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Abstract

This article analyzes a decision maker’s preferences and their updating in situations with uncer-
tainty. Axioms for a list containing a prior preference relation and an updated preference relation for
different information are presented, such that (1) each preference relation in this list is a Choquet
expected utility preference relation as axiomatized by [Econometrica 57 (1989) 571] and (2) the
list reveals both the decision maker’s subjective uncertainty and his uncertainty aversion.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction
1.1. Fromexpected utility theory to choquet expected utility theory

Savage (1954proposed axioms for preferences on sets of uncertain acts. A decision
maker fulfilling these axioms can be characterized by (a) a utility function on the set of
consequences and (b) a unigue subjective probability measure on the set of states such that
he prefers one agt over another ag if and only if f yields a higher expected utility than
g. Savage’s subjective expected utility theory has become the best known and most often
used theory of decision making under uncertainty. However, real economic behavior often
violates the subjective expected utility theory. Consider for examplé&lisberg (1961)
experiment:
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An urn is presented to a decision maker. He is informed that there are 90 balls in the
urn, that 30 of the balls are red and the other 60 balls are white and black in some un-
known proportion. Thus, the decision maker knows that a red ball will be drawn with
probability 1/3, but he does not know the probability of a white and the probability of
a black ball. A situation in which the probabilities of some events are (perceived to be)
unknown is called a situation of (subjective) uncertainty. The decision maker is asked to
choose one of the following two bets: (1) If a red balls is drawn, he gets US$ 100, oth-
erwise nothing. (2) If a white ball is drawn, he gets US$ 100, otherwise nothing. Most
decision makers prefer bet (1) over bet (2). Next, the decision maker is asked to choose
one of the following two bets: (3) If a red or a black ball is drawn, he gets US$ 100,
otherwise nothing. (4) If a white or black ball is drawn, he gets US$ 100, otherwise noth-
ing. Most decision maker who preferred bet (1) over bet (2) now prefer bet (4) over bet
(3). One explanation for this behavior is obvious: the probability of winning US$ 100 is
known in bet (1) and (4), but not in bet (2) and (3). Decision makers apparently prefer bets
in which the probabilities of the different consequences are known. They are uncertainty
averse.

This behavior is in contradiction to Savage’s expected utility theory. Denotg130)
andu(0) the utility of winning US$ 100 and nothing respectively andsyr}), 7({w})
andr({b}) the decision maker’s probability judgement of a red, white and black ball being
drawn. Since he prefers (1) over (2) and (4) over (3), the following must hold in expected
utility theory:

u(1007({r}) + u(O)[z({w}) + 7({bH] > u(1007({w}) + u(O)[x({r}) + 7({b})]
< u(1007({r}) +uO@n{w}) > u(1007({w}) + u(Q)7({r})

and

u(100[7({w}) + 7({b}] + u (@7 ({r}) > u(100[x({r}) + 7x({bh] + u(Q)w({w})
< u(1007({w}) + u(O)n({r}) > u(1007({r}) + u(O)m({w})
The contradiction is obvious.

Schmeidler (198%ndGilboa (1987presented axioms implying that the decision maker
has (a) a utility function on the set of consequences and (b) a unique non-additive measure,
called capacity, on the set of states, such that he preferg aeér actg if and only if f
yields a higher Choquet expected utilitthang. Let S = {r, w, b} be the set of states of
the world in the Ellsberg experiment. The following function on (the power sef &an
example for a capacity:

Example 1.

v({r}) = 5. v({w)) = v({b}) = 2
v({r wh) = v({r, b)) = 3, v({w, b}) = §
v({r,w,b}) =1L v(@) =0

1 seeChoquet (1955)A formal definition of both a capacity and the Choquet utility are giveSéustion 2
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It is obviously not a probability measure, since for examyglav}) + v({r, b}) # 1. If we
assume:(100) > u(0) the Choquet expected utilities of Ellsberg’s bets (1) to (4), denoted
by Cy(u o f1)to Cy(u o f4), are given by

Example 2.

Cy(uo f1) =u(100) - v({r}) + u(0) - [1 — v({r})]

Cy(u o f2) = u(100) - v({w}) + u(0) - [1 — v({w})]
Cy(uo f3) = u(100) - v({r, b}) 4+ u(0) - [1 — v({r, b})]
Cy(uo ) =u(100) - v({w, b}) + u(0) - [1 — v({w, b})]

Using the capacity frorExample Jabove we immediately arrive &, (uo f1) > C,(uo f?)
andCy(u o f* > Cy(u o £3). Thus the proband prefers bet (1) over (2) and (4) over (3)
which is compatible with the Ellsberg findings. Thus, this Choquet expected utility theory
is an alternative to the subjective expected utility theory which is not in contradiction to the
typical behavior in the Ellsberg experiment.

