacent to y, and all other pairs are strongly antiadjacent. Then the pair $(G,\{w, z\})$ is a spring and the pair $(G \backslash w,\{z\})$ is a truncated spring.

Let G have three vertices say v, z_{1}, z_{2} such that v is strongly adjacent to z_{1} and z_{2}, and z_{1}, z_{2} are strongly antiadjacent. Then the pair $\left(G,\left\{z_{1}, z_{2}\right\}\right)$ is a spot, the pair $\left(G,\left\{z_{1}\right\}\right)$ is a one-ended spot and the pair $\left(G \backslash z_{2},\left\{z_{1}\right\}\right)$ is a truncated spot.

Let G be a circular interval trigraph, and let $\Sigma, F_{1}, \ldots, F_{k}$ be as in the corresponding definition. Let $z \in V(G)$ belong to at most one of F_{1}, \ldots, F_{k}; and if $z \in F_{i}$ say, let no vertex be an endpoint of F_{i}. We call the pair $(G,\{z\})$ a bubble.

If H is a thickening of G, where $X_{v}(v \in V(G))$ are the corresponding subsets, and $Z \subseteq V(G)$ and $\left|X_{v}\right|=1$ for each $v \in Z$, let Z^{\prime} be the union of all $X_{v}(v \in Z)$; we say that $\left(H, Z^{\prime}\right)$ is a thickening of (G, Z).

The following construction is slightly different from how linear interval joins have been defined for general quasi-line graphs [3], but the resulting graphs are exactly the same. We may also assume that if (G, Z) is a stripe then $V(G) \neq Z$. Any trigraph G that can be constructed in the following manner is called a linear interval join.

- Let $H=(V, E)$ be a graph, possibly with multiple edges and loops.
- Let $\eta:(E \times V) \cup E \rightarrow 2^{V(G)}$.
- For every edge $e=x_{1} x_{2} \in E$ (where $x_{1}=x_{2}$ if e is a loop)
- Let $\left(G_{e}, Y_{e}\right)$ be either
* a spot or a thickening of a linear interval stripe if e is not a loop, or
* the thickening of a bubble if e is a loop.

Moreover let ϕ_{e} be a bijection between Y_{e} and the endpoints of e.

- Let $\eta\left(e, x_{j}\right)=N\left(\phi_{e}\left(x_{j}\right)\right)$ for $j=1,2$ and $\eta(e, v)=\emptyset$ if v is not an endpoint of e.
- Let $\eta(e)=V\left(G_{e}\right) \backslash Y_{e}$.
- Construct G with $V(G)=\bigcup_{e \in E} \eta(e), G \mid \eta(e)=G_{e} \backslash Y_{e}$ for all $e \in E$ and such that $\eta(f, x)$ is strongly complete to $\eta(g, x)$ for all $f, g \in E$ and $x \in V$ (in particular if x is an endpoint of both f and g, then the sets $\eta(f, x)$ and $\eta(g, y)$ are nonempty and strongly complete to each other).

Moreover, we call the graph H used in the construction of a linear interval join G the skeleton of G, and we say that e has been replaced by $\left(G_{e}, Y_{e}\right)$.

The following theorem is the main characterization of quasi-line graphs [3]. It is the starting point of our structure theorem for claw-free perfect graphs.
1.3. Every connected quasi-line trigraph G is either a linear interval join or a thickening of a circular interval trigraph.

To state our main theorem we need a few more definitions that refine the concepts used in 1.3.
Let G be a circular interval trigraph. The trigraph G is a structured circular interval trigraph if, for some even integer $n \geq 4, V(G)$ can be partitioned into pairwise disjoint strong cliques X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} such that (all indices are modulo n):
$(\mathrm{S} 1) \bigcup_{i}\left(X_{i} \cup Y_{i}\right)=V(G)$.
(S2) $X_{i} \neq \emptyset \forall i$.
(S3) Y_{i} is strongly complete to X_{i} and X_{i+1} and strongly anticomplete to $V(G) \backslash\left(X_{i} \cup X_{i+1} \cup Y_{i}\right)$.
(S4) If $Y_{i} \neq \emptyset$ then X_{i} is strongly complete to X_{i+1}.
(S5) Every vertex in X_{i} has at least one neighbor in X_{i+1} and at least one neighbor in X_{i-1}.
(S6) X_{i} is strongly complete to X_{i+1} or X_{i-1} and possibly both, and strongly anticomplete to $V(G) \backslash\left(X_{i} \cup\right.$ $\left.X_{i-1} \cup X_{i+1} \cup Y_{i} \cup Y_{i-1}\right)$.

A bubble (G, Z) is said to be a structured bubble if G is a structured circular interval trigraph.
We need to define one important class of Berge circular interval trigraphs. Let G be a trigraph with vertex set the disjoint union of sets $\left\{a_{1}, a_{2}, a_{3}\right\}, B_{1}^{1}, B_{1}^{2}, B_{1}^{3}, B_{2}^{1}, B_{2}^{2}, B_{2}^{3}, B_{3}^{1}, B_{3}^{2}, B_{3}^{3}$ such that $\left|B_{i}^{j}\right| \leq 1$ for $1 \leq i, j \leq 3$ with adjacency as follows (all additions are modulo 3):

- For $i=1,2,3, B_{i}^{1} \cup B_{i}^{2} \cup B_{i}^{3}$ is a strong clique.
- For $i=1,2,3, B_{i}^{i}$ is strongly complete to $\bigcup_{k=1}^{3}\left(B_{i+1}^{k} \cup B_{i+2}^{k}\right)$.
- For $1 \leq i, j \leq 3$ with $i \neq j, B_{i}^{j}$ is strongly complete to $\bigcup_{k=1}^{3} B_{j}^{k}$.
- For $i=1,2,3, B_{i}^{i+1}$ and B_{i+2}^{i+1} are either both empty or both nonempty, and if they are both nonempty then B_{i}^{i+1} is not strongly complete to B_{i+2}^{i+1}.
- For $i=1,2,3, a_{i}$ is strongly complete to $\bigcup_{k=1}^{3}\left(B_{i}^{k} \cup B_{i+1}^{k}\right)$ and a_{i} is strongly anticomplete to $\bigcup_{k=1}^{3} B_{i+2}^{k}$.
- a_{1} is antiadjacent to a_{3}, and a_{2} is strongly anticomplete to $\left\{a_{1}, a_{3}\right\}$.
- If a_{1} is semiadjacent to a_{3} then $B_{3}^{1} \cup B_{2}^{1}=\emptyset$.
- There exist $x_{i} \in V(G) \cap\left(B_{i}^{1} \cup B_{i}^{2} \cup B_{i}^{3}\right)$ for $i=1,2,3$, such that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triangle.

We define \mathcal{C} to be the class of all such trigraphs G. We will prove in 2.7 that all trigraphs in \mathcal{C} are Berge and circular inteveral. Moreover we define \mathcal{C}^{\prime} to be the set of all pairs $(H,\{z\})$ such that there exists $i \in\{1,2,3\}$ with $z \in X_{a_{i}}, H$ is a thickening of a trigraph in \mathcal{C} with $B_{i+1}^{i+2} \cup B_{i}^{i+2}=\emptyset$ and such that $N(z) \cap\left(X_{a_{i+1}} \cup X_{a_{i+2}}\right)=\emptyset$ (with $X_{a_{i}}$ as in the definition of a thickening).

A signing of a graph $G=(V, E)$ is a function $s: E \rightarrow\{0,1\}$. The value $v(C)$ of a cycle C is $v(C)=\sum_{e \in C} s(e)$. A graph, possibly with multiple edges and loops, is said to be evenly signed by s if for all cycles C in G, C has an even value, and in that case the pair (G, s) is said to be an evenly signed graph.

We need to define three classes of graphs that are going to play an important role in the structure of claw-free perfect graphs.
\mathcal{F}_{1} : Let (G, s) be a pair of a graph G (possibly with multiple edges and loops) and a signing s of G such that:

- $V(G)=\left\{x_{1}, x_{2}, x_{3}\right\}$,
- there is an edge $e_{i j}$ between x_{i} and x_{j} with $s\left(e_{i j}\right)=1$ for all $\{i, j\} \subset\{1,2,3\}$ with $i \neq j$,
- if e and f are such that $s(e)=s(f)=0$, then e is parallel to f.

We define \mathcal{F}_{1} to be the class of all such pairs (G, s).
\mathcal{F}_{2} : Let (G, s) be a pair of a graph G (possibly with multiple edges and loops) and a signing s of G such that $|V(G)|=4 \mid$, all pairs of vertices of G are adjacent and $s(e)=1$ for all $e \in E(G)$. We define \mathcal{F}_{2} to be the class of all such pairs (G, s).
\mathcal{F}_{3} : Let (G, s) be a pair of a graph G (possibly with multiple edges and loops) and a signing s of G such that:

- $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $n \geq 4$,
- there is an edge e_{12} between x_{1} and x_{2} with $s(e)=1$,
- $\left\{x_{1}, x_{2}\right\}$ is complete to $\left\{x_{3}, \ldots, x_{n}\right\}$,
- $\left\{x_{3}, \ldots, x_{n}\right\}$ is a stable set,
- if $s(e)=0$, then e is an edge between x_{1} and x_{2}.

We define \mathcal{F}_{3} to be the class of all such pairs (G, s).
An even structure is a pair (G, s) of a graph G and a signing s such that for all blocks A of G, $\left(A,\left.s\right|_{E(A)}\right)$ is either a member of $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$ or an evenly signed graph.

Here is a construction; a trigraph G that can be constructed in this manner is called an evenly structured linear interval join.

- Let $H=(V, E)$ and the signing s be an even structure.
- Let $\eta:(E \times V) \cup E \rightarrow 2^{V(G)}$.
- For every edge $e=x_{1} x_{2} \in E$ (where $x_{1}=x_{2}$ if e is a loop),
- Let $\left(G_{e}, Y_{e}\right)$ be:
* a spot if e is in a cycle, $x_{1} \neq x_{2}$ and $s(e)=1$,
* a thickening of a spring if e is in a cycle, $x_{1} \neq x_{2}$, and $s(e)=0$,
* a trigraph in \mathcal{C}^{\prime} if e is a loop,
* either a spot or a thickening of a linear interval stripe if e is not in a cycle.
- Let ϕ_{e} be a bijection between the endpoints of e and Y_{e}.
- Let $\eta\left(e, x_{j}\right)=N\left(\phi_{e}\left(x_{j}\right)\right)$ for $j=1,2$ and $\eta(e, v)=\emptyset$ if v is not an endpoint of e.
- Let $\eta(e)=V\left(G_{e}\right) \backslash Y_{e}$.
- Construct G with $V(G)=\bigcup_{e \in E} \eta(e), G \mid \eta(e)=G_{e} \backslash Y_{e}$ for all $e \in E$ and such that $\eta(f, x)$ is complete to $\eta(g, x)$ for all $f, g \in E$ and $x \in V$ (in particular if x is an endpoint of both f and g, then the sets $\eta(f, x)$ and $\eta(g, y)$ are nonempty and strongly complete to each other).
As for the linear interval join, we call the graph H used in the construction of an evenly structured linear interval join G the skeleton of G, and we say that e has been replaced by $\left(G_{e}, Y_{e}\right)$.

We can now state our main theorem:

1.4. Every connected Berge claw-free trigraph is either

- an evenly structured linear interval join or
- a thickening of a trigraph in \mathcal{C}.

The goal of the paper is to prove 1.4, but first we can prove an easy result about evenly signed graphs. Here is an algorithm that will produce an even signing for a graph:

Algorithm 1

- Let T be a spanning tree of G and root T at some $r \in V(G)$.
- Arbitrarily assign a value from $\{0,1\}$ to $s(e)$ for all $e \in T$.
- For every $e=x y \in E(G) \backslash T$, let $s(e)=\sum_{f \in P_{x}} s(f)+\sum_{f \in P_{y}} s(f)(\bmod 2)$ where P_{i} is the path from r to i in T.
1.5. Algorithm 1 produces an evenly signed graph (G, s).

Proof. Let C be a cycle in G. First, we notice that for an edge e in $T, s(e)$ can be expressed with the same formula used to calculate the signing of an edge outside of T. In fact we have that for all $e \in E(G)$, $s(e)=\sum_{f \in P_{x}} s(f)+\sum_{f \in P_{y}} s(f)(\bmod 2)$. Thus,

$$
\begin{gathered}
\sum_{e=x y \in E(C)} s(e)=\sum_{x y \in E(C)}\left(\sum_{e \in P_{x}} s(e)+\sum_{e \in P_{y}} s(e)\right)= \\
=2 \cdot \sum_{x \in V(C)}\left(\sum_{e \in P_{x}} s(e)\right)=0 \quad(\bmod 2)
\end{gathered}
$$

which concludes the proof of 1.5 .
The result of 1.5 shows that if we have a graph G, we can find all signings s such that (G, s) is an evenly signed graph by using Algorithm 1 with all possible assignments for $s(e)$ on the tree T.

The paper is organized as follow. In Section 2, we study circular interval trigraphs that contain special triangles. Section 3 examines circular interval trigraphs that contain a hole of length 4 while Section 4 covers the case when a circular interval trigraph contains a long hole. In Section 5, we analyze linear interval joins. Finally in Section 6, we gather our results and prove our main theorem 1.4.

2 Essential Triangles

In order to prove 1.4, we first prove the following:
2.1. Let G be a Berge circular interval trigraph. Then either G is a linear interval trigraph, or a cobipartite trigraph, or a thickening of a member of \mathcal{C}, or G is a structured circular interval trigraph.

Before going further, more definitions are needed. Let G be a circular interval trigraph defined by Σ and $F_{1}, \ldots, F_{k} \subseteq \Sigma$. Let $T=\left\{c_{1}, c_{2}, c_{3}\right\}$ be a triangle. We say that T is essential if there exist $i_{1}, i_{2}, i_{3} \in\{1, \ldots, k\}$ such that $c_{1}, c_{2} \in F_{i_{1}}, c_{2}, c_{3} \in F_{i_{2}}$ and $c_{3}, c_{1} \in F_{i_{3}}$, and such that $F_{i_{1}} \cup F_{i_{2}} \cup$ $F_{i_{3}}=\Sigma$. Let x, y, q be three points of Σ. We denote by $\Sigma_{x, y}^{q}$ the subset of Σ such that there exists a homeomorphism $\phi: \Sigma_{x, y}^{q} \rightarrow[0,1]$ with $\phi(x)=0$ and $\phi(y)=1$ and such that $q \in \Sigma_{x, y}^{q}$. Moreover let $\bar{\Sigma}_{x, y}^{q}=\left(\Sigma \backslash \Sigma_{x, y}^{q}\right) \cup\{x, y\}$.

The following two lemmas are basic facts that will be extensively used to prove 2.1.
2.2. Let G be a circular interval trigraph defined by Σ and F_{1}, \ldots, F_{k}. Let $x, y, a, b \in V(G)$ such that $x \in \bar{\Sigma}_{a, b}^{y}$. If x is antiadjacent to a and b, then y is strongly antiadjacent to x.

