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Abstract. This paper aims to enhance the application of slide attack
which is one of the most well-known cryptanalysis methods using self-
similarity of a block cipher. The typical countermeasure against slide
cryptanalysis is to use round-dependent constants. We present a new
probabilistic technique and show how to overcome round-dependent con-
stants in a slide attack against a block cipher based on the general Even-
Mansour scheme with a single key. Our technique can potentially break
more rounds than any previously known cryptanalysis for a specific class
of block ciphers. We show employing round constants is not always suffi-
cient to provide security against slide variant cryptanalysis, but also the
relation between the round constants should be taken into account. To
demonstrate the impact of our model we provide analysis of two round-
reduced block ciphers LED-64 and Zorro, presented in CHES 2011 and
CHES 2013, respectively. As a first application we recover the key for 16
rounds of Zorro. This result improves the best cryptanalysis presented by
the designers which could be applied upto 12 rounds of its 24 rounds. In
the case of LED-64 the cryptanalysis leads to the best results on 2-step
reduced LED-64 in the known-plaintext model.
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1 Introduction

Block ciphers can be attacked using a large variety of attacks employing different
properties of the ciphers. Statistical cryptanalysis like differential [4] and linear
[25] attacks make use of non-randomness characteristics of the cipher and the
complexity of the attack is increased by adding more rounds to the cipher. In
contrast, self-similarity cryptanalysis techniques are applicable on a small class
of block ciphers and the complexity of the attacks is usually independent of the
number of rounds. Self-similarity attacks exploit the weakness of the key schedule
rather than non-random statistical properties of the cipher. Slide cryptanalysis is
a well-known example of such techniques and it utilizes the symmetry properties
of the cipher [7]. If an iterative block cipher with identical round functions has
a periodic key schedule, it can be presented as a cascade of repeated copies of
a single function Fk with an identical key k, where Fk consists of one or more
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rounds of the cipher. Slide attacks are based on the observation that if two
plaintexts P and P ′ satisfy the relation P ′ = Fk(P ) then C ′ = Fk(C) holds for
free. Such a pair ((P,C), (P ′, C ′)) is called the slid pair. Given a slid pair the
security of the cipher is reduced to finding the key for the function Fk in the
known plaintext model. In general, 2n/2 known plaintexts are required to find
at least one slid pair for an n-bit block cipher. The total time complexity of the
cryptanalysis consists of the complexities of three steps: preparing the required
data, detecting a slid pair, and finally obtaining the key from the slide pair.

Slide attacks and other self-similarity cryptanalysis can be prevented by a
careful design of a key schedule. But a strong key schedule cannot be achieved
for free. It has impact on latency, power consumption and size of the implemen-
tation. Therefore the designers of lightweight ciphers such as PRINTcipher [23],
LED [20], PRINCE [11] and Zorro [17], adopted another direction to establish
security against self-similarity cryptanalysis. They introduced round-dependent
constants added to the data input at each round to make the rounds different.
Then a single master key is simply added after every fixed number of rounds
called as step. Even if in such a construction each step has the same structure
and the key used at every step is the same, the computation at each step is
varied by the round constants. In this manner, the slide cryptanalysis can be
prevented.

Such a cipher construction can be seen as an instance of the generalized
Even-Mansour scheme [15] with a single key. It is defined as C = EK(P ) =
Fs(· · ·F2(F1(P ⊕ K) ⊕ K) ⊕ K · · · ⊕ K) where Fi are constructed as cascades
of the same fixed permutations but with different round constants. In this work,
we investigate the security of this cipher structure and develop a new statistical
variant of slide cryptanalysis. The idea is to slide one instance of encryption
against another instance of encryption by one step and investigate, if for a pair
((P,C), (P ′, C ′)) it would be possible to predict, with significant probability,
the difference C ⊕ Fs(C

′ ⊕K) given the difference P ′ ⊕ F1(P ⊕K). By taking
a probabilistic approach we can circumvent the devastating effect of different
round constants in the deterministic slide cryptanalysis.

Potentially, the described attack has two main advantages compared to the
classical differential cryptanalysis. The first one is that the attacker has more
freedom to control the active S-boxes. If the difference in the round constants
and data are identical, they cancel each other, which leads to a smaller number of
active S-boxes in the characteristic. Example of such a situation is given in Sec-
tion 4.2 for LED-64. While it is proved that the normal differential characteristic
over four rounds has at least 25 S-boxes, we can find differential characteristics of
LED-64 over four iterative rounds which in our slide setting have just 13 active
S-boxes. We also note that even if we exploit a kind of related-key differential
characteristics, our attack is in the single-key model, since we exploit the relation
between the round constants instead of keys to control the differential pattern.
The second merit is the existence of an efficient key-recovery method for our
model. As each step of our target ciphers consists of several rounds, it makes it
hard to convert a distinguisher to the key-recovery attack over more steps by
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guessing just a part of the key. But we present an efficient method to obtain the
key of s steps of the cipher based on the differential property in slide mode for
s− 1 steps.