1.2. Uncertainty and uncertainty aversion

However, the Choquet expected utility theory has a serious disadvantage. A satisfactory
interpretation of a decision maker’s capacity does not exist yet. But it is widely assumed
that the capacity incorporates two elements, the decision maker’s subjectively perceived
uncertainty and his individual degree of uncertainty aversion.

Epstein and Zhang (200pyopose a definition of subjective uncertainty which can be
applied to a very broad class of preferences including those of the Choquet expected utility
type. One can conclude from a decision maker’s preferences whether he perceives an event
as uncertain or not according to their definition. However, it is not clear if it is really a
definition of what is intuitively meant by uncertainty, i.e. a subjective feeling not to know
the true probability of the event. Epstein and Zhang’s definition implies that a decision
maker who assigns a probability to every e¥eioes not perceive any uncertainty at all. But
intuition suggests that even a decision maker who assigns a probability to every event may
have doubt that his probability judgement is correct, i.e. may perceive uncertainty. Even an
expected utility maximizer may perceive uncertainty, i.e. may think not to know the true
probabilities of the events, if he is uncertainty neutral. Moreover, it is desirable to determine
whether one of two subjectively uncertain events is perceived as more or as less uncertain
than the other. Epstein and Zhang’s definition only provides a distinction between uncertain
events and not uncertain events.

Kelsey and Nandeibam (1998), Ghiradato and Marinacci (286fhe the term “more
uncertainty averse than”. Their definitions in principle imply that some decision maker 1 is
more uncertainty averse than some other decision maker 2, both being Choquet expected
utility maximizer, if 1’s capacity ¢) is not higher than 2’s capacitp{(E) > vi(E) for
all eventsE). However, this notion is not absolutely intuitive. Even if a decision maker is

2 i.e. who is probabilistic sophisticated, Sdachina and Schmeidler (1992)
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very uncertainty averse, he might have a very high capacity because he does not perceive
any uncertaintyEpstein (1999pays attention to this point. He assumes an exogenously
given set of events which are not uncertain. His definition of “more uncertainty averse than”
implies that a Choquet expected utility maximizing decision maker 1 is more uncertainty
averse than another Choquet expected utility maximizing decision maker 2, if 1's capacity
on uncertain events is not higher than 2’s capacity on uncertain events. However, decision
maker 1 may have a lower capacity on uncertain events than decision maker 2 just because
he is less informed about the probabilities of the uncertain events.

In this article it is shown how both a measure of subjectively perceived uncertainty for
every event and the decision maker’s uncertainty aversion can be unequivocally concluded
from his preferences, if his preferences satiSghmeidler’'s (1989axioms for Choquet
expected utility preferences and some further conditions. To achieve this aim we have to
consider not only the prior preference relation of the decision maker, but also some of his
updated preference relations to get enough information about the decision maker. Thus we
also have to deal with the problem of updating Choquet expected utility preferences. The
basic idea of this approach can be explained by means of the Ellsberg experiment:

Assume that we know that a decision maker in the Ellsberg experiment is uniquely
characterized by the capacityn {r, w, b} given inExample 12 Moreover, assume that we
know that he is uniquely characterized by the capagity, on{r, w} with vy, (r) = 5/12
andvy, 3 (w) = 1/4 after he receives the informatidh= {r, w}, i.e. the information that
the ball drawn from the urn will not be black. We then ask whether it is possible to write
these two capacities and vy, as functions of (i) a probability measureon {r, w, b},

(i) a lower bound capacity’ (< ) on {r, w, b}* and a numbet e [0, 1] such that
v =avt + (1 — a)r andvgwy = avk , + (1 — @)7y.w). Here,m,,y is the updated

{r.w}
probability measure ofr, w} derived fromz by Bayes’ rule and){Lr’w} is the updated lower

bound on{r, w} derived fromv’ by Jaffray’s (1992)ule
vH(E)
,ECB
vL(E) +1— vL(E U B°)

vh(E) =

It is very easy to check that and vy, can indeed be written as functions in the way
described above of the probability measure:

Example 3.

a({r}) = m({w}) = 7n({b}) = 3
n({r, wh = n({r, b}) = n({w, b
a({r,w,b}) =1, 7(2) =0

h=3

the lower bound capacity:

3 The information on the decision maker revealed by his behaviour in the Elsberg experiment is not sufficient to
derive a unique capacity characterising the decision maker. However, it is in principle possible to derive a unique
capacity from a decision maker’s preferences (see for exa8ufimeidler, 1989