Proof. Assume not. Since x is adjacent to y, we deduce that there exists F_{i} such that $x, y \in F_{i}$. It follows that at least one of $a, b \in F_{i}^{*}$. By symmetry we may assume that $a \in F_{i}^{*}$, but it implies that a is strongly adjacent to x, a contradiction. This proves 2.2.
2.3. Let G be a circular interval trigraph defined by Σ and F_{1}, \ldots, F_{k}. Let $x, y, z \in V(G)$ such that x is adjacent to y and x is antiadjacent to z. Then there exists F_{i} such that $\bar{\Sigma}_{x, y}^{z} \subseteq F_{i}$.
Proof. Since x is adjacent to y there is F_{i} such that $x, y \in F_{i}$. Since z is antiadjacent to x, we deduce that $z \notin F_{i}^{*}$. Thus we conclude that $\bar{\Sigma}_{x, y}^{z} \subseteq F_{i}$. This proves 2.3.
2.4. Let G be a circular interval trigraph defined by Σ and F_{1}, \ldots, F_{k}, and let $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ be a hole. Then the vertices of C are in order on Σ.

Proof. Assume not. By symmetry, we may assume that $c_{1}, c_{2}, c_{3}, c_{4}$ are not in order on Σ, and thus we may assume that $c_{4} \in \Sigma_{c_{1}, c_{3}}^{c_{2}}$. Since c_{3} is antiadjacent to c_{1} and since c_{2} is complete to $\left\{c_{1}, c_{3}\right\}$, we deduce that there exist F_{i} and F_{j}, possibly $F_{i}=F_{j}$, such that $\bar{\Sigma}_{c_{1}, c_{2}}^{c_{3}} \subseteq F_{i}$ and $\bar{\Sigma}_{c_{2}, c_{3}}^{c_{1}} \subseteq F_{j}$. If $c_{4} \in \bar{\Sigma}_{c_{1}, c_{2}}^{c_{3}}$, then since $c_{4} \in F_{i}^{*}$, we deduce that c_{4} is strongly complete to $\left\{c_{1}, c_{2}\right\}$, a contradiction. If $c_{4} \in \bar{\Sigma}_{c_{3}, c_{2}}^{c_{1}}$, then since $c_{4} \in F_{j}^{*}$, we deduce that c_{4} is strongly complete to $\left\{c_{2}, c_{3}\right\}$, a contradiction. This proves 2.4.
2.5. Let G be a circular interval trigraph defined by Σ and F_{1}, \ldots, F_{k}. If G is not a linear interval trigraph, then there exists an essential triangle or a hole in G.
Proof. Let $F_{i_{1}}$ be such that $F_{i_{1}} \cap V(G)$ is maximal and let $y \notin F_{i_{1}}$. Let $x_{0}, x_{1} \in F_{i_{1}}$ such that $\bar{\Sigma}_{x_{0}, x_{1}}^{y} \cap F_{i_{1}}$ is maximal.

Let x_{2} and $F_{i_{2}}$ be such that $x_{2} \in F_{i_{2}}, x_{2} \notin F_{i_{1}}$ and $\bar{\Sigma}_{x_{1}, x_{2}}^{x_{0}}$ is maximal.
Starting with $j=3$ and while $x_{j-1} \notin F_{i_{1}}$, let x_{j} and $F_{i_{j}}$ be such that $x_{j} \in F_{i_{j}}, x_{j} \notin F_{i_{k}}$, for any $k<j$ and $\bar{\Sigma}_{x_{j-1}, x_{j}}^{x_{1}}$ is maximal. Since G is not a linear interval trigraph, there exists $k>1$ such that $x_{k} \in F_{i_{1}}$.

Assume first that $k=3$. Clearly $F_{i_{1}} \cup F_{i_{2}} \cup F_{i_{3}}=\Sigma, x_{0}, x_{1} \in F_{i_{1}}, x_{1}, x_{2} \in F_{i_{2}}$ and $x_{0}, x_{2} \in F_{i_{3}}$. Hence $T=\left\{x_{0}, x_{1}, x_{2}\right\}$ is an essential triangle.

Assume now that $k>3$. Clearly x_{j-1} is adjacent to x_{j} for $j=1, \ldots, k-1$ and x_{k-1} is adjacent to x_{0}. By the choice of $F_{i_{1}}$ and x_{0}, x_{1}, we deduce that x_{k-1} is strongly antiadjacent to x_{1}. By the choice of $F_{i_{j}}, x_{j-1}$ is antiadjacent to $x_{j+1} \bmod k$ for all $j=1, \ldots, k-1$. Hence by $2.2, C$ is a hole. This concludes the proof of 2.5 .
2.6. Let G be a circular interval trigraph and C a hole. Let $x \in V(G) \backslash V(C)$, then x is strongly adjacent to two consecutive vertices of C.

Proof. Let G be defined by Σ and F_{1}, \ldots, F_{k} and let $C=c_{1}-c_{2}-\ldots-c_{l}-c_{1}$. By 2.4 , there exists j such that $x \in \bar{\Sigma}_{c_{j}, c_{j+1}}^{c_{j+2}}$. Since c_{j} is adjacent to c_{j+1} and antiadjacent to c_{j+2}, we deduce that there exists $i \in\{1, \ldots, k\}$ such that $\bar{\Sigma}_{c_{j}, c_{j+1}}^{c_{j+2}} \subseteq F_{i}$. Hence x is strongly adjacent to c_{j} and c_{j+1}. This proves 2.6.

In the remainder of this section, we focus on circular interval trigraphs that contain an essential triangle. For the rest of the section, addition is modulo 3.

2.7. Every trigraph in \mathcal{C} is a Berge circular interval trigraph.

Proof. Let G be in \mathcal{C}. We let the reader check that G is indeed a circular interval trigraph, it can easily be done using the following order of the vertices on a circle: $B_{1}^{3}, B_{1}^{1}, B_{1}^{2}, a_{1}, B_{2}^{1}, B_{2}^{2}, B_{2}^{3}, a_{2}, B_{3}^{2}, B_{3}^{3}, B_{3}^{1}, a_{3}$.

(1) There is no odd hole in G.

Assume there is an odd hole $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ in G. Since B_{i}^{i} is strongly complete to $V(G) \backslash\left\{a_{i+1}\right\}$, it follows that $V(C) \cap B_{i}^{i}=\emptyset$ for all i. Since $G \mid\left(B_{1}^{2} \cup B_{1}^{3} \cup B_{2}^{1} \cup B_{2}^{3} \cup B_{3}^{1} \cup B_{3}^{2}\right)$ is a cobipartite trigraph, we deduce that $\left|\left\{a_{1}, a_{2}, a_{3}\right\} \cap V(C)\right| \geq 1$.

Assume first that a_{1}, a_{3} are two consecutive vertices of C. We may assume that $c_{1}=a_{1}$ and $c_{2}=a_{3}$. Since c_{n} is adjacent to c_{1} and antiadjacent to c_{2}, we deduce that $c_{n} \in B_{2}^{1} \cup B_{2}^{3}$. Symmetrically, $c_{3} \in$ $B_{3}^{1} \cup B_{3}^{2}$. As a_{1} is semiadjacent to a_{3}, it follows that $B_{2}^{1} \cup B_{3}^{1}=\emptyset$. Hence, c_{3} is strongly adjacent to c_{n}, a contradiction.

Thus, we may assume that $c_{1}=a_{i}$ and $\left\{c_{2}, c_{n}\right\} \cap\left\{a_{1}, a_{2}, a_{3}\right\}=\emptyset$. Since c_{2} is antiadjacent to c_{n}, and c_{1} is complete to $\left\{c_{2}, c_{n}\right\}$, we deduce that $\left\{c_{2}, c_{n}\right\}=B_{i}^{i+2} \cup B_{i+1}^{i+2}$. Without loss of generality, let $c_{2} \in B_{i}^{i+2}$ and $c_{n} \in B_{i+1}^{i+2}$. Since c_{n-1} is antiadjacent to c_{2}, we deduce that $c_{n-1}=a_{i+1}$. Symmetrically, we deduce that $c_{3}=a_{i+2}$. Since a_{i+2} is not consecutive with a_{i+1} in C, we deduce that $n>5$. But $\mid\left\{x \in V(G): x\right.$ antiadjacent to $\left.c_{2}\right\} \mid \leq 2$, a contradiction. This proves (1).
(2) There is no odd antihole in G.

Assume there is an odd antihole $C=c_{1}-c_{2}-\ldots-c_{n}$ in G. By (1), we may assume that C has length at least 7. Since B_{i}^{i} is strongly complete to $V(G) \backslash\left\{a_{i+1}\right\}$, it follows that $V(C) \cap B_{i}^{i}=\emptyset$ for all i.

Assume first that a_{1} is semiadjacent to a_{3}. Then $B_{3}^{1} \cup B_{2}^{1}=\emptyset$. Since $\left|V(G) \backslash\left(B_{1}^{1} \cup B_{2}^{2} \cup B_{3}^{3}\right)\right|=$ 7, we deduce that $V(C)=\left(\left\{a_{1}, a_{2}, a_{3}\right\} \cup B_{1}^{2} \cup B_{1}^{3} \cup B_{3}^{2} \cup B_{2}^{3}\right)$. But a_{2} has only two neighbors in $\left(\left\{a_{1}, a_{2}, a_{3}\right\} \cup B_{1}^{2} \cup B_{1}^{3} \cup B_{3}^{2} \cup B_{2}^{3}\right)$, a contradiction. This proves that a_{1} is strongly antiadjacent to a_{3}.

Assume now that $\left|V(C) \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right|=1$. We may assume that $a_{1} \in V(C)$ and it follows that $V(C)=\left\{a_{1}\right\} \cup \bigcup_{j \neq k} B_{j}^{k}$. But $G \mid\left(\left\{a_{i}\right\} \bigcup_{j \neq k} B_{j}^{k}\right)$ is not an antihole of length 7, since the vertex of B_{1}^{2} has 5 strong neighbors in $\left(\left\{a_{i}\right\} \bigcup_{j \neq k} B_{j}^{k}\right)$, a contradiction.

Hence we may assume that $\left|V(C) \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right| \geq 2$. Since there is no triad in C, we deduce that $\left|C \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right|=2$ and by symmetry we may assume that $c_{1}=a_{1}, c_{2}=a_{2}$ and $a_{3} \notin C$. But since $B_{1}^{2} \cup B_{1}^{3}$ is strongly anticomplete to a_{2} and $B_{3}^{1} \cup B_{3}^{2}$ is strongly anticomplete to a_{1}, we deduce that $\left\{c_{4}, c_{5}, c_{6}\right\} \subseteq B_{2}^{1} \cup B_{2}^{3}$, a contradiction. This proves (2).

Now by (1) and (2), we deduce 2.7.
2.8. Let G be a Berge circular interval trigraph such that G is not cobipartite. If G has an essential triangle, then G is a thickening of a trigraph in \mathcal{C}.

Proof. Let $\left\{x_{1}, x_{2}, x_{3}\right\}$ be an essential triangle and let F_{1}, F_{2}, F_{3} be such that $x_{1} \in F_{1} \cap F_{3}, x_{2} \in F_{1} \cap F_{2}$, $x_{3} \in F_{2} \cap F_{3}$ and $F_{1} \cup F_{2} \cup F_{3}=\Sigma$.
(1) x_{i} is not in a triad for $i=1,2,3$.

Assume x_{1} is in a triad. Then there exist y, z such that $\left\{x_{1}, y, z\right\}$ is a triad. Since $x_{1} \in F_{1} \cap F_{3}$, we deduce that $y, z \in F_{2}^{*}$ and so y is strongly adjacent to z, a contradiction. This proves (1).

By (1) and as G is not a cobipartite trigraph, there exists a triad $\left\{a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right\}$ and we may assume that $a_{i}^{*} \in F_{i} \backslash\left(F_{i+1} \cup F_{i+2}\right), i=1,2,3$. Let $\bar{a}_{i} \in F_{i} \cap \Sigma_{a_{i}^{*}, a_{i+2}^{*}}^{x_{i}}$ and $\bar{a}_{i}^{\prime} \in F_{i} \cap \sum_{a_{i}^{*}, a_{i+1}^{*}}^{x_{i+1}}$ such that $\bar{a}_{i}, \bar{a}_{i}^{\prime}$ are in triads and $\Sigma_{\bar{a}_{i}, \bar{a}_{i}^{\prime}}^{a_{i}^{*}}$ is maximal. Let $\mathcal{A}_{i}=\Sigma_{\bar{a}_{i}, \bar{a}_{i}^{\prime}}^{a_{i}^{*}}, \mathcal{B}_{i}=\Sigma_{a_{i}^{*}, a_{i+2}^{*}}^{x_{i}} \backslash\left(\mathcal{A}_{i} \cup \mathcal{A}_{i+2}\right), A_{i}=V(G) \cap \mathcal{A}_{i}$ and $B_{i}=V(G) \cap \mathcal{B}_{i}$. By the definition of $\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}, \bar{a}_{1}^{\prime}, \bar{a}_{2}^{\prime}, \bar{a}_{3}^{\prime}$, no vertex in $B_{1} \cup B_{2} \cup B_{3}$ is in a triad.
(2) $\left\{\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}\right\}$ and $\left\{\bar{a}_{1}^{\prime}, \bar{a}_{2}^{\prime}, \bar{a}_{3}^{\prime}\right\}$ are triads.

By the definition, \bar{a}_{1} is in a triad. Let $\left\{\bar{a}_{1}, a_{2}, a_{3}\right\}$ be a triad, then we assume that $a_{i} \in A_{i}, i=2,3$. By 2.2, \bar{a}_{1} is non adjacent to \bar{a}_{3}. Now, using symmetry, we deduce that $\left\{\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}\right\}$ and $\left\{\bar{a}_{1}^{\prime}, \bar{a}_{2}^{\prime}, \bar{a}_{3}^{\prime}\right\}$ are triads. This proves (2).
(3) For all $x \in A_{i}$ there exist $y \in A_{i+1}, z \in A_{i+2}$ such that $\{x, y, z\}$ is a triad.

By symmetry, we may assume that $x \in A_{1}$. If $\left|A_{1}\right|=1$, then $x=a_{1}^{*}$ and $\left\{a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right\}$ is a triad.
Therefore, we may assume that $\bar{a}_{1} \neq \bar{a}_{1}^{\prime}$. By (2) and $2.2, x$ is antiadjacent to \bar{a}_{2}^{\prime} and \bar{a}_{3}. We may assume that $\left\{x, \bar{a}_{2}^{\prime}, \bar{a}_{3}\right\}$ is not a triad, then \bar{a}_{2}^{\prime} is strongly adjacent to \bar{a}_{3}. By (2) and 2.2, \bar{a}_{2} is strongly antiadjacent to \bar{a}_{3}^{\prime}. Since $x-\bar{a}_{2}-\bar{a}_{2}^{\prime}-\bar{a}_{3}-\bar{a}_{3}^{\prime}-x$ is not a hole of length 5 , we deduce that x is not strongly complete to $\left\{\bar{a}_{2}, \bar{a}_{3}^{\prime}\right\}$. But now one of $\left\{x, \bar{a}_{2}^{\prime}, \bar{a}_{3}^{\prime}\right\},\left\{x, \bar{a}_{2}, \bar{a}_{3}\right\}$ is a triad. This proves (3).
(4) $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triangle such that $x_{i} \in B_{i}$ for $i=1,2,3$.

