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Abstract

This article analyzes a decision maker’s preferences and their updating in situations with uncer-
tainty. Axioms for a list containing a prior preference relation and an updated preference relation for
different information are presented, such that (1) each preference relation in this list is a Choquet
expected utility preference relation as axiomatized by [Econometrica 57 (1989) 571] and (2) the
list reveals both the decision maker’s subjective uncertainty and his uncertainty aversion.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. From expected utility theory to choquet expected utility theory

Savage (1954)proposed axioms for preferences on sets of uncertain acts. A decision
maker fulfilling these axioms can be characterized by (a) a utility function on the set of
consequences and (b) a unique subjective probability measure on the set of states such that
he prefers one actf over another actg if and only if f yields a higher expected utility than
g. Savage’s subjective expected utility theory has become the best known and most often
used theory of decision making under uncertainty. However, real economic behavior often
violates the subjective expected utility theory. Consider for example theEllsberg (1961)
experiment:
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An urn is presented to a decision maker. He is informed that there are 90 balls in the
urn, that 30 of the balls are red and the other 60 balls are white and black in some un-
known proportion. Thus, the decision maker knows that a red ball will be drawn with
probability 1/3, but he does not know the probability of a white and the probability of
a black ball. A situation in which the probabilities of some events are (perceived to be)
unknown is called a situation of (subjective) uncertainty. The decision maker is asked to
choose one of the following two bets: (1) If a red balls is drawn, he gets US$ 100, oth-
erwise nothing. (2) If a white ball is drawn, he gets US$ 100, otherwise nothing. Most
decision makers prefer bet (1) over bet (2). Next, the decision maker is asked to choose
one of the following two bets: (3) If a red or a black ball is drawn, he gets US$ 100,
otherwise nothing. (4) If a white or black ball is drawn, he gets US$ 100, otherwise noth-
ing. Most decision maker who preferred bet (1) over bet (2) now prefer bet (4) over bet
(3). One explanation for this behavior is obvious: the probability of winning US$ 100 is
known in bet (1) and (4), but not in bet (2) and (3). Decision makers apparently prefer bets
in which the probabilities of the different consequences are known. They are uncertainty
averse.

This behavior is in contradiction to Savage’s expected utility theory. Denote byu(100)
andu(0) the utility of winning US$ 100 and nothing respectively and byπ({r}), π({w})
andπ({b}) the decision maker’s probability judgement of a red, white and black ball being
drawn. Since he prefers (1) over (2) and (4) over (3), the following must hold in expected
utility theory:

u(100)π({r}) + u(0)[π({w}) + π({b})] > u(100)π({w}) + u(0)[π({r}) + π({b})]
⇔ u(100)π({r}) + u(0)π({w}) > u(100)π({w}) + u(0)π({r})

and

u(100)[π({w}) + π({b})] + u(0)π({r}) > u(100)[π({r}) + π({b})] + u(0)π({w})
⇔ u(100)π({w}) + u(0)π({r}) > u(100)π({r}) + u(0)π({w})

The contradiction is obvious.
Schmeidler (1989)andGilboa (1987)presented axioms implying that the decision maker

has (a) a utility function on the set of consequences and (b) a unique non-additive measure,
called capacity, on the set of states, such that he prefers actf over actg if and only if f

yields a higher Choquet expected utility1 thang. Let S = {r, w, b} be the set of states of
the world in the Ellsberg experiment. The following function on (the power set of)S is an
example for a capacity:

Example 1.

v({r}) = 1
3, v({w}) = v({b}) = 1

6

v({r, w}) = v({r, b}) = 1
2, v({w, b}) = 2

3

v({r, w, b}) = 1, v(∅) = 0

1 SeeChoquet (1955). A formal definition of both a capacity and the Choquet utility are given inSection 2.
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It is obviously not a probability measure, since for examplev({w}) + v({r, b}) �= 1. If we
assumeu(100) > u(0) the Choquet expected utilities of Ellsberg’s bets (1) to (4), denoted
by Cv(u ◦ f 1) to Cv(u ◦ f 4), are given by

Example 2.

Cv(u ◦ f 1) = u(100) · v({r}) + u(0) · [1 − v({r})]
Cv(u ◦ f 2) = u(100) · v({w}) + u(0) · [1 − v({w})]
Cv(u ◦ f 3) = u(100) · v({r, b}) + u(0) · [1 − v({r, b})]
Cv(u ◦ f 4) = u(100) · v({w, b}) + u(0) · [1 − v({w, b})]

Using the capacity fromExample 1above we immediately arrive atCv(u◦f 1) > Cv(u◦f 2)

andCv(u ◦ f 4) > Cv(u ◦ f 3). Thus the proband prefers bet (1) over (2) and (4) over (3)
which is compatible with the Ellsberg findings. Thus, this Choquet expected utility theory
is an alternative to the subjective expected utility theory which is not in contradiction to the
typical behavior in the Ellsberg experiment.

1.2. Uncertainty and uncertainty aversion

However, the Choquet expected utility theory has a serious disadvantage. A satisfactory
interpretation of a decision maker’s capacity does not exist yet. But it is widely assumed
that the capacity incorporates two elements, the decision maker’s subjectively perceived
uncertainty and his individual degree of uncertainty aversion.

Epstein and Zhang (2001)propose a definition of subjective uncertainty which can be
applied to a very broad class of preferences including those of the Choquet expected utility
type. One can conclude from a decision maker’s preferences whether he perceives an event
as uncertain or not according to their definition. However, it is not clear if it is really a
definition of what is intuitively meant by uncertainty, i.e. a subjective feeling not to know
the true probability of the event. Epstein and Zhang’s definition implies that a decision
maker who assigns a probability to every event2does not perceive any uncertainty at all. But
intuition suggests that even a decision maker who assigns a probability to every event may
have doubt that his probability judgement is correct, i.e. may perceive uncertainty. Even an
expected utility maximizer may perceive uncertainty, i.e. may think not to know the true
probabilities of the events, if he is uncertainty neutral. Moreover, it is desirable to determine
whether one of two subjectively uncertain events is perceived as more or as less uncertain
than the other. Epstein and Zhang’s definition only provides a distinction between uncertain
events and not uncertain events.

Kelsey and Nandeibam (1998), Ghiradato and Marinacci (2002)define the term “more
uncertainty averse than”. Their definitions in principle imply that some decision maker 1 is
more uncertainty averse than some other decision maker 2, both being Choquet expected
utility maximizer, if 1’s capacity (v1) is not higher than 2’s capacity (v2(E) ≥ v1(E) for
all eventsE). However, this notion is not absolutely intuitive. Even if a decision maker is

2 i.e. who is probabilistic sophisticated, seeMachina and Schmeidler (1992).
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very uncertainty averse, he might have a very high capacity because he does not perceive
any uncertainty.Epstein (1999)pays attention to this point. He assumes an exogenously
given set of events which are not uncertain. His definition of “more uncertainty averse than”
implies that a Choquet expected utility maximizing decision maker 1 is more uncertainty
averse than another Choquet expected utility maximizing decision maker 2, if 1’s capacity
on uncertain events is not higher than 2’s capacity on uncertain events. However, decision
maker 1 may have a lower capacity on uncertain events than decision maker 2 just because
he is less informed about the probabilities of the uncertain events.

In this article it is shown how both a measure of subjectively perceived uncertainty for
every event and the decision maker’s uncertainty aversion can be unequivocally concluded
from his preferences, if his preferences satisfySchmeidler’s (1989)axioms for Choquet
expected utility preferences and some further conditions. To achieve this aim we have to
consider not only the prior preference relation of the decision maker, but also some of his
updated preference relations to get enough information about the decision maker. Thus we
also have to deal with the problem of updating Choquet expected utility preferences. The
basic idea of this approach can be explained by means of the Ellsberg experiment:

Assume that we know that a decision maker in the Ellsberg experiment is uniquely
characterized by the capacityv on{r, w, b} given inExample 1.3 Moreover, assume that we
know that he is uniquely characterized by the capacityv{r,w} on{r, w} with v{r,w}(r) = 5/12
andv{r,w}(w) = 1/4 after he receives the informationB = {r, w}, i.e. the information that
the ball drawn from the urn will not be black. We then ask whether it is possible to write
these two capacitiesv andv{r,w} as functions of (i) a probability measureπ on {r, w, b},
(ii) a lower bound capacityvL (≤ π) on {r, w, b}4 and a numberα ∈ [0, 1] such that
v = αvL + (1 − α)π andv{r,w} = αvL

{r,w} + (1 − α)π{r,w}. Here,π{r,w} is the updated

probability measure on{r, w} derived fromπ by Bayes’ rule andvL
{r,w} is the updated lower

bound on{r, w} derived fromvL by Jaffray’s (1992)rule

vL
B(E) = vL(E)

vL(E) + 1 − vL(E ∪ Bc)
, E ⊆ B

It is very easy to check thatv andv{r,w} can indeed be written as functions in the way
described above of the probability measure:

Example 3.

π({r}) = π({w}) = π({b}) = 1
3

π({r, w}) = π({r, b}) = π({w, b}) = 2
3

π({r, w, b}) = 1, π(∅) = 0

the lower bound capacity:

3 The information on the decision maker revealed by his behaviour in the Elsberg experiment is not sufficient to
derive a unique capacity characterising the decision maker. However, it is in principle possible to derive a unique
capacity from a decision maker’s preferences (see for exampleSchmeidler, 1989).

4 SeeDefinition 7below.
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Example 4.

vL({r}) = 1
3, vL({w}) = vL({b}) = 0

vL({r, w}) = vL({r, b}) = 1
3, vL({w, b}) = 2

3

vL({r, w, b}) = 1, vL(∅) = 0

andα = 1/2. If v andv{r,w} cannot be written as functions in the way described above of any
other probability measure, lower bound and number in [0, 1], i.e. if we have uniqueness, then
we suggest the following interpretation:π is the decision maker’s subjective probability
judgement and the lower boundvL gives his subjective uncertainty: IfvL(A) + vL(Ac) >

vL(E) + vL(Ec), then the decision maker perceives the eventA as less uncertain than the
eventE. And α is a parameter of the decision maker’s uncertainty aversion: Ifα = 0,
his capacity is a probability measure (v = π) and he is uncertainty neutral. Ifα = 1, his
capacity is equal to his lower bound (v = vL) and his uncertainty aversion is maximal. If
α = 1/2 as in the example above, his uncertainty aversion is between these two extremes.
We assume that this parameter does not change when preferences are updated.