4 SeeDefinition 7 below.
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Example 4.
vE(rh) = 1, vF(wh) = vE (b)) =0
vE((rw)) = v ({n b)) = 3, vE({w, b)) = §
vE({r,w, b)) =1, vE(@) =0

ande = 1/2. If vanduvy,,,; cannot be written as functions in the way described above of any
other probability measure, lower bound and number,jd]Q.e. if we have uniqueness, then

we suggest the following interpretation:is the decision maker’'s subjective probability
judgement and the lower bounéd gives his subjective uncertainty:af (A) + vE(A°) >

vE(E) + v (E€), then the decision maker perceives the everss less uncertain than the
eventE. And « is a parameter of the decision maker’'s uncertainty aversion: H O,

his capacity is a probability measure £ ) and he is uncertainty neutral.df = 1, his
capacity is equal to his lower bound £ v’) and his uncertainty aversion is maximal. If

a = 1/2 as in the example above, his uncertainty aversion is between these two extremes.
We assume that this parameter does not change when preferences are updated.

The aim of this article is to describe preferences from which a unique probability measure,
lower bound and parameter of uncertainty aversion in the sense described above can be
derived. Note that the reason way we need to consider updating in this article is that we
cannot achieve unigueness of the probability measure, the lower bound and the parameter of
uncertainty aversion without information on updated preferences. If a prior capazty
at all be written as a linear combination of a probability measure and a lower bound, it can
(almost) always be written as a linear combination of many other probability measures and
lower bounds as well. However, thisis true only in the setting of our paper. In a quite different
approach@Gajdos et al. (20049how how a unique parameter of uncertainty averaican
be derived from preferences without information on updating. Their approach differs from
ours in that these authors assume that a set of possible prior probability me@samdsa
reference probability measuree IT are objectively given. In this setting, preferences of
the multiple prior type as introduced by Gilboa éthmeidler (198%re axiomatised. The
unigque set of priors characterising the preferences is thg®gt® = ap + (1 — a)m, p €
co(IT)}. Here,co(I1) is the closed and convex hull &f ande is a unique number in [L]
that can be interpreted as a parameter of uncertainty aversion. We will discuss this approach
and how it is related to ours iBection 7

From the example above, itis clear that we restrict our analysis to a certain class of prefer-
ences and updating procedures, i.e. we do not define subjective uncertainty and uncertainty
aversion for any preference relation. The analysis is restrictive in three ways: Firstly, we
consider only preferences of the Choquet expected utility type. Secondly, not every capac-
ity can be written as a linear combination of a probability measure and a lower bound. For
example, so called concave capacities cannot, but all convex and some other capacities can.
I.e. we do not consider all preferences of the Choquet expected utility type. Thirdly, we
assume that preferences are updated in a certain way. The following example may illustrate
the last point:

A decision maker in the context of the Ellsberg experiment is indifferent between a bet on
red, abetonwhite and abeton black. Heis also indifferent between a bet on red or white, a bet
onred or black and a bet on white or black. Finally, after receiving the informétian, he
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is indifferent between a bet on red, a bet on white and a certain gain af l##®r receiving

the information{r, b}, he is indifferent between a bet on red, a bet on black and a certain
gain of US%x, but after receiving the informatidmw, b}, he is not indifferent between a bet

on white and a bet on black. The prior and updated capacities describing these preferences
need to fulfillv({r})) = v({w}) = v({b}) = A, v({r, w}) = v({r, b}) = v({w, b}) = B,

V) ({r) = vy ({w}) = vep () = vppy D) = C, vy ({w}) # viws (D). If

there were a lower bound’, a probability measure and a numbe# < [0, 1] such that
v=avt+ @1 —a)randvg = av%—i—(l—a)ng for B = {r, w}, B = {r, b} andB = {w, b},

then

alvh () + v (w, b + 1 — @ = afoh (w)) +vE (b)Y +1—a=A+ B

and

[ vt ({r}) N vt ({w})
vE(rh) +1—vE({n b)) vh({wh +1—vE({w, b))

Sincev({w}) = v({b}) andvyy, p ({w}) # viw,py({b}), the preferences are not of the expected
utility type, i.e.a > 0. With this, we easily get from the above
L L (2C+a—-1)(1-A—-B)

afv"({rh) + v ({wh] = 1-o2C =k
Analogously, we get[vE ({r})+vE ({b})] = k,i.e.vt ({w)) = vE({b}). Because of({w}) =
v({b}), we getr({w}) = m({b}). With v({r, w}) = v({r, b}), it follows thatvl ({r, w}) =
vL({r, b)), thusvyy, 5y ({w}) = v, ({0}). This is in contradiction to one of our assumption
we were starting witls.