By (3), $x_{i} \notin A_{1} \cup A_{2} \cup A_{3}$ for $i=1,2,3$. By the definition of B_{i}, it follows that $x_{i} \in B_{i}$ for $i=1,2,3$. Moreover, $\left\{x_{1}, x_{2}, x_{3}\right\}$ is an essential triangle. This proves (4).
(5) $\left(A_{1}, A_{2}, A_{3} \mid B_{1}, B_{2}, B_{3}\right)$ is a hex-join.

By the definition of $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$, they are clearly pairwise disjoint and $\bigcup_{i}\left(A_{i} \cup B_{i}\right)=V(G)$. Clearly A_{i} is a strong clique as $\mathcal{A}_{i} \subset F_{i}, i=1,2,3$.

If there exist $y_{i}, y_{i}^{\prime} \in B_{i}$ such that y_{i} is antiadjacent to y_{i}^{\prime}, then $\left\{y_{i}, y_{i}^{\prime}, a_{i+1}^{*}\right\}$ is a triad by 2.2 , a contradiction. Thus B_{i} is a strong clique for $i=1,2,3$.

By symmetry, it remains to show that B_{1} is strongly anticomplete to A_{2} and strongly complete to A_{1}. Since $B_{1} \subset \bar{\Sigma}_{a_{1}^{*}, a_{3}^{*}}^{a_{2}^{*}}$, we deduce that B_{1} is strongly anticomplete to A_{2} by 2.2 and (3).

Suppose there is $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$ such that a_{1} is antiadjacent to b_{1}. By (3), let $a_{2} \in A_{2}$ and $a_{3} \in A_{3}$ be such that $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a triad. Since a_{2} is anticomplete to $\left\{a_{1}, a_{3}\right\}$, and $b_{1} \in \bar{\Sigma}_{a_{1}, a_{3}}^{a_{2}}$, we deduce by 2.2 that b_{1} is strongly antiadjacent to a_{2}. Thus $\left\{a_{1}, a_{2}, b_{1}\right\}$ is a triad, a contradiction as $b_{1} \in B_{1}$. This concludes the proof of (5).
(6) There is no triangle $\left\{a_{1}, a_{2}, a_{3}\right\}$ with $a_{i} \in A_{i}, i=1,2,3$

Let $a_{i} \in A_{i}, i=1,2,3$ be such that a_{1} is adjacent to $a_{i}, i=2,3$. By (3), let $c_{i} \in A_{i}, i=2,3$ such that $\left\{a_{1}, c_{2}, c_{3}\right\}$ is a triad. By 2.3, $c_{2} \in \bar{\Sigma}_{a_{2}, a_{3}}^{a_{1}}$. By symmetry, $c_{3} \in \bar{\Sigma}_{a_{2}, a_{3}}^{a_{3}}$. Since $\left\{a_{2} \mid a_{1}, c_{2}, c_{3}\right\}$ is not a claw, we deduce that c_{3} is strongly antiadjacent to a_{2}. By (2) and as $a_{2} \in \bar{\Sigma}_{\bar{a}_{2}^{\prime}, \bar{a}_{1}^{\prime}}^{a_{2}^{\prime}}, \bar{a}_{3}^{\prime}$ is antiadjacent a_{2}. Since $a_{3} \in \bar{\Sigma}_{c_{3}, \bar{a}_{3}^{\prime}}^{a_{2}}$ and by (2), a_{3} is strongly antiadjacent to a_{2}. This proves (6).

For the rest of the proof of 2.8 , let $\{j, k, l\}=\{1,2,3\}$.
(7) There is no induced 3-edge path $w-x-y-z$ such that $w \in A_{j}, x, y \in A_{k}, z \in A_{l}$.

Assume that $w-x-y-z$ is an induced 3-edge path such that $w \in A_{1}, x, y \in A_{2}, z \in A_{3}$. Now by (5), $w-x-y-z-x_{1}-w$ is a hole of length 5 , a contradiction. This proves (7).
(8) For $i=1,2,3$, let $y_{i} \in A_{i}$. Then y_{k} is strongly antiadjacent to at least one of y_{j}, y_{l}.

Suppose there exist $y_{i} \in A_{i}, i=1,2,3$ such that y_{2} is adjacent to y_{1} and y_{3}. By (6), y_{1} is strongly antiadjacent to y_{3}. By (3), there exist $z_{1}, z_{3} \in A_{2}$ such that z_{1} is antiadjacent to y_{1} and z_{3} is antiadjacent to y_{3}. Since $\left\{y_{2} \mid y_{1}, y_{3}, z_{3}\right\}$ and $\left\{y_{2} \mid y_{1}, y_{3}, z_{1}\right\}$ are not claws, we deduce that y_{1} is strongly adjacent to z_{3}, and y_{3} is strongly adjacent to z_{1}. But $y_{1}-z-3-z_{1}-y_{3}$ is a 3 -edge path, contrary to (7). This proves (8).
(9) A_{j} is strongly anticomplete to at least one of A_{k}, A_{l}.

Assume not. By symmetry, we may assume there are $x \in A_{1}, y, z \in A_{2}$ and $w \in A_{3}$ such that x is adjacent to y and z is adjacent to w. By (8), x is strongly antiadjacent to w, y is strongly antiadjacent to w, and z is strongly antiadjacent to x; and in particular $y \neq z$. But now $x-y-z-w$ is am induced 3 -edge path, contrary to (7). This proves (9).
(10) For $i=1,2,3$, let $b_{i} \in B_{i}$ such that b_{k} is adjacent to b_{l}. Then b_{j} is strongly adjacent to at least one of b_{k}, b_{l}.

By symmetry, we may assume that $j=1, k=2$ and $l=3$. Since $b_{1}-a_{3}^{*}-b_{3}-b_{2}-a_{1}^{*}-b_{1}$ is not a hole of length 5 , by (5) we deduce that b_{1} is strongly adjacent to at least one of b_{2}, b_{3}. This proves (10).
(11) Let $x \in B_{j}$, then x is strongly complete to one of B_{k}, B_{l}.

Assume there is $y \in B_{k}$ such that x is antiadjacent to y. Let $z \in B_{l}$. If y is antiadjacent to z, then x is strongly adjacent to z since $\{x, y, z\}$ is not a triad. By (10), if y is strongly adjacent to z, then x is strongly adjacent to z. Thus x is strongly complete to B_{l}. This proves (11).
$\mathrm{By}(9)$ and symmetry, we may assume that A_{2} is strongly anticomplete to $A_{1} \cup A_{3}$.
Let B_{i}^{i} be the set of all vertices of B_{i} that are strongly complete to $B_{i+1} \cup B_{i+2}$. For $j \neq i$, let B_{i}^{j} be the set of all vertices of $B_{i} \backslash B_{i}^{i}$ that are strongly complete to B_{j}. By (11), we deduce that $B_{i}=\bigcup_{j=1}^{3} B_{i}^{j}$.
(12) If $B_{j}^{k}=\emptyset$, then $B_{l}^{k}=\emptyset$.

Assume that B_{j}^{k} is empty. It implies that B_{l}^{k} is strongly complete to $B_{j} \cup B_{k}$, contrary of the definition of B_{l}^{l} and B_{l}^{k}. This proves (12).

Now, we observe that $A_{2}, B_{1}^{1}, B_{2}^{2}, B_{3}^{3}$ are homogeneous sets and $\left(A_{1}, A_{3}\right),\left(B_{1}^{2}, B_{3}^{2}\right),\left(B_{2}^{3}, B_{1}^{3}\right),\left(B_{3}^{1}, B_{2}^{1}\right)$ are homogeneous pairs. If A_{1} is strongly anticomplete to A_{3}, then by (4) and (12), G is a thickening of a member of \mathcal{C}. Thus, we may assume that A_{1} is not strongly anticomplete to A_{3}. Since $A_{1}-A_{3}-B_{3}^{1}-$ $A_{2}-B_{2}^{1}-A_{1}$ is not a hole of length 5 , we deduce that either $B_{2}^{1}=\emptyset$ or $B_{3}^{1}=\emptyset$. By (12), it follows that $B_{2}^{1} \cup B_{3}^{1}$ is empty. Using (4) and (12), we deduce that G is a thickening of a member of \mathcal{C}. This concludes the proof of 2.8.

3 Holes of Length 4

Next we examine circular interval trigraphs that contain a hole of length 4.
3.1. Let G be a Berge circular interval trigraph. If G has a hole of length 4 and no essential triangle, then G is a structured circular interval trigraph.

Proof. In the following proof, the addition is modulo 4 . Let G be defined by Σ and F_{1}, \ldots, F_{k}. Let $x_{1}^{*}-x_{2}^{*}-x_{3}^{*}-x_{4}^{*}-x_{1}^{*}$ be a hole of length 4 . We may assume that $x_{i}^{*}, x_{i+1}^{*} \in F_{i}, i=1,2,3,4$.
(1) x_{i}^{*} is strongly antiadjacent to x_{i+2}^{*}.

Assume not. By symmetry we may assume that x_{1}^{*} is adjacent to x_{3}^{*}. Moreover, we may assume that
 $x_{1}^{*}-x_{2}^{*}-x_{3}^{*}-x_{4}^{*}-x_{1}^{*}$ is not a hole, a contradiction. Symmetrically, we may assume that $i \neq 3$. But now $\left\{x_{1}^{*}, x_{3}^{*}, x_{4}^{*}\right\}$ is an essential triangle since $F_{i} \cup F_{3} \cup F_{4}=\Sigma$, a contradiction. This proves (1).

For $i=1,2,3,4$, let $\mathcal{X}_{i}, \mathcal{Y}_{i} \subset \Sigma$ and $X_{i}, Y_{i} \subset V(G)$ be such that:
(H1) each of $\mathcal{X}_{i}, \mathcal{Y}_{i}$ is homeomorphic to $[0,1)$,
$(\mathrm{H} 2) \quad X_{i} \subseteq V(G) \cap \mathcal{X}_{i}, Y_{i} \subseteq V(G) \cap \mathcal{Y}_{i}, i=1,2,3,4$,
(H3) $\bigcup_{i}\left(\mathcal{X}_{i} \cup \mathcal{Y}_{i}\right)=\Sigma$,
(H4) $\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{3}, \mathcal{X}_{4}, \mathcal{Y}_{1}, \mathcal{Y}_{2}, \mathcal{Y}_{3}, \mathcal{Y}_{4}$ are pairwise disjoint,
(H5) $\mathcal{Y}_{i} \subseteq \bar{\Sigma}_{x_{i}^{*}, x_{i+1}^{*}}^{x_{i+1}^{*}}, i=1,2,3,4$,
(H6) $x_{i}^{*} \in X_{i}, i=1,2,3,4$,
(H7) $X_{1}, X_{2}, X_{3}, X_{4}, Y_{1}, Y_{2}, Y_{3}, Y_{4}$ are disjoints strong cliques satisfying (S2)-(S6),
(H8) $\bigcup_{i}\left(X_{i} \cup Y_{i}\right)$ is maximal.
By (1), such a structure exists. We may assume that $V(G) \backslash \bigcup_{i}\left(X_{i} \cup Y_{i}\right)$ is not empty. Let $x \in$ $V(G) \backslash \bigcup_{i}\left(X_{i} \cup Y_{i}\right)$. For $S \subseteq V(G) \backslash\{x\}$, we denote by S^{C} the subset of S that is complete to x, and by S^{A} the subset of S that is anticomplete to x.

For $i=1,2,3,4$, let $x_{i}^{l}, x_{i}^{r} \in X_{i}$ be such that $x_{i-1}^{*}, x_{i}^{l}, x_{i}^{r}, x_{i+1}^{*}$ are in this order on Σ and such that $\bar{\Sigma}_{x_{i}^{l}, x_{i}^{r}}^{x_{i+1}^{*}}$ is maximal.
(2) $\left\{x_{i}^{r}, x_{i+1}^{l}\right\}$ is complete to $X_{i} \cup X_{i+1}$.

By (S5), there exists $a \in X_{i}$ such that a is adjacent to x_{i+1}^{r}. By 2.3 and (S6), there exists F_{l} such that $\left\{a, x_{i}^{r}\right\} \cup X_{i+1} \subseteq F_{l}$ and thus x_{i}^{r} is complete to X_{i+1}. By symmetry, x_{i+1}^{l} is complete to X_{i}. This proves (2) by (H7).
(3) If X_{i} is not complete to X_{i+1}, then x_{i}^{l} is strongly antiadjacent to x_{i+1}^{r}.

Let $a \in X_{i}$ and $b \in X_{i+1}$ be such that a is strongly antiadjacent to b. By 2.2 and (S6), a is strongly antiadjacent to x_{i+1}^{r}. By 2.2 and (S6), x_{i+1}^{r} is strongly antiadjacent to x_{i}^{l}. This proves (3).
(4) $x \notin \bar{\Sigma}_{x_{i}^{l}, x_{i}^{r}}^{x_{i+1}^{l}}$ for all i.

Assume not. We may assume that $x \in \bar{\Sigma}_{x_{1}^{l}, x_{1}^{r}}^{x_{2}^{l}}$. For $i=1,2,3,4$, let $Y_{i}^{\prime}=Y_{i}$, for $i=2,3$, 4 , let $X_{i}^{\prime}=X_{i}$ and let $X_{1}^{\prime}=X_{1} \cup\{x\}$. Since $Y_{2} \cup Y_{3} \cup X_{3}$ is strongly anticomplete to $\left\{x_{1}^{r}, x_{1}^{l}\right\}$ by (S3) and (S6), we deduce by 2.2 that x is strongly anticomplete to $Y_{2} \cup Y_{3} \cup X_{3}$. Since x_{1}^{r} is adjacent to x_{4}^{r} by (2), we deduce by 2.3 that x is strongly complete to Y_{4} and not strongly anticomplete to X_{4}. By symmetry, x is strongly complete to Y_{1} and not strongly anticomplete to X_{2}. Since x_{1}^{l} is strongly adjacent to x_{1}^{r}, we deduce that X_{1}^{\prime} is a strong clique. If X_{1} is strongly complete to X_{2}, it follows from 2.3 that x is strongly complete to X_{2}. By symmetry, if X_{1} is strongly complete to X_{4}, then x is strongly complete to X_{4}. The above arguments show that $X_{1}^{\prime}, \ldots, X_{4}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{4}^{\prime}$ are disjoint cliques satisfying (S2)-(S6). Moreover, $\mathcal{X}_{i}, \mathcal{Y}_{i} i=1,2,3,4$ clearly satisfy (H1)-(H5) with $X_{i}^{\prime}, Y_{i}^{\prime} i=1,2,3,4$, contrary to the maximality of $\bigcup_{i}\left(X_{i} \cup Y_{i}\right)$. This proves (4).