To demonstrate the effect of our statistical slide framework, we apply key-
recovery attack on block ciphers LED-64 and Zorro. We present a key-recovery
cryptanalysis on a reduced 16-round version, while the best previous key-recovery
cryptanalysis is on 12 rounds. Also we present a novel cryptanalysis on 2-reduced
steps of LED-64 which leads to the best attack on this version of the cipher in
the known-plaintext model. Our results and the previous results are summarized
in Table 1.

Table 1. Summary of single-key attacks on round-reduced LED-64 and Zorro

Cipher Attack Type Steps Data Time Memory Source

Zorro Impossible differential 2.5 2115CP 2115 2115 [17]
Meet-in-the-middle 3 22KP 2104 - [17]
Probabilistic slide 4 2123.62KP 2123.8 2123.62 Section 4.1
Probabilistic slide 4 2121.59KP 2124.23 2121.59 Section 4.1

Internal differential† 6 254.25CP 254.25 254.25 [19]

LED-64 Meet-in-the-middle 2 28CP 256 211 [21]
Meet-in-the-middle 2 216CP 248 217 [13]
Meet-in-the-middle 2 248KP 248 248 [13]

Generic 2 245KP 260.1 260 [14]
Probabilistic slide 2 245.5KP 246.5 246.5 Section 4.2
Probabilistic slide 2 241.5KP 251.5 242.5 Section 4.2

Generic 3 249KP 260.2 260 [14]

† – this attack is applicable just on 264 keys (out of 2128), CP – Chosen Plaintexts, KP
– Known Plaintext.

Some previous cryptanalysis of LED-64 do not exploit any specific property
of the cipher. In [27] it is shown that the behavior of the function x⊕ F (x), for
a random permutation F , is not ideally random and they exploit this fact in a
generic attack on the EM-construction with two alternative keys. The result is
improved in [14] via a generic attack on a 3-step EM-construction with a single
key. This attack is independent of the permutations but has high complexity. An
accelerated exhaustive search for 2-step reduced version of LED-64 is presented
in [21] in the chosen-plaintext model. Our attack requires only known plaintext
and has much lower time complexity. Recently, parallel to our work, an advanced
meet-in-the-middle cryptanalysis is presented for a 2-step version of LED-64 in
IACR Eprint Archive [13], but is slightly slower than our cryptanalysis in known-
plaintext model.

Zorro was presented recently at CHES 2013. It is a tweaked version of the
standard block cipher AES and targets on efficient masking to establish side-
channel security with better performance. The best key-recovery cryptanalysis
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Fig. 1. Slide cryptanalysis

so far was presented by the designers in the classical single-key model. It is
a meet-in-the-middle attack on 12 rounds. We carry out the first third-party
cryptanalysis of Zorro and mount a key-recovery cryptanalysis on 16 rounds of
Zorro. Let us also mention that simultaneously a cryptanalysis of the full Zorro
is presented in [19]. It works for a fraction 264 out of 2128 keys in the weak-key
model and requires chosen plaintexts, whereas our result work for all keys in
known-plaintext model.

This paper is organized as follows. In Section 2, we start by recalling the
typical slide cryptanalysis and previous works, and then continue to introduce
the basic concepts of our method. In Section 3, we describe the target ciphers
Zorro and LED briefly. Section 4 gives an overview of our strategy to construct
a distinguisher followed by applications of the probabilistic slide cryptanalysis
on step-reduced Zorro and LED-64. We conclude in Section 5.

2 Slide Cryptanalysis

2.1 Basic Idea

A typical block cipher can be described as a cipher with iteration of a key-
dependent function called as round. Each round is a keyed permutation Rki

(X),
where ki is the ith round key derived from the master key using a key schedule.
More precisely, the encryption procedure of the n-bit plaintext P via the iter-
ated application of r rounds is described as Xi = Rki(Xi−1), for i = 1, · · · , r
where X0 and Xr represents plaintext P and corresponding ciphertext C re-
spectively. Let us assume that the cipher can be represented as an iteration
of a single permutation Fk. Depending on the key-schedule this permutation
may consist of one or more rounds of the cipher. If plaintexts P and P ′ satisfy
the relation P ′ = Fk(P ), then C ′ = Fk(C) holds for free independently of the
number of rounds as illustrated in Figure 1. A pair ((P,C), (P ′, C ′)) with this
property is called a slid pair. For an n-bit block cipher P ′ = F (P ) occurs with
probability 2−n. Given 2n/2 plaintext-ciphertexts (P,C) there exists 2n pairs
which emphasize to expect one slide pair. To convert the distinguisher to a key-
recovery cryptanalysis the only requirement for Fk is to be weak enough against
known-plaintext cryptanalysis.
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2.2 Previous Works

Since the basic slide cryptanalysis is a too restrictive approach, several devel-
opments have been proposed to enhance the basic idea. Two advanced tech-
niques termed as sliding with a twist and complementation slide are presented
by Biryukov and Wagner [8]. If two keys are used alternatively in a Feistel cipher,
then we can slide two instances of encryption against each other by one round to
cancel the difference between the keys by the complementation slide property.
In slide-with-a-twist cryptanalysis an instance of decryption is slid against an
instance of encryption. This technique is applicable on another class of ciphers.