The aim of this article is to describe preferences from which a unique probability measure,
lower bound and parameter of uncertainty aversion in the sense described above can be
derived. Note that the reason way we need to consider updating in this article is that we
cannot achieve uniqueness of the probability measure, the lower bound and the parameter of
uncertainty aversion without information on updated preferences. If a prior capacityv can
at all be written as a linear combination of a probability measure and a lower bound, it can
(almost) always be written as a linear combination of many other probability measures and
lower bounds as well. However, this is true only in the setting of our paper. In a quite different
approach,Gajdos et al. (2004)show how a unique parameter of uncertainty aversionα can
be derived from preferences without information on updating. Their approach differs from
ours in that these authors assume that a set of possible prior probability measuresΠ and a
reference probability measureπ ∈ Π are objectively given. In this setting, preferences of
the multiple prior type as introduced by Gilboa andSchmeidler (1989)are axiomatised. The
unique set of priors characterising the preferences is the set{pα|pα = αp + (1 − α)π, p ∈
co(Π)}. Here,co(Π) is the closed and convex hull ofΠ andα is a unique number in [0, 1]
that can be interpreted as a parameter of uncertainty aversion. We will discuss this approach
and how it is related to ours inSection 7.

From the example above, it is clear that we restrict our analysis to a certain class of prefer-
ences and updating procedures, i.e. we do not define subjective uncertainty and uncertainty
aversion for any preference relation. The analysis is restrictive in three ways: Firstly, we
consider only preferences of the Choquet expected utility type. Secondly, not every capac-
ity can be written as a linear combination of a probability measure and a lower bound. For
example, so called concave capacities cannot, but all convex and some other capacities can.
I.e. we do not consider all preferences of the Choquet expected utility type. Thirdly, we
assume that preferences are updated in a certain way. The following example may illustrate
the last point:

A decision maker in the context of the Ellsberg experiment is indifferent between a bet on
red, a bet on white and a bet on black. He is also indifferent between a bet on red or white, a bet
on red or black and a bet on white or black. Finally, after receiving the information{r, w}, he
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is indifferent between a bet on red, a bet on white and a certain gain of US$x, after receiving
the information{r, b}, he is indifferent between a bet on red, a bet on black and a certain
gain of US$x, but after receiving the information{w, b}, he is not indifferent between a bet
on white and a bet on black. The prior and updated capacities describing these preferences
need to fulfill v({r}) = v({w}) = v({b}) ≡ A, v({r, w}) = v({r, b}) = v({w, b}) ≡ B,
v{r,w}({r}) = v{r,w}({w}) = v{r,b}({r}) = v{r,b}({b}) ≡ C, v{w,b}({w}) �= v{w,b}({b}). If
there were a lower boundvL, a probability measureπ and a numberα ∈ [0, 1] such that
v = αvL + (1−α)π andvB = αvL

B + (1−α)πB for B = {r, w}, B = {r, b} andB = {w, b},
then

α[vL({r}) + vL({w, b})] + 1 − α = α[vL({w}) + vL({r, b})] + 1 − α = A + B

and

α

[
vL({r})

vL({r}) + 1 − vL({r, b}) + vL({w})
vL({w}) + 1 − vL({w, b})

]
+ 1 − α = 2C

Sincev({w}) = v({b}) andv{w,b}({w}) �= v{w,b}({b}), the preferences are not of the expected
utility type, i.e.α > 0. With this, we easily get from the above

α[vL({r}) + vL({w})] = (2C + α − 1)(1 − A − B)

1 − 2C
≡ k

Analogously, we getα[vL({r})+vL({b})] ≡ k, i.e.vL({w}) = vL({b}). Because ofv({w}) =
v({b}), we getπ({w}) = π({b}). With v({r, w}) = v({r, b}), it follows thatvL({r, w}) =
vL({r, b}), thusv{w,b}({w}) = v{w,b}({b}). This is in contradiction to one of our assumption
we were starting with.5

In Section 2we define the two main mathematical concepts of the Choquet expected
utility theory, the capacity and the Choquet integral. The following sections deal with lists
(�0,�1, . . . ,�n) containing a prior preference relation�0 and an updated preference
relation�i for n different informationi = 1, . . . , n. Section 3presents well known axioms
for (�0,�1, . . . ,�n) implying that�i (i = 0, 1, . . . , n) is an expected utility preference
relation with associated probability measureπi andπi is derived fromπ0 by Bayes rule. In
Section 4we introduce axioms for(�0,�1, . . . ,�n) implying that�i (i = 0, 1, . . . , n)
is a Choquet expected utility preference relation with the associated capacityvL

i being a
lower bound andvL

i is derived fromvL
0 by Jaffray’s rule.Section 5combines the results

gained inSection 3andSection 4. We present axioms for(�0,�1, . . . ,�n) implying that
(1)�i is a Choquet expected utility preference relation with associated capacityvi and (2)
there is a unique numberα ∈ [0, 1], a unique list(π0, π1, . . . , πn) of probability measures
with πi derived fromπ0 by Bayes rule and a unique list(vL

0 , vL
1 , . . . , vL

n ) of lower bounds
with vL

i derived fromvL
0 by Jaffray’s rule satisfyingvi(E) = αvL

i (E)+ (1−α)πi(E) for all
eventsE and alli = 0, 1, . . . , n. In Section 6, we will discuss an example of preferences
that satisfy all of our axioms but the main one. Finally, the paper by Gajdos, Tallon and

5 Note that in general the updating procedure discussed in this paper is relatively flexible. For example bothv({r})
> v({w}), v({r, b}) > v({w, b}), v{r,w}({r}) > v{r,w}({w}) andv({r}) > v({w}), v({r, b}) > v({w, b}), v{r,w}({r})
< v{r,w}({w}) is possible within our assumptions, the latter for example withvL({r}) = 1/8, vL({w}) = 1/4,
vL({w, b}) = 1/2, π({r}) = 1/2, π({w}) = 1/3, π({b}) = 1/6 andα = 14/25.
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Vergnaud is discussed inSection 7. We work with theAnscombe and Aumann (1963)frame
which has been used bySchmeidler (1989).

2. Mathematical preliminaries

In this section the basic concepts of the Choquet expected utility theory, the capacity and
the Choquet integral, are introduced as pure mathematical concepts. We start with

Definition 5. Let M be some set and denote by 2M the set of all subsets ofM. A capacity
onM is a functionv : 2M → [0, 1] satisfying

(i) v(∅) = 0, v(M) = 1
(ii) A ⊆ B ⇒ v(A) ≤ v(B).

The set functions on the set{r, w, b} presented in theExamples 1, 3 and 4are capacities
according to this definition. Moreover, every probability measure is a capacity, but not vice
versa:

Definition 6. Let M be some set. A capacityπ onM is called a probability measure, if and
only if

A ∩ B = ∅ ⇒ π(A) + π(B) = π(A ∪ B)

Of special interest in this article is a special group of capacities, so called lower bounds:

Definition 7. Let M be some set. A capacityv on M is called a lower bound, if and only
if there exists a setΠ of probability measures onM such that

v(A) = min{π(A)|π ∈ Π}
for all A ⊆ M.

Notable is the relation between lower bounds on the one hand and convex and superad-
ditive capacities on the other. A capacityv on some setM is called convex, if and only if
v(A) + v(B) ≤ v(A ∪ B) + v(A ∩ B) for all A, B ⊆ M. It is supperadditive if and only if
v(A) + v(B) ≤ v(A ∪ B) for all A, B ⊆ M, A ∩ B = ∅. Obviously, every convex capacity
is a superadditive capacity, but not vice versa.

Proposition 8. Every convex capacity is a lower bound, but not every lower bound is a
convex capacity.

Proposition 9. Every lower bound is a superadditive capacity, but not every superadditive
capacity is a lower bound.

Given a capacityv on some setM and a random variablêu we define something like an
expected value, the so called Choquet integral:
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Definition 10. Let v be a capacity on some setM and û : M → R be a function. The
Choquet integral of̂u givenv is defined by

Cv(û) =
∫ 0

−∞
[v({m|û(m) ≥ t}) − 1]dt +

∫ ∞

0
[v({m|û(m) ≥ t})]dt

In Example 2, Cv(u ◦ f i) is the Choquet integral of a functionu ◦ f i : {r, w, b} → R given
a capacityv on{r, w, b}, wheref i : {r, w, b} → {US$ 0, US$ 100} is a function withf i(c)

the gain of bet (i) (i = 1, . . . , 4) in the Ellsberg experiment, if the color of the ball being
drawn isc. If the capacityv is a probability measure, then the Choquet integralCv(û) is the
ordinary expected value ofû givenv. This can easily be shown.

3. Expected utility theory and updating

The frame we are using consists of a set of statesS0, some sequenceS1, . . . , Sn of
nonempty subsetsSi ⊂ S0, i = 1, . . . , n, and a nonempty set of consequencesX. BothS0
andX are assumed to be finite. Moreover, we have the setY of all probability measures on
X, i.e. so called roulette lotteries. For the sake of simplicity,x ∈ X also denotes the element
in Y which assigns probability 1 tox.

Preferences will be defined on sets of acts. An act onSi, i ∈ {0, 1, . . . , n}, is a function
fi : Si → Y . The set of all acts onSi isFi. Given two actsfi, gi onSi, the actλfi +(1−λ)gi

for someλ ∈ [0, 1] is defined by(λfi+ (1−λ)gi)(s) = λfi(s) +(1−λ)gi(s) for all s ∈ Si.
For the sake of simplicityfi(s) denotes both the probability measure assigned to states given
actfi and the act which yields the probability measurefi(s) for all s ∈ Si, i.e. a constant
act. Analogously,y denotes both an element inY and the constant act which yieldsy in all
states. As usual(fi, E; gi, Si/E) denotes the act which yields the same probability measure
onX as actfi, if s ∈ E, and the same probability measure onX as actgi, if s ∈ Si/E.

We now consider some preference relation onFi for somei ∈ {0, 1, . . . , n} and the
following properties:

(i) A preference relation�i onFi satisfies weak order, if: (a) For allfi, gi ∈ Fi: fi �i gi

or gi �i fi. (b) For allfi, gi, hi ∈ Fi: (fi �i gi andgi �i hi) ⇒ fi �i hi.
(ii) �i satisfies independence, if: For allfi, gi, hi ∈ Fi and allλ ∈]0, 1[: fi �i gi ⇒

λfi + (1 − λ)hi �i λgi + (1 − λ)hi.
(iii) �i satisfies continuity, if: For allfi, gi, hi ∈ Fi: If fi �i gi andgi �i hi, then there

areλ, µ ∈]0, 1[ such thatλfi + (1 − λ)hi �i gi andgi �i µfi + (1 − µ)hi.
(iv) �i satisfies monotonicity, if: For allfi, gi ∈ Fi: If fi(s) �i gi(s) for all s ∈ Si, then

fi �i gi.
(v) �i satisfies nondegeneracy, if: There arefi, gi ∈ Fi such thatfi �i gi.