By (4) and by symmetry, we may assume that $x \in \bar{\Sigma}_{x_{1}^{r}, x_{2}^{l}}^{x_{3}^{*}}$ and therefore $x \in F_{1}$. By 2.2 and (S3), x is strongly anticomplete to Y_{3}. Since $x \in F_{1}$, we deduce that x is strongly complete to Y_{1}.
(5) X_{3}^{C} is strongly anticomplete to X_{4}^{C}.

Assume not. We may assume there exist $x_{3} \in X_{3}^{C}$ and $x_{4} \in X_{4}^{C}$ such that x_{3} is adjacent to x_{4}. By (S6), x_{3} is strongly antiadjacent to x_{1}^{*} and therefore by 2.3 there exists $F_{i}, i \in\{1, \ldots, k\}$, such that $x, x_{3} \in F_{i}$ and $x_{1}^{*} \notin F_{i}$. By symmetry, there exists $F_{j}, j \in\{1, \ldots, k\}$ such that $x, x_{4} \in F_{j}$ and $x_{2}^{*} \notin F_{j}$. Moreover, as $x_{2}^{*} \in F_{i}$, we deduce that $F_{i} \neq F_{j}$. By (S6), x_{i}^{*} is strongly anticomplete to x_{i+2} for $i=1,2$. Now, since x_{3} is adjacent to x_{4}, we deduce from 2.3 that there exists F_{l} such that $x_{3}, x_{4} \in F_{l}$ and $l \in\{1, \ldots, k\} \backslash\{i, j\}$. Since $\bar{\Sigma}_{x, x_{3}}^{x_{4}} \subseteq F_{i}, \bar{\Sigma}_{x, x_{4}}^{x_{3}} \subseteq F_{j}$ and $\bar{\Sigma}_{x_{3}, x_{4}}^{x} \subseteq F_{k}$, we deduce that $F_{i} \cup F_{j} \cup F_{k}=\Sigma$. Hence, $\left\{x, x_{3}, x_{4}\right\}$ is an essential triangle, a contradiction. This proves (5).
(6) At least one of X_{3}^{C}, X_{4}^{C} is empty.

Assume not. Let $a \in X_{4}^{C}$. By 2.3 and since a is strongly anticomplete to X_{2}, we deduce that there is $F_{i}, i \in\{1, \ldots, k\}$, such that $\left\{a, x_{4}^{r}, x\right\} \in F_{i}$ and thus $x_{4}^{r} \in X_{4}^{C}$. Symmetrically, $x_{3}^{l} \in X_{3}^{C}$. By (5), x_{4}^{r} is strongly antiadjacent to x_{3}^{l}. By (S6), X_{1} is strongly complete to X_{4}, and X_{2} is strongly complete to X_{3}. By (2) and (5), x is anticomplete to $\left\{x_{3}^{r}, x_{4}^{l}\right\}$. But now by (2) and (S6), $x-x_{4}^{l}-x_{2}^{l}-x_{4}^{r}-x_{3}^{l}-x_{1}^{r}-x_{3}^{r}-x$ is an antihole of length 7, a contradiction. This proves (6).

By symmetry, we may assume that x is strongly anticomplete to X_{4}. By (2) and $2.3, x$ is strongly complete to $X_{1} \cup X_{2}$.
(7) x is adjacent to x_{3}^{l}.

Assume not. By 2.2, x is strongly anticomplete to X_{3}. Since $x-Y_{2}-x_{3}^{r}-x_{4}^{r}-X_{1}-x$ and $x-Y_{4}-x_{4}^{l}-x_{3}^{l}-X_{2}-x$ are not holes of length 5 , we deduce that x is strongly anticomplete to $Y_{2} \cup Y_{4}$. Since $x-X_{2}-X_{3}-X_{4}-X_{1}-x$ is not a cycle of length 5 , we deduce that X_{1} is strongly complete to X_{2}. For $i=1,2,3,4$, let $X_{i}^{\prime}=X_{i}$, for $i=2,3,4$, let $Y_{i}^{\prime}=Y_{i}$, and let $Y_{1}^{\prime}=Y_{1} \cup\{x\}$. The above arguments show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are disjoint cliques satisfying (S2)-(S6). Moreover, it is easy to find $\mathcal{X}_{i}^{\prime}, \mathcal{Y}_{i}^{\prime}, i=1,2,3,4$, satisfying (H1)-(H5), contrary to the maximality of $\bigcup_{i}\left(X_{i} \cup Y_{i}\right)$. This proves (7).

By 2.3 and (7), x is strongly complete to Y_{2}. For $i=3,4$, let $X_{i}^{\prime}=X_{i}$, for $i=1,2,3$, let $Y_{i}^{\prime}=Y_{i}$, let $Y_{4}^{\prime}=Y_{4}^{A}$, let $X_{1}^{\prime}=X_{1} \cup Y_{4}^{C}$ and let $X_{2}^{\prime}=X_{2} \cup\{x\}$. The above arguments show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are disjoint cliques satisfying (S2), (S3) and (S5). To get a contradiction, it remains to show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ satisfy (S4) and (S6).

First we check (S4). Since $X_{3}^{\prime}=X_{3}, X_{4}^{\prime}=X_{4}$ and $Y_{3}^{\prime}=Y_{3}$, and since $X_{1}^{\prime} \backslash X_{1} \subset Y_{4}$ is strongly complete to X_{4}, it is enough to check the following:

- If $Y_{2} \neq \emptyset$ then X_{2}^{\prime} is complete to X_{3}^{\prime}.
- If $Y_{1} \neq \emptyset$ then X_{1}^{\prime} is complete to X_{2}^{\prime}.

For the former, we observe that if x is not strongly complete to X_{3}, then since $x-Y_{2}-X_{3}-X_{4}-X_{1}-x$ is not a hole of length 5 , we deduce that Y_{2} is empty. For the latter, since x is strongly complete to X_{1}, it is enought to show that if Y_{1} is not empty, then Y_{4}^{C} is empty. Since X_{3}^{C} is not empty, it follows that $Y_{1} \subseteq \bar{\Sigma}_{x, x_{1}^{*}}^{x_{2}^{*}}$. Now if Y_{4}^{C} is not empty, then Y_{1} is empty by 2.3 and (S4).

To check (S6), we need to prove the following:
(i) If X_{1}^{\prime} is not strongly complete to X_{2}^{\prime} then X_{2}^{\prime} is strongly complete to X_{3}^{\prime}.
(ii) If X_{2}^{\prime} is not strongly complete to X_{3}^{\prime} then X_{3}^{\prime} is strongly complete to X_{4}^{\prime}.
(iii) If X_{3}^{\prime} is not strongly complete to X_{4}^{\prime} then X_{4}^{\prime} is strongly complete to X_{1}^{\prime}.
(iv) If X_{4}^{\prime} is not strongly complete to X_{1}^{\prime} then X_{1}^{\prime} is strongly complete to X_{2}^{\prime}.

For (i), first assume that x is not strongly complete to X_{3}. By 2.2 , we deduce that x is strongly anticomplete to x_{3}^{r}. Since $x-x_{2}^{r}-x_{3}^{r}-X_{4}-Y_{4}-x$ and $x-x_{2}^{r}-x_{3}^{r}-X_{4}-X_{1}-x$ are not cycles of length 5 , we deduce that Y_{4}^{C} is empty and that X_{1} is strongly complete to X_{2}. Thus $X_{1}^{\prime}=X_{1}$ and since x is strongly complete to X_{1}, it follow that X_{1}^{\prime} is strongly complete to X_{2}^{\prime}. So we may assume that x is strongly complete to X_{3}. By 2.3 and (S6), it follows that X_{2} is strongly complete to X_{3} and thus X_{2}^{\prime} is strongly complete to X_{3}^{\prime}. This proves (i).

For (ii), if X_{3}^{\prime} is not strongly complete to X_{4}^{\prime}, then by (3) it follows that x_{3}^{l} is strongly antiadjacent to x_{4}^{r}. Moreover by (S4), X_{2} is strongly complete to X_{3}. Since $x-x_{3}^{l}-x_{3}^{r}-x_{4}^{r}-X_{1}-x$ is not a cycle of length 5 , we deduce, using (2), that x is strongly complete to X_{3} and thus X_{3}^{\prime} is strongly complete to X_{2}^{\prime}. This proves (ii).

For (iii) and (iv), we may assume that X_{4}^{\prime} is not strongly complete to X_{1}^{\prime}. Since X_{4} is strongly complete to Y_{4}, we deduce that X_{4} is not strongly complete to X_{1}. But by (S6), it implies that X_{4} is strongly complete to X_{3} and thus X_{4}^{\prime} is strongly complete to X_{3}^{\prime}, and (iii) follows. Also by (S6), we deduce that X_{1} is strongly complete to X_{2}. Moreover by (S 4), it follows that Y_{4} is empty. Since x is strongly complete to X_{1}, we deduce that X_{1}^{\prime} is strongly complete to X_{2}^{\prime}, and (iv) follows.

The above arguments show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are disjoint cliques satisfying (S2)-(S6). Moreover, it is easy to find $\mathcal{X}_{i}^{\prime}, \mathcal{Y}_{i}^{\prime}, i=1,2,3,4$, satisfying (H1)-(H5), contrary to the maximality of $\bigcup_{i}\left(X_{i} \cup Y_{i}\right)$. This concludes the proof of 3.1

4 Long Holes

In this section, we study circular interval trigraphs that contain a hole of length at least 6 .
A result equivalent to 4.1 has been proved independently by Kennedy and King [5]. The following was proved in joint work with Varun Jalan.
4.1. Let G be a circular interval trigraph defined by Σ and $F_{1}, \ldots, F_{k} \subseteq \Sigma$. Let $P=p_{0}-p_{1}-\ldots-p_{n-1}-p_{0}$ and $Q=q_{0}-q_{1}-\ldots-q_{m-1}-q_{0}$ be holes. If $n+1<m$ then there is a hole of length l for all $n<l<m$. In particular, if G is Berge then all holes of G have the same length.

Proof. We start by proving the first assertion of 4.1. We may assume that the vertices of P and Q are ordered clockwise on Σ. Since P and Q are holes, it follows that $n \geq 4$ and $m>5$. We are going to prove the following claim which directly implies the first assertion of 4.1 by induction.
(1) There exists a hole of length $m-1$.

We may assume that Q and P are chosen such that $|V(Q) \cap V(P)|$ is maximal.
(2) If there are $i \in\{0, \ldots, m-1\}, j \in\{0, \ldots, n-1\}$ such that

$$
q_{i}, q_{i+1} \in \bar{\Sigma}_{p_{j}, p_{j+1}}^{p_{j+2}} \backslash\left\{p_{j}, p_{j+1}\right\}
$$

with $q_{m}=q_{0}, p_{n}=p_{1}$ and $p_{n-1}=p_{0}$, then there is a hole of length $m-1$ in G.
We may assume that $q_{1}, q_{2} \in \bar{\Sigma}_{p_{1}, p_{2}}^{p_{3}} \backslash\left\{p_{1}, p_{2}\right\}$. Since q_{1} is antiadjacent to q_{3}, we deduce that $q_{3} \notin \bar{\Sigma}_{p_{1}, p_{2}}^{p_{3}}$. Since $p_{2} \in \bar{\Sigma}_{q_{2}, q_{3}}^{q_{1}}$, we deduce by 2.3 that p_{2} is strongly anticomplete to $\left\{q_{0}, q_{5}\right\}$.

If p_{2} is adjacent to q_{4}, it follows that $Q-q_{1}-p_{2}-q_{4}-Q$ is a hole of length $q-1$. Thus we may assume that p_{2} is strongly antiadjacent to q_{4}. But then $Q^{\prime}=Q-q_{1}-p_{2}-q_{3}-Q$ is a hole of length m with $\left|V\left(Q^{\prime}\right) \cap V(P)\right|>|V(Q) \cap V(P)|$, a contradiction. This proves (2).

By (2) and since $m>n+1$, we may assume that $|V(P) \cap V(Q)|>1$. Let $V(P) \cap V(Q)=$ $\left\{x_{0}, x_{1}, \ldots, x_{s-1}\right\}$. We may assume that x_{0}, \ldots, x_{s-1} are in clockwise order on Σ. For $i \in\{0, \ldots, s-1\}$, let $A_{i}=\bar{\Sigma}_{x_{i}, x_{i+1} \bmod s}^{x_{i+2}}$. Since $m>n+1$, there exists $k \in\{0, \ldots, s-1\}$ such that $\left|A_{k} \cap V(P)\right|<$
$\left|A_{k} \cap V(Q)\right|$. By (2), it follows that $\left|A_{k} \cap V(P)\right|=\left|A_{k} \cap V(Q)\right|-1$. Let P^{\prime} be the subpath of P such that $V\left(P^{\prime}\right)=V(P) \cap A_{k}$. Let Q^{\prime} be the subpath of Q such that $V\left(Q^{\prime}\right) \cap A_{k}=\left\{x_{i}, x_{i+1}\right\}$. Then $x_{1}-P^{\prime}-x_{2}-Q^{\prime}-x_{1}$ is a hole of length $m-1$.

This proves (1) and the first assertion of 4.1. Since every hole in a Berge trigraph has even length, the second assertion of 4.1 follows immediately from the first. This concludes the proof of 4.1.
4.2. Let G be a Berge circular interval trigraph. If G has a hole of length n with $n \geq 6$, then G is a structured circular interval trigraph.

Proof. Let G be a Berge circular interval trigraph. Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} be pairwise disjoint cliques satisfying $(S 2)-(S 6)$ and with $\left|\bigcup_{i}\left(X_{i} \cup Y_{i}\right)\right|$ maximum. Such sets exist since there is a hole of length n in G. Moreover since G is Berge, it follows that n is even. We may assume that $V(G) \backslash \bigcup_{i}\left(X_{i} \cup Y_{i}\right)$ is not empty. Let $x \in V(G) \backslash \bigcup_{i}\left(X_{i} \cup Y_{i}\right)$.

For $S \subseteq V(G) \backslash\{x\}$, we denote by S^{C} the subset of S that is complete to x, and by S^{A} the subset of S that is anticomplete to x.
(1) If $y \in X_{i}^{C}$ and $z \in X_{i+1}^{C}$ then y is strongly adjacent to z.