This idea is extended to introduce a weak key class of involution block ciphers
in [5]. In [28] Feistel ciphers with independent pre- and post-whitening keys are
studied and shown that there is a cryptanalysis with time and data complexity
n2n/2+1. Furuya uses the observation presented in [8] that if (P, P ′) is a slid pair,
then (FK(P ), FK(P ′)) is also a slid pair. This technique provides more known
plaintexts to mount efficient slide cryptanalysis on more complicated functions
FK [16]. Biham et al. pursue another direction which allows to find a slid pair
much faster with the cost of almost the whole codebook [3]. As another direction
slide cryptanalysis can be leveraged to a distinguisher on hash functions as it is
done for the inner component of SHA-1 [30]. It does not seem useful for collision
or (second) preimage cryptanalysis but works for distinguishing and also key
recovery in MAC mode [18].

To the best of our knowledge, this paper is the first application of proba-
bilistic slide cryptanalysis in the single-key model. In [8] it is suggested to use
a differential property of the identical function to find the key from a slid pair
which is a different approach and have not been applied in practice. Also in
[29] the method of realigning slide cryptanalysis is presented to pass the middle
round in a nondeterministic way in related-key scenario.

2.3 Probabilistic Slide Cryptanalysis

In this section we present our new technique which combines a usual slide at-
tack with differential type characteristics. We focus our attention to an n-bit
block cipher with general Even-Mansour construction that consists of s different
permutations and one key. Analogically to the basic slide distinguisher we con-
sider an encryption instance and slide it against another instance of the same
encryption by one step. Due to the differences between round functions the basic
slide cryptanalysis is not applicable. Assume there exists a sequence of differences
D = {∆r : 0 ≤ r ≤ s−1} such that Pr[Fr(x)⊕Fr−1(x⊕∆r−2) = ∆r−1] = 2−pr−1

where 0 ≤ pr and 2 ≤ r ≤ s. Thanks to the equality of keys we obtain a differen-
tial type characteristic by concatenating the differences in D. This characteristic
has probability 2−p =

∏s−1
r=1 2−pr . So Fs−1 ◦ · · · ◦F1(x)⊕Fs ◦ · · · ◦F2(x⊕∆in) =

∆out holds with probability 2−p where ∆in = ∆0 and ∆out = ∆s−1 as illustrated
in Figure 2. In other words, if a pair (P, P ′) satisfies F1(P ⊕K)⊕P ′ = ∆in then
C ⊕ F−1s (C ′ ⊕K) = ∆out occurs with the probability 2−p.
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Fig. 2. Slide cryptanalysis on general Even-Mansour scheme with one key

Analogously to the usual slide attack, such a pair for which the characteristic
holds is called the right slid pair. Given 2m = 2n/2+p/2 known plaintext there
exist 2n+p pairs of which 2p are expected to satisfy the relation F1(P⊕K)⊕P ′ =
∆in for the unknown key. The right slid pairs are among them. Since the input
difference ∆in yields the output ∆out with probability 2−p, we expect to get one
right slid pair for the characteristic.

Key-recovery Next we describe the key-recovery algorithm. For a correct slid
pair ((P,C), (P ′, C ′)) we have

C ′ ⊕ Fs(C ⊕∆out) = K = P ⊕ F−11 (∆in ⊕ P ′, )

where K is the correct key. So the correct slid pair satisfies the relation

C ′ ⊕ F−11 (∆in ⊕ P ′) = P ⊕ Fs(C ⊕∆out).

We utilize this property to find a slid pair efficiently by storing these values in
hash tables for all plaintext-ciphertext pairs. The attack procedure is as follows:

1. Ask for the encryption of 2m = 2n/2+p/2 arbitrary plaintexts.
2. For all plaintext-ciphertext pairs (P,C) compute the value of C ⊕ F−11 (P ⊕
∆in) and store the computed value with the corresponding C in the hash
table T1. Sort them according to the value C ⊕ F−11 (P ⊕∆in).

3. For all plaintext-ciphertext pairs (P,C) compute the value of P ⊕Fs(∆out⊕
C) and store the computed value with C in the hash table T2. Sort them
according to the value P ⊕Fs(∆out⊕C). Keep some (P,C) pairs to test the
key candidates.

4. For each collision in the hash tables T1 and T2 find corresponding ciphertexts
C and C ′ then compute a key candidate K = C ′⊕Fs(C⊕∆out). Use a (P,C)
to test the key.

Step 1 requires 2m full encryptions. To prepare each hash tables we compute
one step of the cipher for all known plaintexts. So Step 2 and Step 3 requires
totally 2 · 2m/r full encryptions. We expect to have 22m−n = 2p key candidates
to try in Step 4 which requires 2p encryptions. The total time complexity is
2m + 2m+1/r + 2p. To perform the attack, one needs two hash tables T1 and T2
to store 2m ordered pairs of n-bit values in both T1 and T2.
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More Output Differences In this part we study the improvements of the
described distinguisher. A natural improvement is to consider a differential in-
stead of a single differential characteristic, and try to improve the estimate of
the differential probability.