The following theorem is due toAnscombe and Aumann (1963)and the proof can be found
in Fishburn (1970)6:

6 Proof of theorem 13.3. See alsoSchmeidler (1989)for the relation between (i), (iv) and the property of strict
monotonicity used inFishburn (1970).
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Theorem 11. A preference relation �i on Fi for some i ∈ {0, 1, . . . , n} satisfies (i), (ii),
(iii), (iv) and (v), if and only if there are (1) an affine7 function u : Y → R unique up to
positive linear transformations and (2) a unique probability measure πi on Si such that for
all fi, gi ∈ Fi

fi �i gi ⇔ Cπi(u ◦ fi) ≥ Cπi(u ◦ gi)

We now consider a list of preference relations onFi for all i ∈ {0, 1, . . . , n} and the
following property:

(u-i) A list (�0,�1, . . . ,�n) of preference relations�i on Fi for all i ∈ {0, 1, . . . , n}
satisfies Bayesian updating, if: for allf0,g0,h0 ∈ F0 andfi,gi ∈ Fi with fi(s) = f0(s)

andgi(s) = g0(s) for all s ∈ Si and alli = 1, . . . , n: fi �i gi ⇔ (f0, Si; h0, S0\Si) �0
(g0, Si; h0, S0 \ Si).

The theorem we get is:

Theorem 12. A list (�0,�1, . . . ,�n) of preference relations �i on Fi for i = 0, 1, . . . , n

satisfies (u-i) and is such that �i satisfies (i), (ii), (iii), (iv) and (v) for all i ∈ {0, 1, . . . , n},
if and only if there are (1) an affine function u : Y → R unique up to positive linear
transformations and (2) a unique probability measure π onS0 such that for all fi, gi ∈ Fi

fi �i gi ⇔ Cπi(u ◦ fi) ≥ Cπi(u ◦ gi)

with πi defined by πi(E) = π(E)/π(Si) for all E ⊆ Si (for i = 0, 1, . . . , n).

If a list (�0,�1, . . . ,�n) satisfies (u-i) and is such that�0 satisfies (i), (ii), (iii), (iv) and
(v), then�i does not necessarily satisfy (i), (ii), (iii), (iv) and (v) for alli ∈ {1, . . . , n}. If for
example�0 is associated with a probability measureπ0(= π) with π0(Si) = 0 for somei,
then (u-i) would implyfi ∼i gi for all fi, gi ∈ Fi, thus�i would not satisfy (v). Therefore,
if some list(�0,�1, . . . ,�n) satisfies (u-i) and is such that�i satisfies (i), (ii), (iii), (iv)
and (v) for alli ∈ {0, 1, . . . , n}, then the probability measureπ associated with this list
satisfiesπ(Si) > 0 for all i ∈ {0, 1, . . . , n}. This is implicitly mentioned inTheorem 12,
since otherwiseπi would not be defined for somei ∈ {1, . . . , n}.

4. Choquet expected utility and lower bound capacities

The following concept of comonotonicity is crucial in Choquet expected utility theory:

Definition 13. Two actsfi, gi ∈ Fi are called comonotonic given the preference relation
�ionFi, if for no s, s′ ∈ Si: fi(s) �i fi(s

′) andgi(s
′) �i gi(s).

In order to obtain the Choquet expected utility theory, we just have to replace the inde-
pendence property (ii) by the following property:

7 Affinity of u meansu(λy + (1 − λ)y′) = λu(y) + (1 − λ)u(y′) for every λ ∈]0, 1[, implying u(y) =∑
x∈X y(x)u(x).



780 J. Tapking / Journal of Mathematical Economics 40 (2004) 771–797

(vi) �i satisfies comonotonic independence, if: For all pairwise comonotonic actsfi, gi,
hi ∈ Fi and allλ ∈]0, 1[: fi �i gi ⇒ λfi + (1 − λ)hi �i λgi + (1 − λ)hi.

The following theorem is presented and proved inSchmeidler (1989):

Theorem 14. A preference relation �i on Fi for some i ∈ {0, 1, . . . , n} satisfies (i), (iii),
(iv), (v) and (vi), if and only if there are (1) an affine function u : Y → R unique up
to positive linear transformations and (2) a unique capacity vi on Si such that for all fi,
gi ∈ Fi

fi �i gi ⇔ Cvi(u ◦ fi) ≥ Cvi(u ◦ gi)

Next we compare two preference relations on the same set of acts:

Definition 15. A preference relation�′
i onFi is called less constancy-loving than another

preference relation�i onFi if and only if

y �′
i fi ⇒ y �i fi andy �′

i fi ⇒ y �i fi

for all y ∈ Y andfi ∈ Fi.

It has been argued that “less constancy-loving” means “less uncertainty averse”.8 We
reject this interpretation. Assume that a decision makerP has preferences�i and decision
makerP ′ has preferences�′

i and that�′
i is less constancy-loving than�i. This may be

becauseP ′ perceives less uncertainty thanP , thoughP ′ may be more uncertainty averse
thanP .9

Let e(�i) denote the set of all preference relations onFi which (1) satisfy (i), (ii), (iii),
(iv) and (v) and (2) are less constancy-loving than the preference relation�i on Fi. Let
FE

i (�i) ≡ {fi ∈ Fi| fi = (y, E; y′, Si \ E) for somey, y′ ∈ Y with y �i y′}. Obviously, if
two actsfi, gi are inFE

i (�i), then they are comonotonic given�i. Moreover, all constant
acts are inFE

i (�i).

(vii) �i satisfies expected utility relatedness, if: For everyE ⊆ Si there is a�′
i∈ e(�i)

such that�i and�′
i agree onFE

i (�i).

A decision maker who’s preference relation�i satisfy property (vii) reveals that he
considers a sete(�i) of preference relations somehow sensible. But he does not know
which preference relation ine(�i) he should choose, since he faces uncertainty. He finally
chooses a preference relation�i which is not ine(�i). But it is closely connected with
e(�i), since (1) every preference relation ine(�i) is less constancy-loving than�iand (2)
the restriction of�i on a setFE

i (�i) agrees with some preference relation ine(�i) for every
E ⊆ Si and is in this sense justified by a preference relation which is deemed sensible.

8 SeeKelsey and Nandeibam (1998), Ghiradato and Marinacci (2002).
9 This view is partly supported byEpstein (1999), how associates less constance loving with less uncertainty

averse only if the two preference relation�i and�′
i which are compared reveal at least up to a certain degree the

same level of uncertainty.
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Theorem 16. A preference relation �i on Fi for some i ∈ {0, 1, . . . , n} satisfies (i), (iii),
(iv), (v), (vi) and (vii), if and only if there are (1) an affine function u : Y → R unique up
to positive linear transformations and (2) a unique lower bound vi on Si such that for all
fi, gi ∈ Fi

fi �i gi ⇔ Cvi(u ◦ fi) ≥ Cvi(u ◦ gi)

Let E(�0,�1, . . . ,�n) be the set of all lists of preference relations(�′
0,�′

1, . . . ,�′
n)

which satisfy (1) property (u-i) and (2)�′
i∈ e(�i) for all i ∈ {0, 1, . . . , n}. That means, if

some preference relation�′
i is part of some list(�′

0,�′
1 , . . . ,�′

n) in E(�0,�1, . . . ,�n),
then�′

isatisfy (i), (ii), (iii), (iv) and (v) and is less constancy-loving than�i. The set
E(�0,�1, . . . ,�n) is the natural generalization of the sete(�i) on lists of preference
relations.

(u-ii) (�0,�1, . . . ,�n) satisfies expected utility relatedness, if: For everyE ⊆ Si and
i ∈ {0, 1, . . . , n} there is a(�′

0,�′
1, . . . ,�′

n) ∈ E(�0,�1, . . . ,�n) such that�i and
�′

i agree onFE
i (�i).

Clearly, if (�0,�1, . . . ,�n) satisfies (u-ii), then�i satisfies (vii) for alli ∈ {0, 1, . . . , n}.
(u-iii) (�0,�1, . . . ,�n) satisfies completeness, if:�∗

0∈ e(�0) ⇒ there is a(�′
0 ,

�′
1 , . . . ,�′

n ) ∈ E(�0,�1, . . . ,�n) such that�′
0 =�∗

0.

If some list (�0,�1, . . . ,�n) satisfies (u-iii), then every preference relation�∗
0 which

satisfies (i), (ii), (iii), (iv) and (v) and which is less constancy-loving then�0 appears in
some list inE(�0,�1, . . . ,�n).

Theorem 17. A list (�0,�1, . . . ,�n) of preference relations �i on Fi for i = 0, 1, . . . , n

satisfies (u-ii) and (u-iii) and is such that �i satisfies (i), (iii), (iv), (v) and (vi) for alli ∈
{0, 1, . . . , n}, if and only if there are (1) an affine function u : Y → R unique up to
positive linear transformations and (2) a unique lower bound v on S0 with v(Si) > 0 for
all i ∈ {1, . . . , n} such that for all fi, gi ∈ Fi

fi �i gi ⇔ Cvi(u ◦ fi) ≥ Cvi(u ◦ gi)

with vi defined by vi(E) = v(E)/v(E)+1−v(E∪S0\Si) for all E ⊆ Si (for i = 0, 1, . . . , n).

The updating rule for lower bounds stated inTheorem 17has been proposed byJaffray
(1992).10 The proof of the theorem makes direct use of Jaffray’s argumentation.

In this section we have presented properties of a very extreme list of preference relations
(�0,�1, . . . ,�n). It is extreme in so far as we assume that the decision maker deviates
from the setE(�0,�1, . . . ,�n) very far into the direction of constance love. The other
extreme is given, if he just chooses one of the lists inE(�0,�1, . . . ,�n), i.e. a list with
the properties stated inTheorem 12, instead of deviating fromE(�0,�1, . . . ,�n). In the
next section we present properties of lists between these two extremes.

10 Some other updating rules for capacity are proposed inGilboa and Schmeidler (1993).
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5. Uncertainty and uncertainty aversion revealing preferences

We now combine the lists of preference relations described in the previous two sections
to define one more list of preference relations. We first need a definition:

Definition 18. Let�1
i ,�i,�2

i be preference relations onFi . If there exists an actfi ∈ Fi

such thanfi ∼1
i y1, fi ∼i y andfi ∼2

i y2 for somey1, y, y2 ∈ Y (neithery1 ∼i y nor
y1 ∼i y2 nory ∼i y2), then the ordered triple(y1, y, y2) is called a description of�i relative
to�1

i and�2
i .

The main property in this section is

(u-iv) (�0,�1, . . . ,�n) satisfies constant relative description, if: There exists (1) a list
(�E

0 ,�E
1 , . . . ,�E

n ) which satisfies (u-i) and is such that�E
i satisfies (i), (ii), (iii), (iv)

and (v) for alli ∈ {0, 1, . . . , n} and (2) a list(�L
0 ,�L

1 , . . . ,�L
n ) which satisfies (u-ii)

and (u-iii) and is such that�L
i satisfies (i), (iii), (iv), (v) and (vi) for alli ∈ {0, 1, . . . , n},

such that: (I) For alli ∈ {0, 1, . . . , n}: �E
i is less constancy-loving than�i and�i

is less constancy-loving than�L
i , (II) for all fi, gi ∈ Fi and all i ∈ {0, 1, . . . , n}:

(fi ∼E
i gi andfi ∼L

i gi)⇒ fi ∼i gi and (III) There is an ordered triple(yE, y, yL)

which is a description of�i relative to�E
i and�L

i for all i ∈ {0, . . . , n} for which
not�E

i =�i= �L
i .