Assume not. We may assume $y \in X_{1}^{C}$ and $z \in X_{2}^{C}$ but y is antiadjacent to z. By (S4), $Y_{1}=\emptyset$. By (S6), X_{2} is strongly complete to X_{3}, and X_{n} is strongly complete to X_{1}. Since $\left\{x \mid y, z, \cup_{i=4}^{n-1} X_{i} \cup_{i=3}^{n-1} Y_{i}\right\}$ is not a claw, x is strongly anticomplete to $X_{4}, \ldots, X_{n-1}, Y_{3}, \ldots, Y_{n-1}$. Since $x-z-X_{3}-\ldots-X_{n-1}-y-x$ is not a hole of length $n+1$, we deduce that x is strongly complete to at least one of X_{3} or X_{n}. Without loss of generality, we may assume that x is strongly complete to X_{3}. Since $x-X_{3}-X_{4}-\ldots-X_{n}-x$ is not a hole of length $n-1, x$ is strongly anticomplete to X_{n}. Since $\left\{X_{3} \mid X_{4}, Y_{2}, x\right\}$ and $\left\{X_{3} \mid X_{2}, X_{4}, x\right\}$ are not claws, we deduce that x is strongly complete to $Y_{2} \cup X_{2}$.

For $i=3, \ldots, n$, let $X_{i}^{\prime}=X_{i}$, for $i=1, \ldots, n-1$, let $Y_{i}^{\prime}=Y_{i}$. Let $X_{2}^{\prime}=X_{2} \cup\{x\}, X_{1}^{\prime}=X_{1} \cup Y_{n}^{C}$ and $Y_{n}^{\prime}=Y_{n}^{A}$. Then $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are disjoint cliques satisfying $(S 2)-(S 6)$ but with $\left|\bigcup_{i}\left(X_{i} \cup Y_{i}\right)\right|<$ $\left|\bigcup_{i}\left(X_{i}^{\prime} \cup Y_{i}^{\prime}\right)\right|$, a contradiction. This proves (1).
(2) If $X_{i}^{C} \neq \emptyset$ and $X_{i+2}^{C} \neq \emptyset$ then $X_{i+1}^{A}=\emptyset$.

Assume not. We may assume $y \in X_{n}^{C}$ and $z \in X_{2}^{C}$ and $w \in X_{1}^{A}$. Since $\left\{x \mid y, z, \cup_{i=4}^{n-2} X_{i}\right\}$ is not a claw by (S6), x is strongly anticomplete to X_{4}, \ldots, X_{n-2}. Assume that $C=x-X_{3}-\ldots-X_{n-1}-x$ is a hole. Then C has length $n-2$, but w is strongly anticomplete to $V(C) \backslash\{x\}$, contrary to 2.6 . Thus x is strongly anticomplete to at least one of X_{3} or X_{n-1}. By symmetry, we may assume that x is strongly anticomplete to X_{3}. Since $x-X_{2}-X_{3}-\ldots-X_{n-1}-x$ is not a hole length $n-1, x$ is strongly anticomplete to X_{n-1}. By (S6) and symmetry, we may assume that X_{1} is strongly complete to X_{2}. But now $\left\{z \mid X_{3}, x, w\right\}$ is a claw, a contradiction. This proves (2).
(3) If $X_{i}^{C} \neq \emptyset$, then $X_{i+2}^{C}=\emptyset$.

Assume not. We may assume there exist $y \in X_{n}^{C}$ and $z \in X_{2}^{C}$. By (2), x is strongly complete to X_{1}. Since $\left\{x \mid y, z, \cup_{i=4}^{n-2} X_{i} \cup_{j=3}^{n-2} Y_{j}\right\}$ is not a claw by (S6), it follows that x is strongly anticomplete to X_{4}, \ldots, X_{n-2} and Y_{3}, \ldots, Y_{n-2}.

If $X_{3}^{C} \neq \emptyset$, then either $\left\{x \mid X_{1}, X_{3}, X_{n-1}\right\}$ is a claw or $x-X_{3}-X_{4}-\ldots-X_{n}-x$ is a hole of length $n-1$ and therefore odd, hence x is strongly anticomplete to X_{3}. By symmetry, x is strongly anticomplete to X_{n-1}. Since $\left\{z \mid X_{3}, x, Y_{1}\right\}$ and $\left\{y \mid X_{n-1}, x, Y_{n}\right\}$ are not claws, x is strongly complete to $Y_{1} \cup Y_{n}$.

For $i=3, \ldots, n-1$, let $X_{i}^{\prime}=X_{i}$ and for $i=1,3,4, \ldots, n-2, n$, let $Y_{i}^{\prime}=Y_{i}$. Let $X_{2}^{\prime}=X_{2} \cup Y_{2}^{C}$, let $X_{1}^{\prime}=X_{1} \cup\{x\}$, let $Y_{2}^{\prime}=Y_{2}^{A}$, let $X_{n}^{\prime}=X_{n} \cup Y_{n-1}^{C}$ and let $Y_{n-1}^{\prime}=Y_{n-1}^{A}$.

Clearly $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are disjoint cliques such that $\left|\bigcup_{i}\left(X_{i} \cup Y_{i}\right)\right|<\left|\bigcup_{i}\left(X_{i}^{\prime} \cup Y_{i}^{\prime}\right)\right|$. The above arguments show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ satisfy (S2) and (S5). To get a contradiction, we need to show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ satisfy (S3), (S4) and (S6).

Since $\left\{x \mid X_{n}, Y_{1}, Y_{2}^{C}\right\}$ is not a claw, we deduce that either $Y_{1}=\emptyset$ or $Y_{2}^{C}=\emptyset$. In both cases, it implies that Y_{1}^{\prime} is strongly complete to X_{2}^{\prime}. Symmetrically, Y_{n}^{\prime} is strongly complete to X_{n-1}^{\prime}. Hence, (S3) is satisfied.

It remains to prove the following.
(i) If $Y_{1} \neq \emptyset$, then X_{1}^{\prime} is strongly complete to X_{2}^{\prime}
(ii) If $Y_{n} \neq \emptyset$, then X_{n}^{\prime} is strongly complete to X_{1}^{\prime}
(iii) X_{2}^{\prime} is strongly complete to at least one of $X_{3}^{\prime}, X_{1}^{\prime}$.
(iv) X_{n}^{\prime} is strongly complete to at least one of $X_{n-1}^{\prime}, X_{2}^{\prime}$.
(v) X_{1}^{\prime} is strongly complete to at least one of $X_{n}^{\prime}, X_{2}^{\prime}$.

Assume that $Y_{1} \neq \emptyset$. It implies by (S4), that X_{1} is strongly complete to X_{2}. Since $\left\{x \mid Y_{n}, Y_{1}, Y_{2}^{C}\right\}$ is not a claw, we deduce that $Y_{2}^{C}=\emptyset$. Since $x-Y_{1}-X_{2}^{A}-X_{3}-\ldots-X_{n}-x$ is not a hole of length $n+1$, we deduce that $X_{2}^{A}=\emptyset$ and thus X_{1}^{\prime} is strongly complete to X_{2}^{\prime}. This proves i) and by symmetry ii) holds. If $Y_{2}^{C} \neq \emptyset$, it follows by (S4) that X_{2}^{\prime} is strongly complete to X_{3}^{\prime} and iii) holds. Thus we may assume that Y_{2}^{C} is empty. If X_{2}^{A} is empty, and since by (S6), X_{2} is strongly complete to at least one of X_{1}, X_{3}, it follows that X_{2}^{\prime} is strongly complete to at least one of $X_{1}^{\prime}, X_{3}^{\prime}$. Thus we may assume that $X_{2}^{A} \neq \emptyset$. Since $x-Y_{1}-X_{2}^{A}-X_{3}-\ldots-X_{n}-x$ is not a hole of length $n+1$, we deduce that $Y_{1}=\emptyset$.

Assume that there exist $w \in X_{2}$ and $v \in X_{3}$ such that w is antiadjacent to v. Suppose first that $w \in X_{2}^{C}$. Since $x-w-X_{2}^{A}-v-X_{4}-\ldots-X_{n}-x$ is not a cycle of length $n+1$, we deduce that v is strongly anticomplete to X_{2}^{A}. By (S5), there exists $a \in X_{2}^{C}$ adjacent to v. But $\left\{a \mid x, v, X_{2}^{A}\right\}$ is a claw, a contradiction. Thus we may assume that $w \in X_{2}^{A}$ and v is strongly complete to X_{2}^{C}. But $\{z \mid x, v, w\}$ is a claw, a contradiction. Hence X_{2} is strongly complete to X_{3}. This proves iii) and by symmetry iv) holds.

We claim that x is strongly complete to at least one of X_{2} or X_{n}. Suppose that $p \in X_{n}^{A}$ and $q \in X_{2}^{A}$. By (S5) and (S6), there is $r \in X_{1}$ that is adjacent to both p and q. But $\{r \mid p, q, x\}$ is a claw, a contradiction. This proves the claim. By symmetry we may assume that x is strongly complete to X_{n}. By (1), X_{n} is strongly complete to X_{1}. If $Y_{n-1}^{C}=\emptyset$, it follows that X_{1}^{\prime} is strongly complete to X_{n}^{\prime} and v) holds. Thus we may assume that $Y_{n-1}^{C} \neq \emptyset$. Since $\left\{x \mid X_{1}, Y_{n-1}^{C}, Y_{2}^{C}\right\}$ is not a claw, we deduce that $Y_{2}^{C}=\emptyset$. Since $x-Y_{n-1}^{C}-X_{n-1}-\ldots-X_{3}-X_{2}^{A}-X_{1}-x$ is not a hole of length $n+1$, we deduce that X_{2}^{A} is empty. By (1), X_{1} is strongly complete to X_{2} and thus X_{1}^{\prime} is strongly complete to X_{2}^{\prime}. This proves v). This concludes the proof of (3).

Let $C=x_{1}-x_{2}-\ldots-x_{n}-x_{1}$ be a hole of length n with $x_{i} \in X_{i}$. By $2.6, x$ is strongly adjacent to two consecutive vertices of C. Without loss of generality, we may assume that x is strongly complete to $\left\{x_{1}, x_{2}\right\}$. By (1), x_{1} is strongly adjacent to x_{2}. By (3), x is strongly anticomplete to $X_{3} \cup X_{4} \cup X_{n-1} \cup X_{n}$. Since $G \mid\left(\{x\} \bigcup_{i} X_{i}\right)$ does not contain an induced a cycle of length $p \neq n$ by 4.1, we deduce that x is strongly anticomplete to X_{i} for $i=5, \ldots, n-2$. Similarly, x is strongly anticomplete to $Y_{3} \cup \ldots \cup Y_{n-1}$ otherwise there is a hole of length $p \neq n$ in G.

Since $x-Y_{2}-X_{3}-\ldots-X_{n}-X_{1}-x$ and $x-Y_{n}-X_{n}-\ldots-X_{2}-x$ are not holes of length $n+1$, we deduce that x is strongly anticomplete to $Y_{2} \cup Y_{n}$.

Since $\left\{X_{2}^{C} \mid X_{1}^{A}, x, X_{3}\right\}$ and $\left\{X_{1}^{C} \mid X_{2}^{A}, x, X_{n}\right\}$ are not claws, it follows that X_{1}^{A} is strongly anticomplete to X_{2}^{C} and X_{1}^{C} is strongly anticomplete to X_{2}^{A}. Suppose there is $a \in X_{1}^{A}$. By (S5), there is $b \in X_{2}^{A}$ adjacent to a. But $G \mid\left(\left\{x_{1}, x_{2}, a, b\right\}\right.$ is a hole of length 4 strongly anticomplete to X_{4}, contrary to 2.6. Thus $X_{1}^{A}=X_{2}^{A}=\emptyset$ and by (1), X_{1} is strongly complete to X_{2}. Since $\left\{X_{1} \mid x, Y_{1}, X_{n}\right\}$ is not a claw, we deduce that x is strongly complete to Y_{1}.

For $i=1, \ldots, n$, let $X_{i}^{\prime}=X_{i}$, for $i=2, \ldots, n$, let $Y_{i}^{\prime}=Y_{i}$ and let $Y_{1}^{\prime}=Y_{1} \cup\{x\}$. The above arguments show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are cliques satisfying $(S 2)-(S 6)$ but $\left|\bigcup_{i}\left(X_{i} \cup Y_{i}\right)\right|<\left|\bigcup_{i}\left(X_{i}^{\prime} \cup Y_{i}^{\prime}\right)\right|$, a contradiction. This concludes the proof of 4.2.

We now have all the tools to prove theorem 2.1.
Proof of 2.1. We may assume that G is not a linear interval trigraph and not a cobipartite trigraph. By 2.5 , there is an essential triangle or a hole in G. Then by $2.8,3.1$ and $4.2, G$ is either a structured circular interval trigraph or is a thickening of a trigraph in \mathcal{C}. This proves 2.1.

5 Some Facts about Linear Interval Join

In this section we prove some lemmas about paths in linear interval stripes.
5.1. Let G be a linear interval join with skeleton H such that G is Berge. Let e be an edge of H that is in a cycle. Let $\eta(e)=V(T) \backslash Z$ where (T, Z) is a thickening of a linear interval stripe $\left(S,\left\{x_{1}, x_{n}\right\}\right)$. Then the lengths of all paths from x_{1} to x_{n} in $\left(S,\left\{x_{1}, x_{n}\right\}\right)$ have the same parity.

Proof. Assume not. Let $C=c_{0}-c_{1}-\ldots-c_{n}-c_{0}$ be a cycle in H such that $e=c_{0} c_{n}$. For $i=0, \ldots, n-1$, let $c_{i} c_{i+1}=e_{i},\left(G_{e_{i}},\left\{x_{i}^{1}, x_{i}^{2}\right\}\right)$ be such that $\eta\left(e_{i}\right)=V\left(G_{e_{i}}\right) \backslash\left\{x_{i}^{1}, x_{i}^{2}\right\}, \phi_{e_{i}}\left(c_{i}\right)=x_{i}^{1}$ and $\phi_{e_{i}}\left(c_{i+1}\right)=x_{i}^{2}$ as in the definition of a linear interval join. We may assume that $\phi_{e}\left(c_{n}\right)=x_{1}$ and $\phi_{e}\left(c_{0}\right)=x_{n}$. Let $O=x_{1}-o_{1}-\ldots-o_{l-1}-x_{n}$ be an odd path from x_{1} to x_{n} in S and $P=x_{1}-p_{1}-\ldots-p_{l^{\prime}-1}-x_{n}$ be an even path from x_{1} to x_{n} in S. For $i=0,1, \ldots, n-1$, let Q_{i} be a path in $G_{e_{i}}$ from x_{i}^{1} to x_{i}^{2}. Let Q_{i}^{\prime} be the subpath of Q_{i} with $V\left(Q_{i}^{\prime}\right)=V\left(Q_{i}\right) \backslash\left\{x_{i}^{1}, x_{i}^{2}\right\}$.