Another approach is to consider L different output differences ∆i
out, i ∈

{1, · · · , L}, to decrease the data requirement by increasing the total probability.
This comes with the cost of repeating the attack algorithm L times and a small
increase in the memory requirement. Without loss of generality we can assume
that each output difference ∆i

out occurs with equal probability 2−p for a fixed
input difference ∆in, that is, if F1(P ⊕K)⊕P ′ = ∆in, then C⊕F−1r (C ′⊕K) =
∆i

out holds with probability 2−p, for all i ∈ {1, · · · , L}. If the probabilities are
not equal, order the output differences in the decreasing order according to their
probabilities.

The attack procedure is described as follows:

1. Get encryptions C of 2m arbitrary plaintexts P .

2. For all pairs (P,C) compute the value of C ⊕ F−11 (P ⊕∆in) and store the
computed value with P and C in a hash table T1. Sort them according to
the value C ⊕ F−11 (P ⊕∆in).

3. for i ∈ {0, · · · , 2`}
3.1 Allocate 2 · 2m memory for the hash table T2.

3.2 For all plaintext-ciphertext pairs (P,C) compute the value of P⊕Fs(∆
i
out⊕

C) and store the computed value and the corresponding C in the hash
table T2. Sort them based on the value P ⊕ Fs(∆

i
out ⊕ C).

3.3 For each collision in the hash tables T1 and T2 find corresponding cipher-
texts C and C ′ then compute the key candidate as K = C ′ ⊕ Fs(C ⊕
∆i

out). Given some P and C, test the key.

3.4 If all key candidates are wrong, free the allocated memory of T2.

We denote by ` the logarithm of L. Since Pr[C⊕F−1r (C ′⊕K) = ∆i
out, for some i ∈

{1, · · · , 2`}|F1(P ⊕K)⊕P ′ = ∆in] = 2`−p the attack requires 2m = 2n/2+(p−`)/2

known plaintexts. Time complexity is 2m + 2m/r + 2`(2m/r + 22m−n) encryp-
tions which is dominated by 2`(2m/r+ 22m−n). Given L output differences, any
number of them can be used in the attack allowing trade-off between data and
time complexity. The memory requirement is the same for all L > 1. To perform
the attack, one needs two hash tables T1 and T2 where T1 is used to store 2m

triplets of n-bit values and T2 to store 2m ordered pairs n-bit values.

3 Target Ciphers

In this section we present a brief description of the block ciphers to be analyzed.
We describe first the block cipher Zorro and continue with the description of the
block cipher LED, and finally introduce the notation to be used in this paper.
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3.1 Description of Zorro

Zorro is a 128-bit block cipher and supports 128-bit key. The state can be illus-
trated as a 4× 4 matrix where each cell represents a byte. Zorro is a generalized
Even-Mansour cipher consisting 6 steps. There exist no key schedule and af-
ter each step the same key is xored to the state. Each step is composed of 4
rounds. One round consists of four transformations. One is the adding of the
round constant and the other three are borrowed from the AES and applied in
the following order.

1. SubCells: A byte-wise transformation that applies an 8-bit S-box to each
byte of the first row.

2. AddConstants: XOR operation between the first row of the state and the
current round constant. Let r be the number of the current round represented
as a byte, for 1 ≤ r ≤ 24. Then the round constant is defined as r ‖ r ‖ r ‖
r � 3.

3. ShiftRows: A linear transformation that cyclically shifts the i’th row i bytes
to the left.

4. MixColumns: A linear transformation represented by a 4 × 4 matrix over
GF (28).

The last two operations are exactly like in the AES. For the definition of S-box
and more details we refer to [17].

3.2 Description of LED

LED is a 64-bit block cipher. Two main variants of the cipher are LED-64 and
LED-128, which support the key sizes 64 and 128, respectively. The 64-bit state is
represented by a 4×4 matrix, where each cell represents a nibble in GF (24). The
construction of LED-64 is a generalized Even-Mansour with one key and 8 steps.
Each step includes four rounds. Each round consists of four transformations of
which three are inspired by the AES.

1. AddConstants adds a round-dependent constant to the state. To construct
the round constants one proceeds as follows. A string of six bits (rc5, rc4, rc3,
rc2, rc1, rc0) is initialized to zero. Then at each round, the bits are shifted to
the left by one position, and the new value of rc0 is computed as rc5⊕rc4⊕1.
Let us denote by (ks7, ks6, ...ks0) the bits of the byte that represents the key
size. Then the corresponding round constant is defined as follows.

ks7||ks6||ks5||ks4 0||rc5||rc4||rc3 0 0

ks7||ks6||ks5||ks4 ⊕ 1 0||rc2||rc1||rc0 0 0

ks3||ks2||ks1 ⊕ 1||ks0 0||rc5||rc4||rc3 0 0

ks3||ks2||ks1 ⊕ 1||ks0 ⊕ 1 0||rc2||rc1||rc0 0 0
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S-box(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 2. S-box of LED

2. SubCells applies the same 4-bit to 4-bit S-box given in Table 2 in parallel
on each of the 16 nibbles of the state.

3. ShiftRows cyclically rotates the i’th row by i nibble(s) to the left.

4. MixColumns multiplies each column by an MDS matrix M =


4 1 2 2

8 6 5 6

B E A 9

2 2 F B

, over

the field GF (24) under the polynomial x4 + x+ 1.