If a list (�0,�1, . . . ,�n) satisfies (u-iv), then it is somehow located between two ex-
tremes, a list(�E

0 ,�E
1 , . . . ,�E

n ) which is not uncertainty averse at all and a list(�L
0 ,�L

1
, . . . ,�L

n ) which is extremely uncertainty averse. The nearer(�0,�1, . . . ,�n) is located
to (�E

0 ,�E
1 , . . . ,�E

n ), the less uncertainty averse is it. Part (I) of (u-iv) makes sure that
there is a probability measureπi and a lower boundvL

i on Si such that the capacity char-
acterizing the preference relation�i is between both, i.e.πi(E) ≥ vi(E) ≥ vL

i (E) for all
E ⊆ Si (seeLemma 20in the appendix). Part (I) and (II) together imply that there is a
αi ∈ [0, 1] such thatvi(E) = αiv

L
i (E) + (1− α)πi(E). On top of part (I) and (II), part (III)

ensures thatαi = α for all i ∈ {0, . . . , n}.
We finally need a technical property:

(u-v) (�0,�1, . . . ,�n) satisfies richness, if:n ≥ 3 and there is a partition(A, B, C) of
S0 with A, B, C �= ∅, such that (1)S1 = A ∪ B, S2 = A ∪ C, S3 = B ∪ C, (2) for all
y1, y2, y3 ∈ Y with y1, y2 �0 y3: (y1, A; y3, S0\A) ∼0 (y2, A; y3, S0\A), (3) not for
all y1, y2, y3 ∈ Y with y1 �0 y2, y3: (y1, B ∪ C; y2, A) ∼0 (y1, B ∪ C; y3, A) and (4)
for all λ1, λ2, λ3 ∈ [0, 1] with 1 − λ1 = λ1 − λ2 − λ3 andy1, y2 ∈ Y with y1 �0 y2:
If (y1, B ∪ C; y2, A) ∼0 λ1y1 + (1 − λ1)y2, then not both(y1, B; y2, A ∪ C) ∼0
λ2y1 + (1 − λ2)y2 and(y1, C; y2, A ∪ B) ∼0 λ3y1 + (1 − λ1)y3.

Part (2) of the property is the most restrictive. It implies that the capacityv0 associ-
ated with�0 satisfiesv0(A) = 0 for someA ⊆ S0. Part (3) guarantees thatv0(B ∪
C) < 1, i.e. v0 is not a probability measure. Finally, because of part (4) we get 1−
v0(B ∪ C) �= v0(B ∪ C)− v0(B) − v0(C). Property (u-v) is helpful, though in many
cases not necessary to get uniqueness of a numberα, a lower boundvL and a probability
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measureπ as described in the following theorem, which is the main theorem of this
article:

Theorem 19. A list (�0,�1, . . . ,�n) of preference relations �i on Fi for i = 0, 1, . . . , n

satisfies (u-iv) and (u-v) and is such that �i satisfies (i), (iii), (iv), (v) and (vi) for all
i ∈ {0, 1, . . . , n}, if and only if there are (1) an affine function u : Y → R unique up to
positive linear transformations, (2) a unique number α ∈]0, 1], (3) a unique lower bound
vL onS0 with vL(Si) > 0 for all i ∈ {1, . . . , n} and (4) a probability measure π onS0 with
π(E) ≥ vL(E) for all E ⊆ S0 and unique if and only if α < 1, such that for all fi, gi ∈ Fi

fi �i gi ⇔ Cvi(u ◦ fi) ≥ Cvi(u ◦ gi)

with vi(E) = αvL
i (E) + (1 − α)πi(E), vL

i (E) = vL(E)

vL(E)+1−vL(E∪S0\Si)
and πi(E) =

π(E)/π(Si) for all E ⊆ Si and all i ∈ {0, 1, . . . , n}, n ≥ 3, v0(A) = 0, v0(B ∪ C) <

1, 1− v0(B ∪ C) �= v0(B ∪ C) − v0(B) − v0(C) for some partition (A, B, C) of S0 with
A, B, C �= ∅, S1 = A ∪ B, S2 = A ∪ C and S3 = B ∪ C.

The interpretation of the unique numberα and the unique lower boundvL has already
been given inSection 1.2: The lower bound is a measure of the decision maker’s sub-
jectively perceived uncertainty: IfvL(A) + vL(S0 \ A) < vL(B) + vL(S0 \ B), then
the decision maker perceives the eventA as more uncertain than the eventB. And α is
the parameter of the decision maker’s individual uncertainty aversion. Ifα is close to 0,
the decision maker is almost uncertainty neutral, ifα = 1, he is completely uncertainty
averse.

6. An example

We are now going to discuss an example of a list of a prior and some updated pref-
erence relations which does not satisfy part (III) of (u-iv). We start with some general
remarks on how to test whether preferences satisfy part (III) of (u-iv). Then we discuss our
example.

Assume that all preference relations in(�0,�1, . . . ,�n) are of the Choquet expected
utility type (characterized by the same utility functionu) and that(v0, . . . vn) is the related
list of capacities. Moreover assume that part (I) and (II) of (u-iv) are satisfied. Then there
are a lower boundvL, a probability measureπ(≥ vL) and a numberαi ∈ [0, 1] for all
i = 0, . . . , n such thatvi = αiv

L
i + (1−αi)πi for all i = 0, . . . , n. Only if we additionally

haveαi = α for all i = 0, . . . , n, then part (iii) of (u-iv) is also satisfied. This is shown
in the appendix. One important implication is the following: Take any two subsetsI and
Î of {0, . . . , n}. If vi = αvL

i + (1 − α)πi for all i ∈ I has a unique solution withα = α,
vi = αvL

i + (1 − α)πi for all i ∈ Î has a unique solution withα = α̂ andα �= α̂, then part
(III) of (u-iv) is not satisfied.

In our example, we assume that there are five eventsA, B, C, B̂, Ĉ ⊂ S0 such that
B ∪ C = B̂ ∪ Ĉ = S0 \ A andB ∩ C = B̂ ∩ Ĉ = ∅. For technical reasons, we assume
that part (1) and (2) of (u-v) are satisfied. Moreover, we assumen = 4, whereS1 = A ∪ B,
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S2 = A ∪ C, S3 = A ∪ B̂ andS4 = A ∪ Ĉ. The decision maker prefers a bet onB over
a bet onB̂ and a bet onC over a bet onĈ, i.e. for anyy1, y2 with y1 �0 y2, we have
(y1, B; y2, S0 \ B) �0 (y1, B̂; y2, S0 \ B̂) and(y1, C; y2, S0 \ C) �0 (y1, Ĉ; y2, S0 \ Ĉ).
Furthermore, we assume that there arey3, y4, y5 such that(y3, B; y4, S1 \ B) ≺1 y5 ≺3
(y3, B̂; y4, S3 \ B̂) and that there arey6, y7, y8 such that(y6, C; y7, S2 \ C) ≺2 y8 ≺4
(y6, Ĉ; y7, S4\ Ĉ). In our setting, all this requiresv0(B) > v0(B̂), v0(C) > v0(Ĉ), v1(B) <

v3(B̂) andv2(C) < v4(Ĉ).
In the appendix (proof ofTheorem 19, part (1.2)) we show that for any partition{B, C}

of S0 \ A, our setting requires

α = [1 − vA∪B(B)] + [1 − vA∪B(B)]

[1 − v0(B ∪ C)]
αvL(B)

and

α = [v0(B ∪ C) − v0(B) − v0(C)]
[1 − vA∪C(C)]

[v0(B ∪ C) − vA∪C(C)]

+ [1 − vA∪C(C)]

[v0(B ∪ C) − vA∪C(C)]
αvL(B)

This is a system of two equations that are linear in the variablesα andαvL(B). The system
normally has a unique solution forα. It is obvious that the solution forα that we get if we
replaceB andC by B andC is not the same as the solution forα that we get if we replace
B andC by B̂ andĈ. Thus, the list of preferences of our example does not satisfy part (III)
of (u-iv).

7. Gajdos, Tallon and Vergnaud (2004)

The paper by Gajdos, Tallon and Vergnaud is important for our model in two ways:
Firstly, it axiomatizes preferences with a representation very similar to ours. And secondly,
it indirecly supports our interpretation of the parameterα as a parameter of uncertainty
aversion. It is therefore discussed here in more details. LetΩ be the set of all pairs(Π, π)

with Π a closed set of probability distributions onS0 andπ ∈ Π. A pair (Π, π) is called
a situation. Assume that decision makers have preferences�on the setF0 × Ω. In their
Theorem 2, Gajdos, Tallon and Vergnaud describe preferences characerised by a function
u : Y → R unique up to positive linear transformations and a unique numberα ∈ [0, 1]
such that for allf, g ∈ F0, (Π1, π1), (Π2, π2) ∈ Ω:

[f, (Π1, π1)] � [g, (Π2, π2)] ⇔ min
q∈Π̃(α,Π1,π1)

Cq(u ◦ f) ≥ min
q∈Π̃(α,Π2,π2)

Cq(u ◦ g)

whereΠ̃(α, Π, π) = {pα|pα = αp + (1− α)π, p ∈ co(Π)} andco(Π) is the closed convex
hull of .. Thus, the decision maker has preferences of the multiple prior type (seeGilboa
and Schmeidler (1989)) that are characterised by the set of (additive) priorsΠ̃(α, Π, π) for
a given situation(., π). Note thatΠ̃(α, Π, π) is a linear combination ofco(Π) andπ with
α being the linear weight.
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To understand how this result relates to our paper, recall the relation between the Choquet
expected utility and the multiple prior theory as for example described in the proposition
in Schmeidler (1989). If a preference relation of the multiple prior type is characterised by
a closed convex set of priors (i.e. the lower bound of this set is a convex capacity), then it
is also of the Choquet expected utility type and the capacity characterising the preferences
is the lower bound of the set of priors. Thus, the preferences described by Gajdos, Tallon
and Vergnaud are for a given situation(Π, π) of the Choquet expected utility type with the
associated capacityv defined by

v(E) = min{pα(E)|pα(E) = αp(E) + (1 − α)π(E), p ∈ co(Π)}
= αvL

Π(E) + (1 − α)π(E)

for all E ⊆ S0 with vL
. defined byvL

Π(E) = min{p(E)|p ∈ co(Π)}. SincevL
Π is a lower

bound, the structure of the decision maker’s capacity coincides with the one assumed in our
paper.