Let $C_{1}=X_{o_{1}}-\ldots-X_{o_{l-1}}-Q_{0}^{\prime}-Q_{1}^{\prime}-\ldots-Q_{n-1}^{\prime}-X_{o_{1}}$ and $C_{2}=X_{p_{1}}-\ldots-X_{p_{l^{\prime}-1}}-Q_{0}^{\prime}-Q_{1}^{\prime}-$ $\ldots-Q_{n-1}^{\prime}-X_{p_{1}}$. Then one of C_{1}, C_{2} is an odd hole in G, a contradiction. This proves 5.1.

Before the next lemma, we need some additional definitions. Let ($G,\left\{x_{1}, x_{n}\right\}$) be a linear interval stripe. The right path of G is the path $R=r_{0}-\ldots-r_{p}$ (where $r_{0}=x_{1}$ and $r_{p}=x_{n}$) defined inductively starting with $i=1$ such that $r_{i}=x_{i^{*}}$ with $i^{*}=\max \left\{j \mid x_{j}\right.$ is adjacent to $\left.r_{i-1}\right\}$ (i.e. from r_{i} take a maximal edge on the right to r_{i+1}). Similarly the left path of G is the path $L=l_{0}-\ldots-l_{p}$ (where $l_{0}=x_{1}$ and $l_{p}=x_{n}$) defined inductively starting with $i=p-1$ such that $l_{i}=x_{i^{*}}$ with $i^{*}=\min \left\{j \mid x_{j}\right.$ is adjacent to $\left.l_{i+1}\right\}$.
5.2. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe and R be the right path of G. If $x, y \in V(R)$, then $x-R-y$ is a shortest path between x and y.

Proof. Let $P=x-p_{1}-\ldots-p_{t-1}-y$ be a path between x and y of length t and let $x-r_{l}-\ldots-r_{s+l-2}-y=$ $x-R-y$. By the definition of R and since G is a linear interval stripe, we deduce that $r_{l+i-1} \geq p_{i}$ for $i=1, \ldots, s-1$. Hence it follows that $s \leq t$. This proves 5.2.

5.3. Every linear interval trigraph is Berge.

Proof. Let G be a linear interval trigraph with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. The proof is by induction on the number of vertices. Clearly $H=G \mid\left\{v_{1}, \ldots, v_{n-1}\right\}$ is a linear interval trigraph, so inductively H is Berge. Since G is a linear interval trigraph, it follows that $N\left(v_{n}\right)$ is a strong clique. But if A is an odd hole or an odd antihole in G, then for every $a \in V(A)$, it follows that $N(a) \cap V(A)$ is not a strong clique. Therefore $v_{n} \notin V(A)$ and consequently G is Berge. This proves 5.3.
5.4. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe. Let S and Q be two paths from x_{1} to x_{n} of length s and q such that $s<q$. Then there exists a path of length m from x_{1} to x_{n} in G for all $s<m<q$.

Proof. Let G^{\prime} be a circular interval trigraph obtained from G by adding a new vertex x as follows:

- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$,
- $G^{\prime} \mid V(G)=G$,
- x is strongly anticomplete to $V(G) \backslash\left\{x_{1}, x_{n}\right\}$,
- x is strongly complete to $\left\{x_{1}, x_{n}\right\}$.

Let $s<m<q, C_{1}=x_{1}-S-x_{n}-x-x_{1}$ and $C_{2}=x_{1}-Q-x_{n}-x-x_{1}$. Clearly, C_{1} and C_{2} are holes of length $s+2$ and $q+2$ in G^{\prime}. By 4.1, there exists a hole C_{m} of length $m+2$ in G^{\prime}. Since it is easily seen from the definition of linear interval trigraph that there is no hole in G, we deduce that $x \in V\left(C_{m}\right)$. Let $C_{m}=x-c_{1}-c_{2}-\ldots-c_{m+1}-x$. Since $N(x)=\left\{x_{1}, x_{n}\right\}$, we may assume that $c_{1}=x_{1}$ and $c_{m+1}=x_{n}$. But now $x_{1}-c_{2}-\ldots-c_{m}-x_{n}$ is a path of length m from x_{1} to x_{n} in G. This proves 5.4.

We say that a linear interval stripe $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ has length p if all paths from x_{1} to x_{n} have length p.
5.5. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe of length p. Let $L=l_{0}-\ldots-l_{p}$ and $R=r_{0}-\ldots-r_{p}$ be the left and right paths. Then $r_{0}<l_{1} \leq r_{1}<l_{2} \leq r_{2}<\ldots<l_{p-1} \leq r_{p-1}<l_{p}$.

Proof. Since G is a linear interval trigraph and by the definition of right path, it follows that $r_{0}<r_{1}<$ $r_{2}<\ldots<r_{p}$.

We claim that if $l_{i} \in\left(r_{i-1}, r_{i}\right]$, then $l_{i-1} \in\left(r_{i-2}, r_{i-1}\right]$. Assume that $l_{i} \in\left(r_{i-1}, r_{i}\right]$. Since r_{i-1} is adjacent to r_{i}, we deduce that l_{i} is adjacent to r_{i-1}. By the definition of the left path, $l_{i-1} \leq r_{i-1}$. Since $r_{i-1}<l_{i}$ and by the definition of the right path, we deduce that r_{i-2} is strongly antiadjacent to l_{i}. Since G is a linear interval trigraph, we deduce that $l_{i-1}>r_{i-2}$. This proves the claim.

Now, since $l_{p} \in\left(r_{p-1}, r_{p}\right]$ and using the claim inductively, we deduce that $r_{i-1}<l_{i} \leq r_{i}$ for $i=$ $1, \ldots, p$. This proves 5.5.
5.6. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe of length p. Let $L=l_{0}-\ldots-l_{p}$ and $R=r_{0}-\ldots-r_{p}$ be the left and right paths. Then $\left[r_{0}, l_{i}\right)$ is strongly anticomplete to $\left[l_{i+1}, l_{p}\right]$ and $\left[r_{0}, r_{i}\right]$ is strongly anticomplete to $\left(r_{i+1}, l_{p}\right]$ for $i=0, \ldots, p$.

Proof. Assume not. By symmetry, we may assume that there exist $i, a \in\left[r_{0}, l_{i}\right)$ and $b \in\left[l_{i+1}, l_{p}\right]$ such that a is adjacent to b. Since $l_{i+1} \in(a, b]$ and since G is a linear interval trigraph, we deduce that l_{i+1} is adjacent to a. But $a<l_{i}$, contrary to the definition of the left path. This proves 5.6.
5.7. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe of length $p \geq 3$. Let $L=l_{0}-\ldots-l_{p}$ and $R=r_{0}-\ldots-r_{p}$ be the left and right paths. If l_{i} and r_{i+1} are strongly adjacent for some $0<i<p$, then G admits a 1-join.

Proof. Let i be such that l_{i} and r_{i+1} are strongly adjacent. Since G is a linear interval trigraph, we deduce that $\left[l_{i}, r_{i+1}\right]$ is a strong clique. By 5.6 , it follows that $\left[r_{0}, l_{i}\right)$ is strongly anticomplete to ($\left.r_{i+1}, r_{p}\right]$.

Suppose there exists $x \in\left[l_{i}, r_{i+1}\right]$ that is adjacent to a vertex $a \in\left[r_{0}, l_{i}\right)$ and $b \in\left(r_{i+1}, r_{p}\right]$. By 5.6, it follows that a is strongly anticomplete to $\left[l_{i+1}, l_{p}\right]$ and thus $x \in\left[l_{i}, l_{i+1}\right)$. Symmetrically, $x \in\left(r_{i}, r_{i+1}\right]$. Hence by 5.5 , we deduce that $x \in\left(r_{i}, l_{i+1}\right)$. By the definition of the right path and since a is adjacent to x, we deduce that $a \notin\left[r_{0}, r_{i-1}\right]$. Hence $a \in\left(r_{i-1}, l_{i}\right)$. By symmetry, $b \in\left(r_{i+1}, l_{i+2}\right)$.

We claim that $P=r_{0}-R-r_{i-1}-a-x-b-l_{i+2}-L-l_{p}$ is a path. Since $r_{i-1}<a$ and by the definition of the right path, we deduce that r_{i-2} is strongly antiadjacent to a. Since $b<l_{i+2}$ and by the definition of the left path, we deduce that b is strongly antiadjacent to l_{i+3}. By 5.6 and since $a \in\left(r_{i-1}, l_{i}\right)$ and $b \in\left(r_{i+1}, l_{i+2}\right)$, it follows that a and b are strongly antiadjacent. Moreover since $x \in\left(r_{i}, l_{i+1}\right)$ and by the definition of the left and right path, we deduce that x is strongly anticomplete to $\left\{r_{i-1}, l_{i+2}\right\}$. This proves the claim.

But P is an path of length $p+1$, a contradiction. Hence for all $x \in\left[l_{i}, r_{i+1}\right], x$ is strongly anticomplete to at least one of $\left[r_{0}, l_{i}\right),\left(r_{i+1}, r_{p}\right]$.

Let $V_{1}=\left\{x \in\left[l_{i}, r_{i+1}\right]: x\right.$ is strongly anticomplete to $\left.\left(r_{i+1}, r_{p}\right]\right\}$ and $V_{2}=\left[l_{i}, r_{i+1}\right] \backslash V_{1}$. The above arguments shows that $\left(\left[r_{0}, l_{i}\right) \cup V_{1},\left(r_{i+1}, r_{p}\right] \cup V_{2}\right)$ is a 1 -join. This proves 5.7.
5.8. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe of length p with $p>3$, then G admits a 1-join.

Proof. Assume not. Let $L=l_{0}-\ldots-l_{p}$ and $R=r_{0}-\ldots-r_{p}$ be the left and right paths. If $r_{2}=l_{2}$, it follows that r_{2} is strongly adjacent to at least one of l_{1}, r_{3}, contrary to 5.7 . Thus by 5.5 , we may assume that $l_{2}<r_{2}$.

By 5.7, we may assume that l_{1} is antiadjacent to r_{2} and l_{2} is antiadjacent to r_{3}. By 5.5 , it follows that $l_{2} \in\left(r_{1}, r_{2}\right)$. Since G is a linear interval trigraph, we deduce that l_{2} is adjacent to r_{2}. Hence $l_{0}-l_{1}-l_{2}-r_{2}-R-r_{p}$ is a path of length $p+1$, a contradiction. This proves 5.8.
5.9. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe of length three, and (H, Z) a thickening of ($\left.G,\left\{x_{1}, x_{n}\right\}\right)$. Then either H admits a 1-join or (H, Z) is the thickening of a spring.

Proof. Let $L=l_{0}-l_{1}-l_{2}-l_{3}$ and $R=r_{0}-r_{1}-r_{2}-r_{3}$ be the left and right paths of G. If l_{1} is strongly adjacent to r_{2} then by 5.7, G admits a 1 -join, and so does H.

Thus, we may assume that l_{1} is not strongly adjacent to r_{2}. Suppose that there exists $a \in\left(r_{1}, l_{2}\right)$. Since $a>r_{1}$, we deduce that a is strongly antiadjacent to r_{0}. Symmetrically, a is strongly antiadjacent to l_{3}. By 5.5 , it follows that $a \in\left(l_{1}, l_{2}\right)$. Since G is a linear interval trigraph, we deduce that a is adjacent to l_{1}. Symmetrically, a is adjacent to r_{2}. Hence $r_{0}-l_{1}-a-r_{2}-l_{3}$ is a path of length 4 , contrary to the fact that $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ has length 3 . Thus $\left(r_{1}, l_{2}\right)=\emptyset$.

Since r_{0} is strongly adjacent to r_{1} and as G is a linear interval trigraph, we deduce that $\left(r_{0}, r_{1}\right]$ is a strong clique, and moreover, that r_{0} is strongly complete to $\left(r_{0}, r_{1}\right]$. By 5.6, it follows that r_{0} is strongly anticomplete to $\left[l_{2}, l_{3}\right]$. By symmetry and since $V(G)=\left\{r_{0}, l_{3}\right\} \cup\left(r_{0}, r_{1}\right] \cup\left[l_{2}, l_{3}\right)$, the above arguments show that $\left(\left(r_{0}, r_{1}\right],\left[l_{2}, l_{3}\right)\right)$ is a homogeneous pair. Moreover by $5.5, l_{1} \in\left(r_{0}, r_{1}\right]$ and $r_{2} \in\left[l_{2}, l_{3}\right)$. Since l_{1} is antiadjacent to r_{2}, we deduce that ($\left.r_{0}, r_{1}\right]$ is not strongly complete to $\left[l_{2}, l_{3}\right)$. Since $r_{2} \in\left[l_{2}, l_{3}\right)$ and by the definition of the right path, we deduce that $\left(r_{0}, r_{1}\right]$ is not strongly anticomplete to $\left[l_{2}, l_{3}\right)$.

Now setting $X_{w}=\left\{l_{0}\right\}, X_{x}=\left(r_{0}, r_{1}\right], X_{y}=\left[l_{2}, l_{3}\right)$ and $X_{z}=\left\{r_{3}\right\}$, we observe that $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ is the thickening of a spring, and therefore (H, Z) is the thickening of a spring. This proves 5.9.

6 Proof of the Main Theorem

In this section we collect the results we have proved so far, and finish the proof of the main theorem.
6.1. Let $(G,\{x\})$ be a connected cobipartite bubble. Then $(G,\{x\})$ is a thickening of a truncated spot, a thickening of a truncated spring or a thickening of a one-ended spot.
Proof. Let X and Y be two disjoint strong cliques such that $X \cup Y=V(G)$. We may assume that $\{x\} \subseteq X$. If $\{x\} \cup N(x)=V(G)$, it follows that $N(x)$ is a homogeneous set. Hence $(G,\{x\})$ is the thickening of a truncated spot.

Thus we may assume that $\{x\} \cup N(x) \neq V(G)$. Let $Y_{1}=Y \cap N(x)$ and $Y_{2}=Y \backslash Y_{1}$. Then x is strongly complete to Y_{1} and strongly anticomplete to Y_{2}. Observe that $\left(N(x), Y_{2}\right)$ is a homogeneous pair. Since G is connected, we deduce that $|N(x)| \geq 1$ and that $N(x)$ is not strongly anticomplete to Y_{2}. If $N(x)$ is strongly complete to Y_{2}, we observe that $(G,\{x\})$ is a thickening of a one-ended spot. And otherwise, we observe that $(G,\{x\})$ is a thickening of a truncated spring. This concludes the proof of 6.1.
6.2. Let $(G,\{z\})$ be a stripe such that G is a thickening of a trigraph in \mathcal{C}. Then $(G,\{z\})$ is in \mathcal{C}^{\prime}.