3.3 Notations

Thanks to the similarity of Zorro and LED we can use almost the same notations
to describe the states or operations for both ciphers. We represent the state as
a 4 × 4 matrix where each cell is a byte or a nibble in Zorro and LED, respec-
tively. We denote by XI

r the input of the r’th round while XS
r ,XR

r , XM
r and

XA
r denote the intermediate states after the application of SubCells, ShiftRows,

MixColumns and AddConstants operations in the r’th round, respectively. We
also denote the cell in the ith row and jth column of the state X by X(i+ 4j),
where 0 ≤ i, j ≤ 4. This notation is illustrated in Figure 3.
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X(4)

X(8)

X(12)

X(1)

X(5)

X(9)

X(13)

X(2)

X(6)

X(10)

X(14)

X(3)

X(7)

X(11)

X(15)

Fig. 3. State representation of Zorro and LED

Each step of Zorro and LED has four rounds. In our cryptanalysis, we
slide two instances of encryption against each other by one step and compare
their states. Let us denote by RCr the round constant in r’th round and by
DRCr the difference between round constants in the rounds r and r + 4. Then
DRCr = RCr ⊕ RCr+4. Let us note that in Zorro this difference has only four
non-zero bytes DRCr(0, 1, 2, 3) on the first row. Similarly, the round constant
difference DRCr of LED can have non-zero nibbles only on the second column
DRCr(1, 5, 9, 13). Throughout the paper SC, SR, MC and AC stands for Sub-
Cells, ShiftRows, MixColumns and AddConstants operations.
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4 Applications of the Probabilistic Slide Cryptanalysis

Our aim is to find a differential type characteristic with high probability between
two slid instances of the cipher as depicted in Figure 2. Finding differential char-
acteristics have the highest probability among all possible choices is a challenging
task as a general problem since even an automatic search for the whole space
is not feasible. There are some techniques to make this simpler and speed up
the search effectively. Matsui presents an algorithm to find the best differential
characteristic and linear approximation in [26]. The algorithm uses a branch-
and-bound method recursively to find the r-round characteristic of DES with
highest probability based on the best r− 1-round characteristics. The algorithm
is not feasible for all ciphers but the main principles of the algorithm have been
adopted widely in several works (for example look at [1, 6, 9, 10]). The probabil-
ity of differential characteristic is proportional to the number of involved active
S-boxes. One direction in the word-oriented block ciphers and hash functions
is to find a general pattern of active and inactive differences holds in the ci-
pher properties such that the number of active S-boxes is as small as possible.
Next the differential characteristic with specific differential values for the ex-
istence pattern can be found by guess-and-determine methods. In this section
we explore this approach for two block ciphers Zorro and LED-64 to construct
a distinguisher described in Section 2.3 for each cipher separately and proceed
by applying key-recovery cryptanalysis. We use the notations introduced in Sec-
tion 3.3 to denote the various intermediate states X of the encryption process
of P to C. We use similar notation for the pair (P ′, C ′) but now with X ′.

4.1 Slide Cryptanalysis on Zorro

We start by an observation about the degrees of freedom of constructing a 2-
round differential characteristic of Zorro block cipher. Let us consider a non-zero
difference X ′Ir (i)⊕XI

r+4(i) where 0 ≤ i ≤ 3. After the S-box operation it may be
transfered to a difference such that at the end of the round X ′Mr (i)⊕XM

r+4(i) = 0
which indicates that we can bypass the next round in the same byte position
for free. So potentially for a given differential characteristic on r − 1 rounds
we can extend it over two more rounds with the cost of at most four active
S-boxes. We use the following procedure to specify difference X ′Sr (i) ⊕XS

r+4(i)
such that X ′Mr (i) and XM

r+4(i) have identical values. Since SC and AC operations
do not change the differences in the last three rows, the differences in the bytes
X ′Rr (i+ 4, i+ 8, i+ 12)⊕XR

r+4(i+ 4, i+ 8, i+ 12) are determined. By assuming
X ′Mr (i) ⊕ XM

r+4(i) = 0, four bytes of the input and output of the Mixcolumn
matrix are known and we are able to obtain the difference value X ′Rr (i)⊕XR

r+4(i).
After that X ′Sr (i) ⊕ XS

r+4 can be determined by xoring X ′Rr (i) ⊕ XR
r+4(i) with

DRCr(i). This procedure is illustrated in Figure 4, where we denote the bytes
with known differences by ‘∗’ and aim to find unknown differences denoted by
‘?’.

Since about one half of all S-box differentials exist, to construct a 2-round
differential characteristic as described, a fraction of 2−4 choices can match the
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Fig. 4. Two rounds differential characteristic pattern with four active S-boxes

conditions of four S-boxes. We can start with an initial state such that the bytes
in the first row have no difference. Since there exist 296 different states we expect
296−2r states to satisfy the pattern of r-rounds. This shows that even for the
full round cipher there exist numerous candidates. A naive question arises how
one can exploit these degrees of freedom to create a differential characteristic
which has still less active S-boxes. Our choice is to select the difference value
∆in = X ′I1 ⊕ XI

5 such that the first three rounds have no active S-boxes. The
first row after MC has no difference with probability around 2−8×4 = 2−32. So
if we start with a state by no difference in the first row a fraction 2−32×2 out
of 296 states can bypass two more rounds with probability one. While trying
all 296 states is not feasible as is described in [17] we can find these 3-round
characteristics efficiently by utilizing an alternative method. In the remainder of
this part we take a detailed look at this technique summarized in Algorithm 1.