In the setting of Gajdos, Tallon and Vergnaud,π andΠ, thus the lower boundvL
Π are

objectively given, while we deriveπ and the lower bound from preferences. Since we derive
more information from preferences, we need to take updating of preferences into consid-
eration. While we assume that the parameter of uncertainty aversionα does not change
when preferences are updated, Gajdos, Tallon and Vergnaud assume thatα does not change
when the situation(Π, π) changes. Most important for our model: The approach of Gajdos,
Tallon and Vergnaud leaves no room for subjective uncertainty, since the uncertainty is
objectively given by the setΠ. It is therefore clear thatα is not a parameter of subjective
uncertainty, but of uncertainty aversion. Since their model and our model lead to the same
structure of the decision maker’s capacity, the model of Gajdos, Tallon and Vergnaud sup-
ports our view thatα can be interpreted as a parameter of uncertainty aversion in our model
as well.

8. Conclusion

In this article it has been shown how both a decision maker’s subjectively perceived
uncertainty and his individual degree of uncertainty aversion can be concluded unequiv-
ocally from his prior and updated preferences, if his preferences satisfy certain prop-
erties. We do not claim that most decision maker’s usually satisfy these properties.
Therefore we are reluctant to call them axioms. But if they are satisfied, then there are
good reasons for a distinction between subjective uncertainty and individual uncertainty
aversion.
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Appendix

Proof of Proposition 8. The first statement ofProposition 8follows directly from propo-
sition 11 inChateauneuf and Jaffray (1989). We give an example of a lower bound on some
setM = {m1, m2, m3, m4}, which is not convex. Consider the setΠ = {π1, π2} whereπ1

andπ2 are the probability measures given by

m1 m2 m3 m4

π1({mj}) 1/4 1/4 1/4 1/4
π2({mj}) 1/2 0 1/2 0

The lower boundv(A) = min{π(A)|π ∈ Π} satisfiesv({m2}) = 0, v({m1, m2}) = 1/2,
v({m2, m3}) = 1/2, v({m1, m2, m3}) = 3/4. Let A = {m1, m2} andB = {m2, m3}, i.e.
v(A ∪ B)+ v(A ∩ B) = 3/4 ≤ 1 = v(A) + v(B), thusv is not convex. �

Proof of Proposition 9. Let v(A) = min{π(A)|π ∈ Π} for some set. of probability
measures onM. If v were not superadditive, then there would be eventsA, B ⊆ M with
A ∩ B = ø, such thatv(A ∪ B) < v(A) + v(B). Becausev(A) = min{π(A)|π ∈ Π},
there areπ, π̂, π ∈ Π such thatv(A) = π(A), v(B) = π̂(B), v(A ∪ B) = π(A ∪ B)

= π(A) + π(B). Thus, if v were not superadditive, thenπ(A) + π(B) < π(A) + π̂(B).
But this is not possible sinceπ(A) ≤ π(A) andπ̂(B) ≤ π(B). Thus every lower bound is
superadditive.

Now consider the following superadditive capacity onM = {m1, m2, m3}:

v({mi}) = 1
8, v({mi, mj}) = 5

8 f ür allei, j ∈ {1, 2, 3}, i �= j,

v(M) = 1, v(∅) = 0

}

If this capacity were a lower bound, then there would exist a setΠ of probability measures on
M and aπ ∈ Π with π({m1}) = 1/8,π({m1}) + π({m2}) ≥ 5/8 andπ({m1}) + π({m3}) ≥
5/8. From that we getπ({m2}) ≥ 5/8− 1/8 = 4/8 andπ({m3}) ≥ 5/8− 1/8 = 4/8. Thus
π({m1}) + π({m2}) +π({m3}) ≥ 9/8 andπ would be no probability measure. Thus not
every superadditive capacity is a lower bound. �

Proof of Theorem 12.

(1) If (�0,�1, . . . ,�n) satisfies (u-i) and is such that�i satisfies (i), (ii), (iii), (iv) and (v)
for all i ∈ {0, 1, . . . , n}, then there areu andπ as described in the theorem: Since�i

satisfies (i), (ii), (iii), (iv) and (v), there is according toTheorem 11a utility function
ui : Y → R unique up to positive linear transformations and a unique probability
measureπi on Si associated with�i for all i ∈ {0, 1, . . . , n}. From (u-i) it follows
that for allyk, yl ∈ Y we haveyk �i yl ⇔ yk �0 yl, i.e. all preference relations�i,
i = 0, 1, . . . , n agree on the set of constant acts. By the von Neumann–Morgenstern
theorem (see for exampleSchmeidler (1989), p. 577) we therefore getu0 = u1 = . . . =
un ≡ u. Clearly, we haveπ0(Si) > 0 for all i ∈ {0, 1, . . . , n}. Otherwise (u-i) would
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imply fi ∼i gi for all fi, gi ∈ Fi and�i would not satisfy (v). Thus the condition in
(u-i) can be translated into

Cπi(u ◦ fi) =
∑
s∈Si

u[fi(s)]πi({s}) ≥
∑
s∈Si

u[gi(s)]πi({s}) = Cπi(u ◦ gi)

⇔
∑
s∈Si

u[fi(s)]
π0({s})
π0(Si)

≥
∑
s∈Si

u[gi(s)]
π0({s})
π0(Si)

Sinceu is affine and unique up to positive linear transformations, it has a nondegenerated
convex range and we can assume that [−1, 1] is a subset of the range ofu. Thus for
everyE ⊂ Si there exist actsfi, gi ∈ Fi with

u[fi(s)] =
{

−πi(Si \ E) for s ∈ E

1 for s ∈ Si \ E
andu[gi(s)] =

{
0 for s ∈ E

1 − πi(E) for s ∈ Si \ E

ThusCπi(u ◦ fi) = Cπi(u ◦ gi). To meet (u-i) we therefore have to ensure

∑
s∈Si

u[fi(s)]
π0({s})
π0(Si)

= −πi(Si \ E)
π0(E)

π0(Si)
+ 1

π0(Si \ E)

π0(Si)

= 0 + [1 − πi(E)]
π0(Si \ E)

π0(Si)

=
∑
s∈Si

u[gi(s)]
π0({s})
π0(Si)

⇔ πi(E) = π0(E)

π0(Si)

With π0 ≡ π the first part of the theorem is proved.
(2) If there areu andπ as described in the theorem, then(�0,�1, . . . ,�n) satisfies (u-i)

and is such that�i satisfies (i), (ii), (iii), (iv) and (v) for alli ∈ {0, 1, . . . , n}: Sinceπi

defined byπi(E) = π(E)/π(Si) for all E ⊆ Si is a probability measure onSi, we know
from Theorem 11that�i satisfies (i), (ii), (iii), (iv) and (v) for alli ∈ {0, 1, . . . , n}.
Since∑

s∈Si

u[fi(s)]πi(s) ≥
∑
s∈Si

u[gi(s)]πi(s) ⇔
∑
s∈Si

u[f0(s)]π(s) +
∑

s∈S0\Si

u[h0(s)]π(s)

≥
∑
s∈Si

u[g0(s)]π(s) +
∑

s∈S0\Si

u[h0(s)]π(s)

for all f0, g0, h0 ∈ F0 andfi, gi ∈ Fi with fi(s) = f0(s) andgi(s) = g0(s) for all
s ∈ Si and alli = 1, . . . , n, it is clear that(�0,�1, . . . ,�n) satisfies (u-i). �

For the next step we need to prove two lemmas:

Lemma 20. Let �′
i and �i be two preference relations on Fi satisfying (i), (iii), (iv), (v)

and (vi). Let v′
i and u′ be the capacity and utility function associated with �′

i and vi and
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u be the capacity and utility function associated with �i. Then �′
i is less constancy-loving

than �i if and only if v′
i(E) ≥ vi(E) for all E ⊆ Si and u′ = u.

(1) If �′
i is less constancy-loving than�i, thenv′

i(E) ≥ vi(E) for all E ⊆ Si andu′ = u:
If �′

i is less constancy-loving than�i, then we have byDefinition 15for all yk, yl ∈ Y :
yk �′

i yl ⇔ yk �i yl, i.e. �′
i and�iagree on the set of constant acts. By the von

Neumann-Morgenstern theorem (see for exampleSchmeidler (1989), page 577) we
therefore getu = u′. Fix someE ⊆ Si and someyk, yl ∈ Y with yk �′

i yl, i.e.yk �i yl.
Because of (v) such elements inY exist. Because�′

i is less constancy-loving than�i,
we have for everyy ∈ Y by Definition 15

y ∼i (yk, E; yl, Si \ E) ⇒ (yk, E; yl, Si \ E) �′
i y

which can be translated into

u(y) = u(yk)vi(E) + u(yl)[1 − vi(E)] ⇒ u(y) ≤ u(yk)v′
i(E) + u(yl)[1 − v′

i(E)]

Sinceu is affine, it has a convex range and there exists ay ∈ Y defined byu(y) =
u(yk)vi(E) + u(yl)[1 − vi(E)]. Thus

u(yk)vi(E) + u(yl)[1 − vi(E)] ≤ u(yk)v′
i(E) + u(yl)[1 − v′

i(E)]

which is (becauseu(yk) > u(yl)) equivalent tovi(E) ≤ v′
i(E).

(2) If v′
i(E) ≥ vi(E) for all E ⊆ Si andu′ = u, then�′

i is less constancy-loving thaṅ�:
This follows directly from the obvious fact thatv′

i(E) ≥ vi(E) for all E ⊆ Si implies
Cv′

i
(u ◦ fi) ≥ Cvi(u ◦ fi) for all fi ∈ Fi. �

Lemma 21. Let �i satisfy (i), (iii), (iv), (v) and (vi) and let �′
i∈ e(�i). Let vi be the

capacity associated with �i and πi be the probability measure associated with �′
i. Then �i

and �′
i agree on FE

i (�i) for some E ∈ Si if and only if vi(E) = πi(E).

(1) If �i and�′
i agreeing onFE

i (�i), thenvi(E) = πi(E): Since�′
i is less constancy-loving

than�i, the utility function associated with�i(u) and the utility function associated
with �′

i (u′) are according toLemma 20identical (u = u′). Sinceu is affine and unique
up to positive linear transformations, it has a nondegenerated convex range and we can
assume that [−1, 1] is a subset of the range ofu. Thus there are actsfi, gi ∈ FE

i (�i)

with

u[fi(s)] =
{

vi(E) for s ∈ E

0 for s ∈ Si \ E
andu[gi(s)] =

{
1 for s ∈ E

−vi(E) for s ∈ Si \ E

We obviously getCvi [u◦fi] = Cvi [u◦gi] from this. Since�i and�′
i agree onFE

i (�i),
we also have to ensureCπi [u ◦ fi] = Cπi [u ◦ gi], i.e.

vi(E)πi(E) = πi(E) − vi(E)[1 − πi(E)]

which is equivalent toπi(E) = vi(E).
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(2) If vi(E) = πi(E), then�i and�′
i agreeing onFE

i (�i): trivial since the utility function
associated with�iand the utility function associated with�′

i are identical. �

Proof of Theorem 16.