Proof. Let H be a trigraph in \mathcal{C} such that G is a thickening of H. For $i, j=1,2,3$, let $B_{i}^{j} \subseteq V(H)$ and $a_{i} \in V(H)$ be as in the definition of \mathcal{C}. For $i=1,2,3$, let $X_{a_{i}} \subset V(G)$ be as in the definition of a thickening. For $b \in V(G) \backslash\left(X_{a_{1}} \cup X_{a_{2}} \cup X_{a_{3}}\right)$ and since there exists i such that $X_{a_{i}} \cup X_{a_{i+1}} \subseteq N(b)$, and $X_{a_{i}}$ is not strongly complete to $X_{a_{i+1}}$, we deduce that $b \notin\{z\}$. Thus there exists $k \in\{1,2,3\}$ such that $z \in X_{a_{k}}$. Since $\bigcup_{i=1}^{3}\left(B_{k}^{1} \cup B_{k+1}^{i}\right) \subseteq N(z)$ and since there exists no $c \in X_{a_{k+1}} \cup X_{a_{k+2}}$ with c strongly complete to $\bigcup_{i=1}^{3}\left(B_{k}^{1} \cup B_{k+1}^{i}\right)$, we deduce that $N(z) \cap\left(X_{a_{k+1}} \cup X_{a_{k+2}}\right)=\emptyset$. Since B_{k+1}^{k+2} is anticomplete to B_{k}^{k+2} and $B_{k+1}^{k+2} \cup B_{k}^{k+2} \subseteq N(z)$, we deduce from the definition of \mathcal{C} that $B_{k+1}^{k+2} \cup B_{k}^{k+2}=\emptyset$. Hence we deduce that $(G,\{z\})$ is in \mathcal{C}^{\prime}. This proves 6.2.
6.3. Let G be a trigraph and let H be a thickening of G. For $v \in V(G)$, let X_{v} be as in the definition of thickening of a trigraph. Let $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ be an odd hole or an odd antihole of H. Then $\left|V(C) \cap X_{v}\right| \leq 1$ for all $v \in V(G)$.

Proof. Assume not. We may assume that $\left|V(C) \cap X_{x}\right| \geq 2$ with $x \in V(G)$.
Assume first that C is a hole. By symmetry, we may assume that $c_{1}, c_{2} \in X_{x}$. Since c_{3} is antiadjacent to c_{1} and adjacent to c_{2}, we deduce that there exists $y \in V(G)$ such that x is semiadjacent to y and $c_{3} \in X_{y}$. By symmetry, and since x is semiadjacent to at most one vertex in G, we deduce that $c_{n} \in X_{y}$, a contradiction since X_{y} is a strong clique.

Assume now that C is an antihole. By symmetry, we may assume that there exists $k \in\{3, \ldots, n-1\}$ such that $c_{1}, c_{k} \in X_{x}$. Moreover we may assume by symmetry that k is even.
(1) For $i \in\{1, \ldots, k / 2\}$, if i is odd then $c_{i}, c_{k-i+1} \in X_{x}$, and there exists $y \in V(G)$ such that if i is even then $c_{i}, c_{k-i+1} \in X_{y}$.

By induction on i. By assumption, $c_{1}, c_{k} \in X_{x}$. Since c_{2} is adjacent to c_{k} and antiadjacent to c_{1}, we deduce that there exists $y \in V(G)$ such that x is semiadjacent to y in G and $c_{2} \in X_{y}$. By symmetry, and since x is semiadjacent to at most one vertex in G, we deduce that $c_{k-1} \in X_{y}$.

Now let $i \in\{3, \ldots, k / 2\}$ and assume first that i is odd. By induction, we may assume that $c_{i-1}, c_{k-i+2} \in X_{y}$. Since c_{i} is adjacent to c_{k-i+2} and antiadjacent to c_{i-1}, we deduce that $c_{i} \in X_{x}$ since y is semiadjacent only to x in G. By symmetry, we deduce that $c_{k-i+1} \in X_{x}$. Now if i is even, the same argument holds by symmetry. This proves (1).

By (1), there exists $z \in\{x, y\}$ such that $c_{k / 2}, c_{k / 2+1} \in X_{z}$, a contradiction. This concludes the proof of 6.3.
6.4. Let G be a trigraph and let H be a thickening of G. Then G is Berge if and only if H is Berge.

Proof. If $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ is an odd hole (resp. antihole) in G then $C^{\prime}=X_{c_{1}}-X_{c_{2}}-\ldots-X_{c_{n}}-X_{c_{1}}$ is an odd hole (resp. antihole) in H.

Now assume that $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ is an odd hole or an odd antihole in H. By 6.3, there is $x_{i} \in V(G)$ such that $c_{i} \in X_{x_{i}}$ for $i=1, \ldots, n$ and such that $x_{i} \neq x_{j}$ for all $i \neq j$. But $x_{1}-x_{2}-\ldots-x_{n}-x_{1}$ is an odd hole or an odd antihole in G. This proves 6.4.
6.5. Let G be a structured circular interval trigraph. Then G is Berge.

Proof. Assume not. For $i=1, \ldots, n$, let X_{i} and Y_{i} be as in the definition of structured circular interval trigraph. Let $C=c_{1}-\ldots-c_{n}-c_{1}$ be an odd hole or an odd antihole in G. Since $N(y)$ is a strong clique for all $y \in \bigcup_{i=1}^{n} Y_{i}$, we deduce that $V(C) \cap \bigcup_{i=1}^{n} Y_{i}=\emptyset$. But by 6.3 and (S1)-(S6), we get a contradiction. This proves 6.5.
6.6. Let G be a structured circular interval trigraph. Then G is a thickening of an evenly structured linear interval join.

Proof. Let $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ and n be as in the definition of structured circular interval trigraph. Throughout this proof, the addition is modulo n.

Let $H=(V, E)$ be a graph and s be a signing such that:

- $V \subseteq\left\{h_{1}, h_{2}, \ldots, h_{n}\right\} \cup\left\{l_{1}^{1}, \ldots, l_{1}^{\left|Y_{1}\right|}\right\} \cup \ldots \cup\left\{l_{n}^{1}, \ldots, l_{n}^{\left|Y_{n}\right|}\right\}$,
- if X_{i} is not strongly complete to X_{i+1}, then $h_{i+1} \notin V$, and there is exactly one edge e_{i} between h_{i} and h_{i+2}, and $s\left(e_{i}\right)=0$,
- if X_{i} is strongly complete to $X_{i-1} \cup X_{i+1}$, then there are $\left|X_{i}\right|$ edges $e_{i}^{1}, \ldots, e_{i}^{\left|X_{i}\right|}$ between h_{i} and h_{i+1}, and $s\left(e_{i}^{k}\right)=1$ for $k=1, \ldots,\left|X_{i}\right|$,
- if $h_{i} \in V$, there is one edge between h_{i} and l_{i-1}^{k} with $s\left(h_{i} l_{i-1}^{k}\right)=1$ for $k=1, \ldots,\left|Y_{i-1}\right|$.

Then G is an evenly structured linear interval join with skeleton H and such that each stripe associated with an edge e with $s(e)=1$ is a spot. This proves 6.6.

We can now prove the following.
6.7. Let G be a linear interval join. Then G is Berge if and only if G is an evenly structured linear interval join.

Proof.

\Leftarrow Let G be an evenly structured linear interval join. We have to show that G is Berge. By 5.3, linear interval stripes are Berge. By 2.7 and 6.4, trigraphs in \mathcal{C}^{\prime} are Berge. By 6.5, structured bubbles are Berge. Clearly spots, truncated spots, one-ended spots and truncated springs are Berge. By 6.4 and due to the construction of evenly structured linear interval join, the only holes created are of even length due to the signing. Thus G is Berge.
\Rightarrow Let G be a Berge linear interval join. Let H be a skeleton of G. We may assume that H is chosen among all skeletons of G such that $|V(H)|$ is maximum and subject to that with $|E(H)|$ maximum. Let $\left(G_{e}, Y_{e}\right), e=x_{1} x_{2}$ (with $x_{1}=x_{2}$ if e is a loop) and $\phi_{e}: V(e) \rightarrow Y_{e}$ be associated with H as in the definition of linear interval join.
(1) If $\left(G_{e}, Y_{e}\right)$ is a thickening of a linear interval stripe such thate is in a cycle in H bute is not a loop, then G_{e} does not admit a 1-join.

Assume not. Let $Y_{e}=\{y, z\}$ and $e=x_{1} x_{2}$. We may assume that $\phi_{e}\left(x_{1}\right)=y$ and $\phi_{e}\left(x_{2}\right)=z$.
Let H^{\prime} be the graph obtained from H by adding a new vertex a^{\prime} as follows: $V\left(H^{\prime}\right)=V(H) \cup\left\{a^{\prime}\right\}$, $H^{\prime} \mid V(H)=H \backslash e$ and a^{\prime} is adjacent to x_{1} and x_{2}, and to no other vertex.
Let $\left(F_{e}, Z_{e}\right)$ be a linear interval stripe such that $\left(G_{e}, Y_{e}\right)$ is a thickening of $\left(F_{e}, Z_{e}\right)$ and such that F_{e} admits a 1-join. Let $V_{1}, V_{2}, A_{1}, A_{2} \subset V\left(F_{e}\right)$ be as in the definition of 1-join. Moreover let W_{1}, W_{2} be the natural partition of $V\left(G_{e}\right)$ such that $G_{e} \mid W_{k}$ is a thickening of $F_{e} \mid W_{k}$ for $k=1,2$ and $\left(W_{1}, W_{2}\right)$ is a 1-join. We may assume that $V\left(F_{e}\right)=\left\{v_{1}, \ldots, v_{n}\right\}, V_{1}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $V_{2}=\left\{v_{k+1}, \ldots, v_{n}\right\}$. Let F_{e}^{1} be such that $V\left(F_{e}^{1}\right)=\left\{v_{1}, \ldots, v_{k}, v_{k+1}^{\prime}\right\}, F_{e}^{1} \mid V_{1}=F_{e}$ and v_{k+1}^{\prime} is complete to A_{1} and anticomplete to $V_{1} \backslash A_{1}$. Let $\left(G_{e}^{1}, Y_{e}^{1}\right)$ be the thickening of $\left(F_{e}^{1},\left\{v_{1}, v_{k+1}^{\prime}\right\}\right)$ such that $G_{e}^{1} \backslash Y_{e}^{1}=G_{e} \mid\left(W_{1} \backslash Y_{e}\right)$. Let F_{i}^{2} be such that $V\left(F_{e}^{2}\right)=\left\{v_{k}^{\prime}, v_{k+1}, \ldots, v_{n}\right\}, F_{e}^{2} \mid V_{2}=F_{e}$ and v_{k}^{\prime} is complete to A_{2} and anticomplete to $V_{2} \backslash A_{2}$. Let $\left(G_{e}^{2}, Y_{e}^{2}\right)$ be the thickening of $\left(F_{e}^{2},\left\{v_{k}^{\prime}, v_{n}\right\}\right)$ such that $G_{e}^{2} \backslash Y_{e}^{2}=G_{e} \mid\left(W_{2} \backslash Y_{e}\right)$.
Now G is a linear interval join with skeleton H^{\prime} using the same stripes as the construction with skeleton H except for stripe $\left(G_{e}^{1}, Y_{e}^{1}\right)$ and $\left(G_{e}^{2}, Y_{e}^{2}\right)$ associated with the edges $a^{\prime} x_{1}$ and $a^{\prime} x_{2}$, contrary to the maximality of $|V(H)|$. This proves (1).
Let s be a signing of G such that $s(e)=1$ if $\left(G_{e}, Y_{e}\right)$ is a spot, and $s(e)=0$ if $\left(G_{e}, Y_{e}\right)$ is not a spot.
It remains to prove that:
(P1) if e is not a loop and is in a cycle and $s(e)=0$, then $\left(G_{e}, Y_{e}\right)$ is a thickening of a spring, and
(P2) (H, s) is an even structure,
(P3) if e is a loop, then $\left(G_{e}, Y_{e}\right)$ is a trigraph in \mathcal{C}^{\prime}.

First we prove (P1). Let $e=x_{1} x_{2}$ be in a cycle and such that $s(e)=0$ and e is not a loop. Let $\left(G_{e}, Y_{e}\right)$ be a thickening of a linear interval stripe such that e has been replaced by $\left(G_{e}, Y_{e}\right)$ in the construction. Let $Y_{e}=\{y, z\}$. We may assume that $\phi_{e}\left(x_{1}\right)=y$ and $\phi_{e}\left(x_{2}\right)=z$. By 5.1 and 5.4, if $e \in H$ is in a cycle, then all paths from y to z have the same length. By (1), (G_{e}, Y_{e}) does not admit a 1 -join, and thus by 5.8 and $5.9,\left(G_{e}, Y_{e}\right)$ is the thickening of a spring. This proves (P1).
Before proving (P2). We need the following claims.
(2) Let $C=c_{1}-c_{2}-c_{3}-c_{1}$ be a cycle in H with edge set $E(C)=\left\{e_{1}, e_{2}, e_{3}\right\}$. If $s\left(e_{1}\right)=s\left(e_{2}\right)=0$ and $s\left(e_{3}\right)=1$, then there is an odd hole in G.

By (P1), $\left(G_{e_{1}}, Y_{e_{1}}\right)$ and $\left(G_{e_{2}}, Y_{e_{2}}\right)$ are springs. It follows that the springs $\left(G_{e_{1}}, Y_{e_{1}}\right)$ and $\left(G_{e_{2}}, Y_{e_{2}}\right)$ together with the spot $\left(G_{e_{3}}, Y_{e_{3}}\right)$ induce a hole of length 5 in G, a contradiction. This proves (2).
(3) Let $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ be a cycle in H such that $n>3$ and such that $\sum_{e \in E(C)} s(e)$ is odd; then there is an odd hole in G.

The proof of (3) is similar to the proof of (2) and is omitted.
(4) Let $\left\{z_{1}, z_{2}, z_{3}\right\}$ be a triangle in H. For $i=1,2,3$, let e_{i} be an edge between z_{i} and $z_{i+1} \bmod 3$ such that $s\left(e_{i}\right)=1$. If $y \in V(H) \backslash\left\{z_{1}, z_{2}, z_{3}\right\}$ is adjacent to at least two vertices in $\left\{z_{1}, z_{2}, z_{3}\right\}$, then $s(f)=1$ for every edge f with one end y and the other end in $\left\{z_{1}, z_{2}, z_{3}\right\}$.

Assume that there is an edge e_{4} with one end y and the other end in $\left\{z_{1}, z_{2}, z_{3}\right\}$ with $s\left(e_{4}\right)=0$. By symmetry, we may assume that z_{1} is an end of e_{4}. By symmetry, we may also assume that there is an edge e_{5} between y and z_{2}. If $s\left(e_{5}\right)=0$, we deduce by (2) using $y-z_{1}-z_{2}-y$ that there is an odd hole in G, a contradiction. But if $s\left(e_{5}\right)=1$, we deduce by (2) using $y-z_{1}-z_{3}-z_{2}-y$ that there is an odd hole in G, a contradiction. This proves (4).
(5) Let A be a block of H. Assume that there is a cycle $C=c_{1}-c_{2}-c_{3}-c_{1}$ in H such that $s(e)=1$ for all $e \in E(C)$. Then all connected components of $A \backslash V(C)$ have size 1 .