We aim to find a 3-round characteristic that holds with probability one.
If we guess the difference of bytes X ′I2 (i + 4, i + 8) ⊕ XI

6 (i + 4, i + 8) located
in the i’th column where 0 ≤ i ≤ 3, the difference of the third active byte
X ′I2 (i + 12) ⊕ XI

6 (i + 12) in the same column can be obtained considering the
Mixcolumn matrices of the first round. Hence we can find two first columns
of X ′I2 ⊕ XI

6 by guessing only four bytes X ′I2 (4, 5, 8, 9) ⊕ XI
6 (4, 5, 8, 9). Con-

sequently X ′R2 (7, 10, 11, 14) ⊕ XR
6 (7, 10, 11, 14) would be known after SR. By

assumption X ′M2 (2, 3) ⊕ XM
6 (2, 3) = 0 and using MixColumn matrices of the

second round, difference X ′R2 (7, 14)⊕XR
6 (7, 14) can be found. We save the val-

ues XI
2 (4, 8, 9, 13) ⊕ X ′I6 (4, 8, 9, 13) in the row indexed by X ′I2 (5, 7, 12, 14) ⊕

XI
6 (5, 7, 12, 14) in the hash table T1. Similarly in a separate computation by

guessing four bytes X ′I2 (6, 7, 10, 11)⊕XI
6 (6, 7, 10, 11) the differences of four more

bytes X ′I2 (5, 12, 14, 15) ⊕ XI
6 (5, 12, 14, 15) are obtained. We save the values

X ′I2 (6, 10, 11, 15) ⊕ XI
6 (6, 10, 11, 15) in the row indexed by X ′I2 (5, 7, 12, 14) ⊕

XI
2 (5, 7, 12, 14) in the hash table T2. Matching two hash tables leads to find-

ing all 3-round differential characteristics which have probability one.

Key Recovery For all 232 states obtained from Algorithm 1 we extend the
characteristic by two rounds iteratively. The best differential characteristic we
found for 12 rounds has probability Pr[X ′I13 ⊕ XI

17 = ∆out|X ′I1 ⊕ XI
5 = ∆in] =
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Algorithm 1 Finding 3-round characteristics of Zorro with probability one

for all X ′I2 (4, 8)⊕XI
6 (4, 8) do

Find X ′I2 (12)⊕XI
6 (12) using the MixColumn matrix of the first round.

for all X ′I2 (5, 9)⊕XI
6 (5, 9) do

Find X ′I2 (13)⊕XI
6 (13) using the MixColumn matrix of the first round.

Find X ′I2 (7, 14)⊕XI
6 (7, 14) using the MixColumn matrix of the second round.

Save the value X ′I2 (4, 8, 9, 13) ⊕ XI
6 (4, 8, 9, 13) in the row is indexed by

X ′I2 (5, 7, 12, 14)⊕XI
6 (5, 7, 12, 14) in T1.

end for
end for
for all X ′I2 (6, 10)⊕XI

6 (6, 10) do
Find X ′I2 (14)⊕XI

6 (14)using the MixColumn matrix of the first round.
for all X ′I2 (7, 11)⊕XI

6 (7, 11) do
Find X ′I2 (15)⊕XI

6 (15)using the MixColumn matrix of the first round.
Find X ′I2 (5, 12)⊕XI

6 (5, 12)using the MixColumn matrix of the second round.
Save the value X ′I2 (6, 10, 11, 15) ⊕ XI

6 (6, 10, 11, 15) in the row is indexed by
X ′I2 (5, 7, 12, 14)⊕XI

6 (5, 7, 12, 14) in T2.
end for

end for

2−119.24 where the values ∆in and ∆out with the details of characteristic are
given in Appendix A.2. It leads to the the key-recovery cryptanalysis described in
Section 2.3 on 16-reduced round of Zorro. The attack requires 264+59.62 = 2123.62

known plaintexts and the time complexity is 2123.62 + 2124.62/4 + 2119.24 ' 2123.8

encryptions. To reduce the data complexity we can allow degrees of freedom for
an active S-box in the last round of the characteristic. There exist 25 different
α ∈ GF (28) such that Pr[S(x) ⊕ S(x ⊕ 0x76) = α] = 2−6. Let us consider the
same characteristic in Appendix A.2 while XS

16(1)⊕X ′S12(1) = α. The probability
for such a characteristic is 2−113.82 · (25 · 2−6) = 2−115.17 which indicates that
the data complexity decreases to 264+57.59 = 2121.59 with the cost of increasing
the time complexity to 25 · (2121.59/4 + 2115.17) ' 2124.23 encryptions.