(1) If �i satisfies (i), (iii), (iv), (v), (vi) and (vii), then there areu andvi as described in
the theorem: FromTheorem 14we know that there is a utility functionu as described
in Theorem 16and a unique capacityvi associated with�i. We therefore just have to
show that (vii) implies thatvi is a lower bound. But this is now obvious: WithLemma
20 we know that the set of probability measuresΠi associated withe(�i) contains all
probability measuresπi satisfyingπi(E) ≥ vi(E) for all E ⊆ Si. FromLemma 21we
learn that there is at least one probability measureπi for everyE ⊆ Si in Πi, such that
πi(E) = vi(E). Thusvi(E) = min{πi(E)|πi ∈ Πi}. A look atDefinition 7completes
the proof.

(2) If there areu andvi as described in the theorem, then�i satisfies (i), (iii), (iv), (v), (vi)
and (vii): Since every lower bound is a capacity, we know fromTheorem 14that�i

satisfies (i), (iii), (iv), (v) and (vi). Sincevi is a lower bound onSi, there is according to
Definition 7a setΠi of probability measures onSi such thatvi(A) = min{πi(A)|πi ∈
Πi} for all A ⊆ Si. Thus for everyE ⊆ Si there is someπ′

i ∈ Πi with vi(E) = π′
i(E)

andvi(A) ≤ π′
i(A) for all A ⊆ Si. The preference relation�′

i associated withπ′
i and

u according toTheorem 11is according toLemma 20in e(�i) and agrees according to
Lemma 21with �i onFE

i (�i). Thus�i satisfies (vii). �

The following lemma is due toJaffray (1992):

Lemma 22. Let v be a lower bound on S0 with v(Si) > 0 for all i ∈ {0, 1, . . . , n}. Let
Π = {π|π is a probability measure on S0 and π(E) ≥ v(E) for all E ⊆ S0}, Πi = {πi|πi

is a probability measure on Si and there is a π ∈ Π such that πi(E) = π(E)/π(Si) for all
E ⊆ Si} and vi(E) = min{πi(E)|πi ∈ Πi} for all E ⊆ Si and all i ∈ {0, 1, . . . , n}. Then
vi(E) = v(E)/v(E) + 1 − v(E ∪ S0 \ Si) for all E ⊆ Si and all i ∈ {0, 1, . . . , n}.

Clearly,vi(E) = min{π(E)/π(Si)|π ∈ Π} = min{π(E)/π(E) + 1− π(E ∪ S0 \ Si)|π ∈
Π}. If v(E) > 0, thenπ(E) > 0 for all π ∈ Π andvi(E) = (1 + max{1 − π(E ∪ S0 \
Si)/π(E)|π ∈ Π})−1. Because of the definition ofΠ in the lemma and becausev is a lower
bound, there is aπ′ ∈ Π with π′(E) = v(E) andπ′(E ∪ S0 \ Si) = v(E ∪ S0 \ Si). Since
1 − π(E ∪ S0 \ Si)/π(E) ≤ 1 − v(E ∪ S0 \ Si)/v(E) = 1 − π′(E ∪ S0 \ Si)/π′(E) for all
π ∈ Π, we getvi(E) = (1+1−π′(E∪S0\Si)/π′(E))−1 = v(E)/v(E)+1−v(E∪S0\Si).
If v(E) = 0, then there is aπ ∈ Π with π(E) = 0 and thereforevi(E) = 0 = v(E)/v(E)+
1 − v(E ∪ S0 \ Si). (Note thatv(E) + 1 −v(E ∪ S0 \ Si) = 0 impliesv(E) = 0 and
v(E ∪ S0 \ Si) = 1. Sincev is a lower bound, it follows that there is a probability measure
π with π(E) = 0 andπ(A) ≥ v(A) for all A ⊆ S0, i.e.π(E ∪ S0 \ Si) = 1 and therefore
π(Si \ E) = 0, implyingπ(Si) = 0 < v(Si). Thusv(E) + 1 −v(E ∪ S0 \ Si) > 0.) �

Proof of Theorem 17.

(1) If (�0,�1, . . . ,�n) satisfies (u-ii) and (u-iii) and is such that�i satisfies (i), (iii),
(iv), (v), and (vi) for all i ∈ {0, 1, . . . , n}, then there areu andv as described in the
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theorem: Since all�i in (�0,�1, . . . ,�n) satisfy (i), (iii), (iv), (v) and (vi), there
is according toTheorem 14a capacityvi on Si and a utility functionui associated
with every�i. Because of (u-ii),E(�0,�1, . . . ,�n) is not empty. Take some list
(�′

0,�′
1, . . . ,�′

n) in E(�0,�1, . . . ,�n). According toTheorem 12there is a utility
functionu′ associated with(�′

0,�′
1, . . . ,�′

n). Since�′
i is less constancy-loving than

�i, we get fromLemma 20ui = u′ ≡ u for all i ∈ {0, 1, . . . , n}. (This implies that the
utility function associated with some list inE(�0,�1, . . . ,�n) is equal to the utility
function associated with another list inE(�0,�1, . . . ,�n).)

Moreover there is according toTheorem 12a list(π0, π1, . . . , πn) with a probability
measureπi onSi for all i ∈ {0, 1, . . . , n} associated with(�′

0,�′
1, . . . ,�′

n), such that
πi(E) = π0(E)/π0(Si) for all E ⊆ Si. (The list of probability measures associated with
one list inE(�0,�1, . . . ,�n) is not equal to the list of probability measures associated
with another list inE(�0,�1, . . . ,�n).) ThusE(�0,�1, . . . ,�n) generates a list
(Π ≡ Π0, Π1, . . . , Πn) such that.i = {πi|πi is a probability onSi and there is aπ ∈
. such thatπi(E) = π(E)/π(Si) for all E ⊆ Si} for all i ∈ {0, 1, . . . , n}. FromLemma
20 we know thatvi(E) ≤ πi(E) for all E ⊆ Si, all πi ∈ Πi and alli ∈ {0, 1, . . . , n}.
From (u-ii) we know that there is a list(�′

0,�′
1 , . . . ,�′

n) in E(�0,�1, . . . ,�n) such
that�′

i and�i agree onFE
i (�i). Thus (because ofLemma 21) there is aπi ∈ Πi

for everyE ⊆ Si such thatπi(E) = vi(E). It follows that for all i ∈ {0, 1, . . . , n}
and allE ⊆ Si we havevi(E) = min{πi(E)|πi ∈ Πi}, i.e. vi is a lower bound for
all i ∈ {0, 1, . . . , n}. Sinceπ(Si) > 0 for all π ∈ Π, we knowv0(Si) > 0 for all
i ∈ {0, 1, . . . , n}. With Lemma 20we learn from (u-iii) that. = {π|π is a probability
measure onS0 andπ(E) ≥ v0(E) for all E ⊆ S0}. From Lemma 22we conclude
vi(E) = v0(E)/(v0(E) + 1− v0(E ∪ S0 \ Si)) for all E ⊆ Si and alli ∈ {0, 1, . . . , n}.
With v ≡ v0 the first part of the theorem is proved.

(2) If there areu andv as described in the theorem, then(�0,�1, . . . ,�n) satisfies (u-ii)
and (u-iii) and is such that�i satisfies (i), (iii), (iv), (v), and (vi) for alli ∈ {0, 1, . . . , n}:
FromLemma 22we know thatvi defined byvi(E) = v(E)v(E) + 1 − v(E ∪ S0 \ Si)

for all E ⊆ Si and alli ∈ {0, 1, . . . , n} is a lower bound and therefore a capacity, thus
�i satisfies (i), (iii), (iv), (v), and (vi) for alli ∈ {0, 1, . . . , n} according toTheorem
14.

Let Π = {π|π is a probability measure onS0 andπ(E) ≥ v(E) for all E ⊆ S0}. If
�∗

0∈ e(�0), then the probability measureπ∗ associated with�∗
0 according toTheorem

11is according toLemma 20in Π. Let (�′
0,�′

1, . . . ,�′
n) be the list associated withu

andπ∗ according toTheorem 12. Of course we have�′
0 =�∗

0. Sincev(E)/(v(E)+1−
v(E ∪ S0 \ Si)) is increasing inv(E), π∗(E)/π∗(Si) < v(E)/v(E) + 1− v(E ∪ S0 \ Si)

would imply π∗(E)/π∗(Si) < π∗(E)/π∗(E) + 1 − v(E ∪ S0 \ Si), which is equiva-
lent to v(E ∪ S0 \ Si) > π∗(E ∪ S0 \ Si) and thus a contradiction toπ∗ ∈ Π. Thus
π∗(E)/π∗(Si) ≥ v(E)/v(E) + 1− v(E ∪ S0 \ Si) for all E ⊆ Si andi ∈ {0, 1, . . . , n},
i.e. (because ofLemma 20) (�′

0,�′
1, . . . ,�′

n) ∈ E(�0,�1, . . . ,�n) and (�0,�1
, . . . ,�n) satisfies (u-iii).

Fix somei ∈ {0, 1, . . . , n} andE ⊆ Si. Obviously, there is aπ∗ ∈ Π with π∗(E) =
v(E) andπ∗(E ∪ S0 \ Si) = v(E ∪ S0 \ Si). Let (�′

0 ,�′
1 , . . . ,�′

n ) be the list associ-
ated withu andπ∗ according toTheorem 12. Becauseπ∗(A)/π∗(Sj) ≥ v(A)/v(A) +
1 − v(A ∪ S0 \ Sj) for all A ⊆ Sj andj ∈ {0, 1, . . . , n} (see above), we know from
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Lemma 20that (�′
0,�′

1 , . . . ,�′
n ) ∈ E(�0,�1, . . . ,�n). Sinceπ∗(E)/π∗(Si) =

π∗(E)/π∗(E) + 1 − π∗(E ∪ S0 \ Si) = v(E)/v(E) + 1 − v(E ∪ S0 \ Si) = vi(E),
�′

i and�i agree according toLemma 21on FE
i (�i) and(�0,�1, . . . ,�n) satisfies

(u-ii). �

Proof of Theorem 19.