Let B be a connected components of $A \backslash V(C)$ such that $|B|>1$. Since $B \cup\left\{c_{1}, c_{2}, c_{3}\right\}$ is 2-connected, there are at least 2 vertices in B that are not anticomplete to $\left\{c_{1}, c_{2}, c_{3}\right\}$. Similarly, there are at least 2 vertices in $\left\{c_{1}, c_{2}, c_{3}\right\}$ that are not anticomplete to B. Hence, we can find $b_{i}, b_{j} \in B$ such that b_{i} is adjacent to c_{i} and b_{j} is adjacent to c_{j} with $i \neq j$. By symmetry, we may assume that $i=1$ and $j=2$. Since B is connected, we deduce that there is a path P from b_{1} to b_{2} in B. But $C_{1}=c_{3}-c_{1}-b_{1}-P-b_{2}-c_{2}-c_{3}$ and $C_{2}=c_{1}-b_{1}-P-b_{2}-c_{2}-c_{1}$ are cycles of length greater than 3 and one of them has an odd value, thus by (3) there is an odd hole in G, a contradiction. This proves (5).

Now we prove (P2). We need to prove that every block of H is either a member of $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$ or an evenly signed graph. Let A be such a block and assume that $\left(A,\left.s\right|_{A}\right)$ is not an evenly signed graph. It follows that there exists a cycle $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ in A of odd value. By (3) and (2), we deduce that C has length 3 and $s(e)=1$ for all edges $e \in E(C)$.
By (2), if $|V(A)|=3$ we deduce that A is a member of \mathcal{F}_{1}. Hence we may assume that there is $c_{4} \in A$. By (5) and by symmetry, we deduce that c_{4} is adjacent to both c_{1} and c_{2}. By (4), we deduce that $s(e)=1$ for all edges e between $\left\{c_{1}, c_{2}, c_{3}\right\}$ and c_{4}.
Assume first that c_{4} is adjacent to c_{3}. Assume that $|V(A)|>4$. Since A is connected, there is $y \in A \backslash\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ such that y is not anticomplete to $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Let $\{i, j, k, l\}=\{1,2,3,4\}$. Since there is a cycle $C_{i j k}=c_{i}-c_{j}-c_{k}-c_{i}$ of length 3 with $s(e)=1$ for all edges $e \in E\left(C_{i j k}\right)$, we deduce by (5) that y is not adjacent to c_{l}. Hence y is anticomplete to $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$, a contradiction. It follows that $|V(A)|=4$. Assume now that there is an edge e in A with $s(e)=0$. By symmetry,
we may assume that e is between c_{1} and c_{2}. Now $c_{1}-c_{2}-c_{3}-c_{4}-c_{1}$, is a cycle of length 4 of odd value. By (3), it follows that G has an odd hole, a contradiction. Hence $s(e)=1$ for all edges e in A and we deduce that A is a member of \mathcal{F}_{2}.
Assume now that c_{4} is not adjacent to c_{3}. By (5), we deduce that $E\left(A \backslash\left\{c_{1}, c_{2}, c_{3}\right\}\right)=\emptyset$. Similarly by (5), it follows that $E\left(A \backslash\left\{c_{1}, c_{2}, c_{4}\right\}\right)=\emptyset$. Since A is 2 -connected, it follows that $\left\{c_{1}, c_{2}\right\}$ is complete to $V(A) \backslash\left\{c_{1}, c_{2}\right\}$. By (4), we deduce that $s(f)=1$ for all edges f between $\left\{c_{1}, c_{2}\right\}$ and $V(A) \backslash\left\{c_{1}, c_{2}\right\}$. Hence A is a member of \mathcal{F}_{3}. This proves (P2).
Finally we prove (P3). Let e be a loop. Let $\left(G_{e}, Y_{e}\right)$ be a thickening of a bubble such that e has been replaced by $\left(G_{e}, Y_{e}\right)$ in the construction. Let $Y_{e}=\{y\}$. Let (F, W) be a bubble such that $\left(G_{e}, Y_{e}\right)$ is a thickening of (F, W). By 2.1, F is a linear interval trigraph, a cobipartite trigraph, a structured circular interval trigraph or a thickening of a trigraph in \mathcal{C}.
Assume first that F is a linear interval trigraph. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the set of vertices of F. Let $k \in\{1, \ldots, n\}$ be such that $\left\{v_{k}\right\}=W$. For $v_{i} \in V(F)$, let $X_{v_{i}} \subset V\left(G_{i}\right)$ be as in the definition of a thickening. Let $l<r$ be such that $N\left(v_{k}\right)=\left\{v_{l}, \ldots, v_{r}\right\}$. Assume that $1<l$ and $r<n$. Let H^{\prime} be the graph obtained from H by adding two new vertices a_{1}, a_{2} as follows: $V\left(H^{\prime}\right)=V(H) \cup\left\{a_{1}, a_{2}\right\}, H^{\prime} \mid V(H)=H \backslash e, a_{1}$ and a_{2} are adjacent to $\phi_{e}^{-1}(y)$ and to no other vertex. Let F_{l} be such that $V\left(F_{l}\right)=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}, F_{l} \backslash v_{0}=F \mid\left\{v_{1}, \ldots, v_{k}\right\}$ and v_{0} is adjacent to v_{1} and to no other vertex. Let F_{r} be such that $V\left(F_{r}\right)=\left\{v_{k}, \ldots, v_{n}, v_{n+1}\right\}, F_{r} \backslash v_{n+1}=F \mid\left\{v_{k}, \ldots, v_{n}\right\}$ and v_{n+1} is adjacent to v_{n} and to no other vertex. Let $\left(G_{e}^{l}, Y_{e}^{l}\right)$ be the thickening of ($F_{l},\left\{v_{0}, v_{k}\right\}$) such that $G_{e}^{l} \backslash Y_{e}^{l}=G_{e} \mid \bigcup_{j=1}^{k-1} X_{v_{j}}$. Let $\left(G_{e}^{r}, Y_{e}^{r}\right)$ be the thickening of ($\left.F_{r},\left\{v_{k}, v_{n+1}\right\}\right)$ such that $G_{e}^{r} \backslash Y_{e}^{r}=G_{e} \mid \bigcup_{j=k+1}^{n} X_{v_{j}}$. Now G is a linear interval join with skeleton H^{\prime} using the same stripes as the construction with skeleton H except for $\left(G_{e}^{l}, Y_{e}^{l}\right)$ and $\left(G_{e}^{r}, Y_{e}^{r}\right)$ instead of $\left(G_{e}, Y_{e}\right)$, contrary to the maximality of $|V(H)|$. Hence by symmetry, we may assume that $l=1$. Now let H^{\prime} be the graph obtained from H by adding a new vertex a^{\prime} as follows: $V\left(H^{\prime}\right)=V(H) \cup\left\{a^{\prime}\right\}, H^{\prime} \mid V(H)=H \backslash e$ and a^{\prime} is adjacent to $\phi_{e}^{-1}(y)$ and to no other vertex. Let F^{\prime} be such that $V\left(F^{\prime}\right)=\left\{v_{1}, \ldots, v_{n}, v_{n+1}\right\}$, $F^{\prime} \mid V(F)=F$ and v_{n+1} is adjacent to v_{n} and to no other vertex. Let $\left(G_{e}^{\prime}, Y_{e}^{\prime}\right)$ be the thickening of $\left(F^{\prime},\left\{v_{1}, v_{n+1}\right\}\right)$ such that $G_{e}^{\prime} \backslash Y_{e}^{\prime}=G_{e} \backslash Y_{e}$. Now G is a linear interval join with skeleton H^{\prime} using the same stripes as the construction with skeleton H except for $\left(G_{e}^{\prime}, Y_{e}^{\prime}\right)$ instead of $\left(G_{e}, Y_{e}\right)$, contrary to the maximality of $|V(H)|$. Hence F is not a linear interval trigraph.
Assume now that F is a structured circular interval trigraph. Using the same construction as in the proof of 6.6 , it is easy to see that there exist H^{\prime} with $\left|V\left(H^{\prime}\right)\right|>|V(H)|$ and a set of stripes \mathcal{S}, such that G is a linear interval join with skeleton H^{\prime} using the stripes of \mathcal{S}, contrary to the maximality of $|V(H)|$. Hence F is not a structured circular interval trigraph.
Assume now that F is a cobipartite trigraph. Clearly any thickening of a cobipartite trigraph is a cobipartite trigraph. By $6.1,\left(G_{e}, Y_{e}\right)$ is a thickening of a truncated spot, a thickening of a truncated spring or a thickening of a one-ended spot.
Assume that $\left(G_{e}, Y_{e}\right)$ is a thickening of a one-ended spot. Let $X_{v} \subset V\left(G_{e}\right)$ be as in the definition of a thickening. Let H^{\prime} be the graph obtained from H by adding a new vertex a^{\prime} as follows: $V\left(H^{\prime}\right)=V(H) \cup\left\{a^{\prime}\right\}, H^{\prime} \mid V(H)=H \backslash e$, there is $\left|X_{v}\right|$ edges between a^{\prime} and $\phi_{e}^{-1}(y)$, there is a loop l on a^{\prime} and a^{\prime} is adjacent to no other vertex than $\phi_{e}^{-1}(y)$. Let the stripes associated with the edges between a^{\prime} and $\phi_{e}^{-1}(y)$ be spots and let the stripe associated with the loop on a^{\prime} be a thickening of a truncated spot. Now G is a linear interval join with skeleton H^{\prime} using the same stripes as the construction with skeleton H except for additional edges, contrary to the maximality of $|V(H)|$. Hence $\left(G_{i}, Y_{i}\right)$ is not a thickening of a one-ended spot.
Assume now that $\left(G_{e}, Y_{e}\right)$ is a thickening of a truncated spot. Let H^{\prime} be the graph obtained from H by adding $\left|V\left(G_{e}\right)\right|-1$ new vertices $a_{1}, \ldots, a_{\left|V\left(G_{e}\right)\right|-1}$ as follows: $V\left(H^{\prime}\right)=V(H) \cup$ $\left\{a_{1}, \ldots, a_{\left|V\left(G_{e}\right)\right|-1}\right\}, H^{\prime} \mid V(H)=H \backslash e$, and for $j \in\left\{1, \ldots,\left|V\left(G_{e}\right)\right|-1\right\}, a_{j}$ is adjacent to $\phi_{e}^{-1}(y)$ and to no other vertex. Now G is a linear interval join with skeleton H^{\prime} using the same stripes
as the construction with skeleton H and such that the stripes associated with the added edges are spots, contrary to the maximality of $|V(H)|$. Hence $\left(G_{e}, Y_{e}\right)$ is not a thickening of a truncated spot.
Assume that $\left(G_{e}, Y_{e}\right)$ is a thickening of a truncated spring. Let H^{\prime} be the graph obtained from H by adding a new vertex a^{\prime} as follows: $V\left(H^{\prime}\right)=V(H) \cup\left\{a^{\prime}\right\}, H^{\prime} \mid V(H)=H \backslash e$, and a^{\prime} is adjacent to $\phi_{e}^{-1}(y)$ and no other vertex. Now G is a linear interval join with skeleton H^{\prime} using the same stripes as the construction with skeleton H and such that the stripe associated with the edge $a^{\prime} \phi_{e}^{-1}(y)$ is a spring, contrary to the maximality of $|V(H)|$. Hence $\left(G_{e}, Y_{e}\right)$ is not a thickening of a truncated spring.
Finally assume that G_{e} is a thickening of a trigraph in \mathcal{C}. By 6.2 , it follows that $\left(G_{e}, Y_{e}\right)$ is in \mathcal{C}^{\prime}. This concludes the proof of (P3).
Hence G is an evenly structured linear interval join.
This concludes the proof of 6.7 .
A last lemma is needed for the proof of 1.4.
6.8. Let G be a cobipartite trigraph. Then G is a thickening of a linear interval trigraph.

Proof. Let Y, Z be two disjoint strong cliques such that $Y \cup Z=V(G)$. Clearly (Y, Z) is a homogeneous pair. Let H be the trigraph such that $V(H)=\{y, z\}$ and

- y is strongly adjacent to z if Y is strongly complete to Z,
- y is strongly antiadjacent to z if Y is strongly anticomplete to Z,
- y is semiadjacent to z if Y is neither strongly complete nor strongly anticomplete to Z.

Now setting $Y=X_{y}$ a nd $Z=X_{z}$, we observe that G is a thickening of H. Since H is clearly a linear interval trigraph, it follows that G is a thickening of a linear interval trigraph. This proves 6.8.

Proof of 1.4. Let G be a Berge claw-free connected trigraph. By $1.3, G$ is either a linear interval join or a thickening of a circular interval trigraph. By 2.1 , if G is a thickening of a circular interval trigraph, then G is a thickening of a linear interval trigraph, or a cobipartite trigraph, or a thickening of a member of \mathcal{C}, or G is a structured circular interval trigraph. But by 6.6 , if G is a structured circular interval trigraph, then G is an evenly structured linear interval join. By 6.8 , if G is a cobipartite trigraph, then G is a thickening of a linear interval trigraph. Moreover, any thickening of a linear interval trigraph is clearly an evenly structured linear interval join. Finally by 6.7 , if G is a linear interval join, then G is an evenly structured linear interval join. This proves 1.4.

7 Acknowledgement

We would like to thank Varun Jalan for his collaboration and his work on theorem 4.1. We would also like to express our gratitude to Paul Seymour for his involvement in the early stage of this work. Additionally, we appreciate the valuable comments of the two anonymous referees.

References

[1] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Annals of Mathematics, 164:51-229, 2002.
[2] Maria Chudnovsky and Paul Seymour. Claw-free graphs. V. Global structure. Journal of Combinatorial Theory, Series B, 98(6):1373-1410, 2008.
[3] Maria Chudnovsky and Paul Seymour. Claw-free graphs. VII. Quasi-line graphs. 2009.
[4] V. Chvátal and N. Sbihi. Recognizing Claw-Free Perfect Graphs. Journal of Combinatorial Theory, Series B, 44(2):154-176, 1988.
[5] W. Sean Kennedy and Andrew D. King. Finding a smallest odd hole in a claw-free graph using global structure. 2011.
[6] F. Maffray and B.A. Reed. A Description of Claw-Free Perfect Graphs. Journal of Combinatorial Theory, Series B, 75(1):134-156, 1999.
[7] K.R. Parthasarathy and G. Ravindra. The strong perfect graph conjecture is true for $K_{1,3}$-free graphs. J. Combin. Theory Ser. B, 21:212-223, 1976.

[^0]: *Columbia University, New York, NY 10027, USA. E-mail: mchudnov@columbia.edu. Partially supported by NSF grants IIS-1117631 and DMS-1001091.
 ${ }^{\dagger}$ Columbia University, New York, NY 10027, USA. E-mail: mp2761@columbia.edu. Partially supported by NSF grant DMS-1001091.