4.2 Slide Cryptanalysis of LED-64

Let us recall that the difference between RCr and RCr+4 of LED-64 has nonzero
value only in the second column. Then we start by looking at the state after AC in
an arbitrary round r to investigate different scenarios. Since we are interested in
characteristic with less active S-boxes, one may think the best case happens when
all active nibbles in X ′Ir ⊕XI

r+4 get canceled by the difference DRCr to bypass
SC with probability one. We note it can activate four nibbles X ′Ar+1(1, 5, 9, 13)⊕
XA

r+5(1, 5, 9, 13). Next each active nibble propagates to a different column after
SR and makes all nibbles active at X ′Mr+1 ⊕ XM

r+5, which is against our goal.
Another choice is to have just one active nibble X ′Ar (1) ⊕ XA

r+4(1) such that
after MC it transfers to four nibbles which cancel the three out of four nibbles
differences injected by round constants in the next round. It can be considered
as an iterative 1-round characteristic. After testing this approach we found that
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due to the differences between round constants we cannot utilize this iteratively
for the round constants chosen by the designers, because it works just for one
round. So we chose a moderate strategy to find the best pattern. First we try to
hesitate activate the nibbles from the first, third and forth columns of X ′Ir ⊕XI

r+4

since we cannot cancel them by the differences of round constants. Secondly we
aim to cancel as many nibbles in the second column as possible. To find the best
pattern we start from the middle rounds and try to extend it in both backward
and forward directions. It is proved in [20] that any differential characteristic
over four consecutive rounds of the cipher has at least 25 active S-boxes and
probability at most 2−50. Thanks to the differences in the round-constants, the
best characteristic we found for four rounds has probability 2−27 and just 13
active S-boxes. This demonstrates the superiority of our model in comparison
with differential cryptanalysis of LED-64.

Key Recovery The 4-round differential characteristic illustrated in Appen-
dix A.1 has probability 2−27. This property enables us to retrieve the key of 8-
round reduced of LED-64 with the same technique described in Section 2.3. The
cryptanalysis requires 232+13.5 = 245.5 known plaintexts and the time complexity
is roughly 245.5 + 246.5/2 + 227 ' 246.5 encryptions. To have less data complexity
we can consider a truncated type differential for the last round. The differences
2, c, d and 6 can be transfered through the S-box to the set of differences
A1 = {3, 5, 6, a, c, d, e}, A2 = {2, 5, 7, 8, 9, a, e}, A3 = {1, 2, 3, 4, 7, a, b} and
A4 = {2, 6, 8, b, c, f} respectively. IfXI

5⊕P ′ = ∆in holds for the given∆in in Ap-
pendix A.1 then the truncated difference XS

8 ⊕X ′S4 ∈ {0a1000a2000a3000a400|
ai ∈ Ai, 1 ≤ i ≤ 4} with its corresponding truncated difference ∆out = XM

8 ⊕
X ′M4 holds with probability 2−19. Using this characteristic the data complexity
decreases to 232+9.5 = 241.5 known plaintexts while the time complexity increases
to 6 · 73(241.5/2 + 219) ' 251.5 encryptions.

5 Conclusion

In this paper we provide a new insight into slide cryptanalysis which is illus-
trated by cryptanalysis of step-reduced block ciphers Zorro and LED-64. We
describe a new framework to enhance slide cryptanalysis against general Even-
Mansour scheme with one key in a probabilistic setting. Our method exploits
some features from related-key differential cryptanalysis to build a kind of differ-
ential characteristic that is applicable in the single key model. In the related-key
cryptanalysis model [2, 22] one can consider the encryption under unknown se-
cret keys but with a determined difference, which allows attacker to control the
data difference by differences injected by the key difference. The probabilistic
slide cryptanalysis presented in this paper is inspired by the same idea but in-
stead of using two different keys it slides a copy of encryption to take advantage
of the round constant differences in a single key model. Since known statistical
cryptanalysis is not affected by the values of round constants, choosing their
values usually has not been taken into account by the designers of block ciphers

13



(for example look at [24, 31]). In this work we shed more light on how round con-
stants can potentially weaken the security of the cipher. One possible direction
of future research is to inquire the application of probabilistic slide cryptanalysis
against other block ciphers based on the general Even-Mansour scheme with a
single key like PRINCE, PRINTcipher and 3-WAY [12].
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A Appendix