(1) If (�0,�1, . . . ,�n) satisfies (u-iv) and (u-v) and is such that�i satisfies (i), (iii),
(iv), (v) and (vi) for all i ∈ {0, 1, . . . , n}, then there areu, α, vL andπ as described
in the theorem:

(1.1) Existence ofu, α, vL andπ: Since(�0,�1, . . . ,�n) is such that�i satisfies (i), (iii),
(iv), (v) and (vi) for all i ∈ {0, 1, . . . , n}, there exist for everyi ∈ {0, 1, . . . , n} a
utility function ui and a capacityvi on Si associated with�i according toTheorem
14. Since (�0,�1, . . . ,�n) satisfies (u-iv), there is a list(�E

0 ,�E
1 , . . . ,�E

n )

with a utility functionu and a probability measureπ onS0 associated with(�E
0 ,�E

1
, . . . ,�E

n ) according toTheorem 12, such that�E
i is less constancy-loving than�i for

all i ∈ {0, 1, . . . , n}, thus according toLemma 20vi(E) ≤ π(E)/π(Si) ≡ πi(E) and
ui = u for all i ∈ {0, 1, . . . , n} andE ⊆ Si. And there is a list(�L

0 ,�L
1 , . . . ,�L

n )

with a utility function uL and a lower boundvL on S0 associated with(�L
0 ,�L

1
, . . . ,�L

n ) according toTheorem 17, such that�i is less constancy-loving than�L
i

for all i ∈ {0, 1, . . . , n}, thus according toLemma 20vi(E) ≥ vL(E)/(vL(E) + 1−
vL(E ∪ S0 \ Si)) ≡ vL

i (E) andui = u = uL for all E ⊆ Si andi ∈ {0, 1, . . . , n}.
We now prove:

Lemma 23. For every pair A, B ⊆ Si with πi(A) > vL
i (A), πi(B) > vL

i (B) there are
y1, y2, y3, y4 ∈ Y such that y1 �E

i y2, y3 �E
i y4 (thus y1 �L

i y2 and y3 �L
i y4),

(y1, A; y2, Si \ A) ∼E
i (y3, B; y4, Si \ B) and(y1, A; y2, Si \ A) ∼L

i (y3, B; y4, Si \ B).

Sinceu is affine and unique up to positive linear transformations, it has a nondegenerated
convex range and we can assume that [−1, 1] is a subset of the range ofu. Thus we have to
prove the existence of numbersu(y1), . . . , u(y4) such that

πi(A)u(y1) + [1 − πi(A)]u(y2) = πi(B)u(y3) + [1 − πi(B)]u(y4)

vL
i (A)u(y1) + [1 − vL

i (A)]u(y2) = vL
i (B)u(y3) + [1 − vL

i (B)]u(y4)

1 ≥ u(y1) > u(y2) ≥ −1, 1 ≥ u(y3) > u(y4) ≥ −1

for all πi(A), πi(B), vL
i (A), vL

i (B) ∈ [0, 1], πi(A) > vL
i (A), πi(B) > vL

i (B). Simple
calculations show that

u(y1) = ε
vL

i (B)[1 − πi(A)] − πi(B)[1 − vL
i (A)]

vL
i (A) − πi(A)

,

u(y2) = ε
vL

i (A)πi(B) − πi(A)vL
i (B)

vL
i (A) − πi(A)

,

u(y3) = ε, u(y4) = 0

for a sufficiently smallε > 0 satisfy the above conditions.
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Next we prove

Lemma 24. For allfi, gi ∈ Fi: (fi ∼E
i gi andfi ∼L

i gi)⇒ fi ∼i gi, if and only if there is
aαi ∈ [0, 1] such thatvi(E) = αiv

L
i (E) + (1 − αi)πi(E) for all E ⊆ Si.

(1) If for all fi, gi ∈ Fi: (fi ∼E
i gi andfi ∼L

i gi)⇒ fi ∼i gi, then there is aαi ∈ [0, 1]
such thatvi(E) = αiv

L
i (E) + (1− αi)πi(E) for all E ⊆ Si : Let�i satisfy (i), (ii), (iii),

(iv) and (v), i.e.vi is a probability measure. Since�E
i is less constancy-loving than�i,

we learn fromLemma 20thatvi = πi must hold, thusαi = 0 and the lemma is true.
Now assume�i does not satisfy (i), (ii), (iii), (iv) and (v), thusvi is not a probability
measure. Then there is either only one eventA ⊆ Si with πi(A) > vL

i (A) (i. e.πi(B) =
vL

i (B) for all B ⊆ Si, B �= A) andLemma 24is true withαi (implicitly) defined by
vi(A) = αiv

L
i (A) + (1− αi)πi(A). Or there are at least two eventsA, B ⊆ Si such that

πi(A) > vL
i (A), πi(B) > vL

i (B). In this case we useLemma 23, from which we know
that there arey1, y2, y3, y4 ∈ Y such thaty1 �E

i y2, y3 �E
i y4, y1 �L

i y2, y3 �L
i y4,

(y1, A; y2, Si \A) ∼E
i (y3, B; y4, Si \B) and(y1, A; y2, Si \A) ∼L

i (y3, B; y4, Si \B).
Now assume that(y1, A; y2, Si \ A) ∼i (y3, B; y4, Si \ B), thus

u(y1)πi(A) + u(y2)[1 − πi(A)] = u(y3)πi(B) + u(y4)[1 − πi(B)]
u(y1)vL

i (A) + u(y2)[1 − vL
i (A)] = u(y3)vL

i (B) + u(y4)[1 − vL
i (B)]

u(y1)vi(A) + u(y2)[1 − vi(A)] = u(y3)vi(B) + u(y4)[1 − vi(B)]

Defineαi implicitly by vi(A) = αiv
L
i (A)+(1−αi)πi(A). By the three equations above

it is easy to see thatvi(B) = αiv
L
i (B) + (1 − αi)πi(B) andαi ∈ [0, 1].

(2) If there is aαi ∈ [0, 1] such thatvi(E) = αiv
L
i (E) + (1 − αi)πi(E) for all E ⊆

Si, then for or allfi, gi ∈ Fi: (fi ∼E
i gi andfi ∼L

i gi)⇒ fi ∼i gi: It is easy to
see thatvi(E) = αiv

L
i (E) + (1 − αi)πi(E) for all E ⊆ Si implies Cvi [u ◦ fi] =

αiCvL
i
[u ◦ fi] + (1 − αi)Cπi [u ◦ fi] for all fi ∈ Fi. Thus (CvL

i
[u ◦ fi] = CvL

i
[u ◦ gi]

andCπi [u ◦ fi] = Cπi [u ◦ gi])⇒ Cvi [u ◦ fi] = Cvi [u ◦ gi].

We now know that there is aαi ∈ [0, 1] such thatvi(E) = αiv
L
i (E)+(1−αi)πi(E) for all

E ⊆ Si and alli ∈ {0, 1, . . . , n}. Next we show thatα0 = α1 = . . . = αn. If �i=�E
i =�L

i

for somei ∈ {1, . . . , n}, thenπi = vi = vL
i andvi(E) = αiv

L
i (E)+(1−αi)πi(E) holds for

any numberαi. Thus we can setαi = α0. If not�i=�E
i =�L

i for somei ∈ {1, . . . , n}, then
we know from (u-iv) (III) that there is a description(yE, y, yL) of �0 relative to�E

0 and
�L

0 with yE �0 yL which is also a description of�i relative to�E
i and�L

i . Thus there is a
f0 ∈ F0 and afi ∈ Fi such thatCπj [u◦fj] = u(yE), CvL

j
[u◦fj] = u(yL) andCvj [u◦fj] =

u(y) for j = 0, i. Becausevj(E) = αjvL
j (E) + (1 − αj)πj(E) for all E ⊆ Sj, we know

Cvj [u ◦ fj] = αjCvL
j
[u ◦ fj]+ (1− αj)Cπj [u ◦ fj], thusu(y) = αju(yL) + (1− αj)u(yE)

⇔ αj = u(y) − u(yE)/u(yL) − u(yE) for j = 0, i, thusαi = α0 ≡ α.
In the next part of the proof it will become apparent thatα > 0,v0(A) = 0,v0(B∪C) < 1

and 1− v0(B ∪ C) �= v0(B ∪ C) − v0(B) − v0(C) for some partition(A, B, C) of S0 with
A, B, C �= ∅, S1 = A ∪ B, S2 = A ∪ C andS3 = B ∪ C.

(1.2) Uniqueness ofα, vL andπ: We now know: If(�0,�1, . . . ,�n) satisfies the prop-
erties mentioned inTheorem 19, then there are (1) a utility functionu : Y → R unique up
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to positive linear transformations, (2) a numberα ∈ [0, 1], (3) a lower boundvL onS0 and
(4) a probability measureπ on S0 with π(E) ≥ vL(E) for all E ⊆ S0, such that for allfi,
gi ∈ Fi �

fi �i gi ⇔ Cvi(u ◦ fi) ≥ Cvi(u ◦ gi)

with vi(E) = αvL
i (E) + (1 − α)πi(E), vL

i (E) = vL(E)/vL(E) + 1 − vL(E ∪ S0 \ Si)

andπi(E) = π(E)/π(Si) for all E ⊆ Si (for i = 0, 1, . . . , n). We now prove uniqueness.
According toTheorem 14we have a unique capacityvi on Si for all i ∈ {0, 1, . . . , n}. We
get uniqueness ofα, π(A), π(B), π(C), vL(E) for E = A, B, C, A ∪ B, A ∪ C, B ∪ C, if
the following has a unique solution for these variables:

(1), (2), (3) v0(E) = αvL(E) + (1 − α)π(E), E = A, B, C

(4), (5), (6) v0(E1 ∪ E2) = αvL(E1 ∪ E2) + (1 − α)[π(E1) + π(E2)],
(E1, E2) = (A, B), (A, C), (B, C)

(7), (8) v1(E) = α
vL(E)

vL(E) + 1 − vL(E ∪ C)
+ (1 − α)

π(E)

π(A) + π(B)
, E = A, B

(9), (10) v2(E) = α
vL(E)

vL(E) + 1 − vL(E ∪ B)
+ (1 − α)

π(E)

π(A) + π(C)
, E = A, C

(11), (12) v3(E) = α
vL(E)

vL(E) + 1 − vL(E ∪ A)
+ (1 − α)

π(E)

π(B) + π(C)
, E = B, C

α ∈ [0, 1], π a probability measure and vL a lower bound onS0
(If it has no solution for these variables at all, then(�0,�1, . . . ,�n) by (1.1) does

not satisfy the properties mentioned inTheorem 19.) Because of (u-v) (2), we know that
u(y1)v0(A)+ u(y3)[1 − v0(A)] = u(y2)v0(A)+ u(y3)[1 − v0(A)] for all u(y1), u(y2) >

u(y3), thusv0(A) = 0. Moreover we know thatu(y1)v0(B ∪ C) + u(y2)[1 − v0(B ∪ C)] =
u(y1)v0(B∪C)+u(y3)[1−v0(B∪C)] not for allu(y1) > u(y2), u(y3), i.e.v0(B∪C) < 1.
Thusv0(A) < π(A) or v0(B ∪ C) < π(B ∪ C) or both. Sinceα = 0 would implyv0(A) =
π(A) andv0(B ∪ C) = π(B ∪ C), we know thatα > 0. This implies (withv0(A) = 0
and equation (1))vL(A) = 0 andπ(A) = 0 or α = 1 and thereforev1(A) = v2(A) = 0.
Summation of some of the above equations yields