A.1 Characteristic used for cryptanalysis of LED-64

State Difference Probability

∆in = XI
5 ⊕ P ′ 0250060b33010700

XA
5 ⊕X ′A1 0150000b30010100

XS
5 ⊕X ′S1 07c0000860070900 2−12

XR
5 ⊕X ′R1 07c0008007600090

XM
5 ⊕X ′M1 0100051007000500

XA
6 ⊕X ′A2 0600001000000000

XS
6 ⊕X ′S2 0c0000d000000000 2−5

XR
6 ⊕X ′R2 0c000d0000000000

XM
6 ⊕X ′M2 0800020007000200

XA
7 ⊕X ′A3 0f00000000000000

XS
7 ⊕X ′S3 0100000000000000 2−2

XR
7 ⊕X ′R3 0100000000000000

XM
7 ⊕X ′M3 040008000b000200

XA
8 ⊕X ′A4 02000c000d000600

XS
8 ⊕X ′S4 0500050002000b00 2−8

XR
8 ⊕X ′R4 05005000000200b0

∆out = XM
8 ⊕X ′M4 5754defa31c7aa9d

16



A.2 Characteristic used for cryptanalysis of Zorro

State Difference Probability

∆in = XI
5 ⊕ P ′ 00000000d52c6f72120a92b50c8c2eee

XS
5 ⊕X ′S1 00000000d52c6f72120a92b50c8c2eee 1

XA
5 ⊕XA

1 04040420d52c6f72120a92b50c8c2eee

XR
5 ⊕X ′R1 040404202c6f72d592b5120aee0c8c2e

XM
5 ⊕X ′M1 000000001f125aa13e0edd9375ce6fe3

XS
6 ⊕X ′S2 000000001f125aa13e0edd9375ce6fe3 1

XA
6 ⊕X ′A2 040404201f125aa13e0edd9375ce6fe3

XR
6 ⊕X ′R2 04040420125aa11fdd933e0ee375ce6f

XM
6 ⊕X ′M2 00000000bf6bd16389fc90921e2f14af

XS
7 ⊕X ′S3 00000000bf6bd16389fc90921e2f14af 1

XA
7 ⊕X ′A3 04040420bf6bd16389fc90921e2f14af

XR
7 ⊕X ′R3 040404206bd163bf909289fcaf1e2f14

XM
7 ⊕X ′M3 8aec0b72d60e6d4ebec81f40b273b80b

XS
8 ⊕X ′S4 0fa38ee5d60e6d4ebec81f40b273b80b 2−24.41

XA
8 ⊕X ′A4 03af8285d60e6d4ebec81f40b273b80b

XR
8 ⊕X ′R4 03af82850e6d4ed61f40bec80bb273b8

XM
8 ⊕X ′M4 000000003507b4c92e8f3e0b02b88be1

XS
9 ⊕X ′S5 000000003507b4c92e8f3e0b02b88be1 1

XA
9 ⊕X ′A5 0c0c0c603507b4c92e8f3e0b02b88be1

XR
9 ⊕X ′R5 0c0c0c6007b4c9353e0b2e8fe102b88b

XM
9 ⊕X ′M5 ced6ce9ba1604f0b4fa84ad6f4af9817

XS
10 ⊕X ′S6 fff8ff04a1604f0b4fa84ad6f4af9817 2−26

XA
10 ⊕X ′A6 f3f4f364a1604f0b4fa84ad6f4af9817

XR
10 ⊕X ′R6 f3f4f364604f0ba14ad64fa817f4af98

XM
10 ⊕X ′M6 00000000faff9b463e0b8c3d0a6d0f8e

XS
11 ⊕X ′S7 00000000faff9b463e0b8c3d0a6d0f8e 1

XA
11 ⊕X ′A7 0c0c0c60faff9b463e0b8c3d0a6d0f8e

XR
11 ⊕X ′R7 0c0c0c60ff9b46fa8c3d3e0b8e0a6d0f

XM
11 ⊕X ′M7 009981d1e86caf9d79f3819d60a6b64f

XS
12 ⊕X ′S8 0082b813e86caf9d79f3819d60a6b64f 2−21

XA
12 ⊕X ′A8 0486bc33e86caf9d79f3819d60a6b64f

XR
12 ⊕X ′R8 0486bc336caf9de8819d79f34f60a6b6

XM
12 ⊕X ′M8 720000000b1fb040a0a822e77f636c39

XS
13 ⊕X ′S9 190000000b1fb040a0a822e77f636c39 2−6

XA
13 ⊕X ′A9 1d0404200b1fb040a0a822e77f636c39

XR
13 ⊕X ′R9 1d0404201fb0400b22e7a0a8397f636c

XM
13 ⊕X ′M9 005b0b997c321cb90de0bad468a52a1b

XS
14 ⊕X ′S10 004838077c321cb90de0bad468a52a1b 2−19

XA
14 ⊕X ′A10 044c3c277c321cb90de0bad468a52a1b

XR
14 ⊕X ′R10 044c3c27321cb97cbad40de01b68a52a

XM
14 ⊕X ′M10 ff000000ae7be7ce745b6bfeb2cca1a1

XS
15 ⊕X ′S11 aa000000ae7be7ce745b6bfeb2cca1a1 2−7

XA
15 ⊕X ′A11 ae040420ae7be7ce745b6bfeb2cca1a1

XR
15 ⊕X ′R11 ae0404207be7ceae6bfe745ba1b2cca1

XM
15 ⊕X ′M11 0076f953447ad32bfbc96dc0a06a35cc

XS
16 ⊕X ′S12 000b84ed447ad32bfbc96dc0a06a35cc 2−15.83

XA
16 ⊕X ′A12 1c17980d447ad32bfbc96dc0a06a35cc

XR
16 ⊕X ′R12 1c17980d7ad32b446dc0fbc9cca06a35

∆out = XM
16 ⊕X ′M12 1720c72a9351b2f0f3a4e09fb071b7f0
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