(1) + (2) + (3) v0(B) + v0(C) = α[vL(B) + vL(C)] + (1 − α)

(1) + (6) v0(B ∪ C) = αvL(B ∪ C) + (1 − α)

(7) + (8) v1(B) = α
vL(B)

vL(B) + 1 − vL(B ∪ C)
+ (1 − α)

(9) + (10) v2(C) = α
vL(C)

vL(C) + 1 − vL(B ∪ C)
+ (1 − α)

Elimination ofvL(B ∪ C) and rearranging yields

v0(B) + v0(C) = αvL(B) + αvL(C) + 1 − α

α[1 − v0(B ∪ C)] = αvL(B)[1 − v1(B)] + [1 − v0(B ∪ C)][1 − v1(B)]

α[1 − v0(B ∪ C)] = αvL(C)[1 − v2(C)] + [1 − v0(B ∪ C)][1 − v2(C)]

Finally we eliminateαvL(C) and get
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α = [1 − v1(B)] + [1 − v1(B)]

[1 − v0(B ∪ C)]
αvL(B)α[v2(C) − v0(B ∪ C)]

= [v0(B) + v0(C) − v0(B ∪ C)][1 − v2(C)] − [1 − v2(C)]αvL(B)

This is a system of linear equations in the variablesα andαvl(B). Sincev0(B ∪ C) < 1, we
knowvL(B∪C) < 1, thus with (7)+(8) and (9)+(10) [1−v1(B)] > 0 and [1−v2(C)] > 0.
From (1)+(6) and (9)+(10) we easily get [v2(C) − v0(B ∪ C)] ≤ 0. If [v2(C) − v0(B ∪
C)] = 0, the system obviously has a unique solution. If [v2(C) − v0(B ∪ C)] < 0, the
system has a unique solution, if both equations are not identical. They are identical only if
both [1− v1(B)] = [v0(B ∪ C) − v0(B) − v0(C)][1 − v2(C)]/[v0(B ∪ C) − v2(C)] and
[1−v1(B)]/[1−v0(B∪C)] = [1−v2(C)]/[v0(B∪C)−v2(C)]. This implies 1−v0(B∪C) =
v0(B ∪ C) − v0(B) − v0(C). Now look at (u-v), part (4): Since fory �0 y′ we have

(y, E; y′, S0 \ E) ∼0 λy + (1 − λ)y′ ⇔ u(y)v0(E) + u(y′)[1 − v0(E)]

= u(λy + (1 − λ)y′)

and (becauseu is affine according toTheorem 14) u(λy+(1−λ)y′) = λu(y)+(1−λ)u(y′),
we know(y, E; y′, S0 \ E) ∼0 λy + (1 − λ)y′ is equivalent tov0(E) = λ. Thus we get
from (u-v) (4) 1− v0(B ∪ C) �= v0(B ∪ C) − v0(B) − v0(C) and the above system has a
unique solution inα andλvl(B). With that we get a unique solution forα andvL(B) (since
α > 0) and (using (1)+(2)+(3) and (1)+(6)) also forvL(E), E = C, B ∪ C. If α = 1, we
obviously can not conclude a uniqueπ. If α < 1, we getπ(E), E = A, B, C from (1), (2)
and (3). Finally, Eq. (4) yields a uniquevL(A ∪ B) and Eq. (5) yields a uniquevL(A ∪ C).
Thus the system (1) to (12) has a unique solution.

If we foundα = 1, then it is clear that there is no uniqueπ, but a uniquevL with vL = v.
If α < 1, we first consider someD ⊂ B (analogous forD ⊂ A or D ⊂ C). The following
must hold:

v0(D) = αvL(D) + (1 − α)π(D)

v0(D ∪ C) = αvL(D ∪ C) + (1 − α)[π(D) + π(C)]

v1(D) = α
vL(D)

vL(D) + 1 − vL(D ∪ C)
+ (1 − α)

π(D)

π(A) + π(B)

whereπ(A), π(B) andα are already known. From the first two equations we getvL(D) −
vL(D ∪ C) = 1

α
[v0(D) − v0(D ∪ C) + (1 − α)π(C)] ≡ a, which is known. We get

v0(D) = αvL(D) + (1 − α)π(D)

v1(D) = α

1 + a
vL(D) + 1 − α

π(A) + π(B)
π(D)

We now have to show that this pair of equations has a unique solution forvL(D) andπ(D)

for someα < 1. It has a unique solution, if both equations are not identical, i.e. if not both
a = 0 andπ(A) + π(B) = 1. Sinceα < 1 implies (because ofv0(A) = 0) π(A) = 0,
π(A) + π(B) = 1 impliesπ(A ∪ C) = π(S2) = 0, which is not possible (seeTheorem 12).
Thus the system has a unique solution forvL(D) andπ(D).
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Finally if neitherD ⊂ A norD ⊂ B norD ⊂ C, then there are of courseD1 ⊂ A, D2 ⊂
B, D3 ⊂ C such thatD = D1 ∪ D2 ∪ D3. Because of the above arguments we get unique
π(Dj) for j = 1, 2, 3, thus a uniqueπ(D). Sincev(D) = αvL(D)+ (1−α)π(D), we easily
get a uniquevL(D). This completes the proof of the uniqueness.

(2) If there areu, α, vL andπ as described in the theorem, then(�0,�1, . . . ,�n) satisfies
(u-iv) and (u-v) and is such that�i satisfies (i), (iii), (iv), (v) and (vi) for alli ∈ {0, 1, . . . , n}:

We first prove that�i satisfies (i), (iii), (iv), (v) and (vi) for alli ∈ {0, 1, . . . , n}. From
Theorem 14we know that we just have to prove, that a linear combination of a lower bound
and a probability measure is always a capacity. Letvi(E) = αvL

i (E) + (1 − α)πi(E) for
all E ⊆ Si, let vL

i be a lower bound onSi andπi a probability measure onSi. Of course
we getvi(Si) = 1 andvi(∅) = 0. Let A ⊆ B. Of course we havevL

i (A) ≤ vL
i (B) and

πi(A) ≤ πi(B), thusvi(A) ≤ vi(B) andvi is according toDefinition 5a capacity.
Next we prove that(�0,�1, . . . ,�n) satisfies (u-iv). We just have to prove that the

relations between(�0,�1, . . . ,�n), the list(�E
0 ,�E

1 , . . . ,�E
n ) associated withu andπ

according toTheorem 12and the list(�L
0 ,�L

1 , . . . ,�L
n ) associated withu andvL according

to Theorem 17satisfy part (I), (II) and (III) of (u-iv). FromLemma 20we know that part (I)
holds, ifvL

i (E) ≤ vi(E) ≤ πi(E) for all E ⊆ Si andi ∈ {0, 1, . . . , n}. SincevL
i (E) is not

decreasing invL(E), we know thatvL
i (E) > πi(E) would imply (becausevL(E) ≤ π(E))

π(E)

π(E) + 1 − vL(E ∪ S0 \ Si)
>

π(E)

π(Si)

This is equivalent tovL(E ∪ S0 \ Si) > π(E ∪ S0 \ Si) which is in contradiction to the
assumptionvL ≤ π. ThusvL

i (E) ≤ πi(E) and, becauseα ∈]0, 1], vL
i (E) ≤ vi(E) ≤ πi(E)

for all E ⊆ Si andi ∈ {0, 1, . . . , n}. Part (II) holds because ofLemma 24. Now consider
part (III). If vi = πi = vL

i for somei ∈ {1, . . . , n} , then clearly�i=�E
i =�L

i and part
(III) imposes no restriction on the relation between�i, �E

i and�L
i . Now assume that not

vi = πi = vL
i . Then there is aE ⊂ Si with πi(E) > vL

i (E). Sincev0(A)+ v0(B ∪ C) < 1,
we havevL(A) < π(A) or vL(B ∪ C) < π(B ∪ C). Let D ≡ A if vL(A) < π(A) and
D ≡ B ∪ C otherwise. Becauseu is affine and unique up to positive linear transformations,
it has a nondegenerated convex range and we can assume that [−1, 1] is a subset of the
range ofu. Thus, for a sufficiently smallε > 0 there areyE, y, yL with u(yE) = ε,
u(y) = ε[1 − 2α], u(yL) = −ε and actsf0 ∈ F0, fi ∈ Fi with

u[f0(s)] =




ε
2 − π(D) − vL(D)

π(D) − vL(D)
for s ∈ D

−ε
π(D) + vL(D)

π(D) − vL(D)
for s ∈ S0 \ D

and

u[fi(s)] =




ε
2 − πi(E) − vL

i (E)

πi(E) − vL
i (E)

for s ∈ E

−ε
πi(E) + vL

i (E)

πi(E) − vL
i (E)

for s ∈ Si \ E
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Some simple calculations show thatCπ(u◦f0) = ε, Cv0(u◦f0) = ε(1−2α), CvL(u◦f0) =
−ε, Cπi(u ◦ fi) = ε, Cvi(u ◦ fi) = ε(1 − 2α), CvL

i
(u ◦ fi) = −ε, i.e. (yE, y, yL) is

both a description of�0 relative to�E
0 and�L

0 and a description of�i relative to�E
i

and�L
i .

Finally we prove that(�0,�1, . . . ,�n) satisfies (u-v). Part (1) of (u-v) obviously holds.
Part (2) obviously holds becausev0(A) = 0. Part (3) holds becausev0(B ∪ C) < 1
and (sinceu is affine and unique up to positive linear transformations) there arey1,

y2, y3 ∈ Y with u(y1) > u(y2), u(y3). Part (4) holds, if the following is contra-
dictory:

1 − λ1 = λ1 − λ2 − λ3
u(y1)v0(B ∪ C) + u(y2)[1 − v0(B ∪ C)] = λ1u(y1) + (1 − λ1)u(y2)

u(y1)v0(B) + u(y2)[1 − v0(B)] = λ2u(y1) + (1 − λ2)u(y2)

u(y1)v0(C) + u(y2)[1 − v0(C)] = λ3u(y1) + (1 − λ3)u(y2)

u(y1) > u(y2),

1 − v0(B ∪ C) �= v0(B ∪ C) − v0(B) − v0(C)

Summation of the third and fourth equation and elimination ofλ2 + λ3 by means of the
first equation yields

u(y1)1
2[1 + v0(B) + v0(C)] + u(y2)1

2[1 − v0(B) − v0(C)

= λ1u(y1) + (1 − λ1)u(y2)

By using the second equation andu(y1) > u(y2) we get 1− v0(B ∪ C) = v0(B ∪ C) −
v0(B) − v0(C) and the contradiction is clear.
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