In Section 2we define the two main mathematical concepts of the Choquet expected
utility theory, the capacity and the Choquet integral. The following sections deal with lists
(o0, Z1, ..., Zn) containing a prior preference relatigrny and an updated preference
relation—; for n different information = 1, ... , n. Section Jpresents well known axioms
for (o, =1, ..., Zn) implying that-; (i = 0,1, ... , n) is an expected utility preference
relation with associated probability meastteandz; is derived fromrg by Bayes rule. In
Section 4we introduce axioms fof=o, =1, ... , 2Z,) implying thatZ; | = 0,1, ... ,n)
is a Choquet expected utility preference relation with the associated capﬁd@ing a
lower bound and)iL is derived fromvé by Jaffray’s rule.Section 5combines the results
gained inSection 3andSection 4 We present axioms fdi-o, =1, ... , =) implying that
(1) =; is a Choquet expected utility preference relation with associated capaeityl (2)
there is a unique numbere [0, 1], a unique list(no, 71, ... , 7,) of probability measures
with 7r; derived fromrq by Bayes rule and a unique Iieté, vf, e vﬁ) of lower bounds
with v/ derived fromuv§; by Jaffray’s rule satisfying; (E) = av! (E) 4+ (1—a)7; (E) for all
eventst and alli = 0,1, ..., n. In Section § we will discuss an example of preferences
that satisfy all of our axioms but the main one. Finally, the paper by Gajdos, Tallon and

]+1—a=2C

5 Note that in general the updating procedure discussed in this paper is relatively flexible. For examglie poth
> v({w)), v({r, b > v({w, BY), viruy (ir) > vipw ((wh) andv({r}) > v(w}), v({r, b > v({w, b}, viwy ()
< v, ({w}) is possible within our assumptions, the latter for example wijtt{r}) = 1/8, v, {w}) = 1/4,
v ({w, b)) = 1/2, n({r}) = 1/2, n({w}) = 1/3, 7({b}) = 1/6 andw = 14/25.
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Vergnaud is discussed 8ection 7We work with theAnscombe and Aumann (196f8ame
which has been used I8chmeidler (1989)

2. Mathematical preliminaries

In this section the basic concepts of the Choquet expected utility theory, the capacity and
the Choquet integral, are introduced as pure mathematical concepts. We start with

Definition 5. Let M be some set and denote by #he set of all subsets aff. A capacity
on M is a functionv : 2¥ — [0, 1] satisfying

N v(@) =0, v(M) =1

(i) A C B= v(A) < v(B).

The set functions on the st w, b} presented in th&xamples 1, 3 and 4re capacities
according to this definition. Moreover, every probability measure is a capacity, but not vice
versa:

Definition 6. Let M be some set. A capacityon M is called a probability measure, if and
only if

ANB =0 = 7(A) + n(B) = n(AU B)
Of special interest in this article is a special group of capacities, so called lower bounds:

Definition 7. Let M be some set. A capacityon M is called a lower bound, if and only
if there exists a sell of probability measures oM such that

v(A) = min{w(A)|7 € IT}
forall A € M.

Notable is the relation between lower bounds on the one hand and convex and superad-
ditive capacities on the other. A capacityn some seM is called convex, if and only if
v(A) +v(B) <v(AUB) +v(ANB)forall A, B C M. ltis supperadditive if and only if
v(A) +v(B) <v(AUB)forall A, BC M, An B = (. Obviously, every convex capacity
is a superadditive capacity, but not vice versa.

Proposition 8. Every convex capacity is a lower bound, but not every lower bound is a
convex capacity.

Proposition 9. Everylower bound is a superadditive capacity, but not every superadditive
capacity is a lower bound.

Given a capacity on some sed and a random variablé we define something like an
expected value, the so called Choquet integral:
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Definition 10. Let v be a capacity on some s&t andiz : M — R be a function. The
Choquet integral ot givenwv is defined by

0 00
Cy(it) = / [v({m|it(m) = t}) — 1]dt +f [v({m|id(m) = t})]dt
') 0

In Example 2C,(u o f7) is the Choquet integral of a functiaro % : {r, w, b} — R given

a capacity on{r, w, b}, wheref’ : {r, w, b} — {US$ 0, US$ 10Dis a function withf*(c)
the gain of betd) (i = 1, ..., 4) in the Ellsberg experiment, if the color of the ball being
drawn isc. If the capacity is a probability measure, then the Choquet inte@ygl) is the
ordinary expected value @fgivenv. This can easily be shown.

3. Expected utility theory and updating

The frame we are using consists of a set of st&tessome sequencéy, ... , S, of
nonempty subset§ C So,i =1, ..., n, and a nonempty set of consequen&e8oth Sg
andX are assumed to be finite. Moreover, we have th& s#tall probability measures on
X, i.e. so called roulette lotteries. For the sake of simpligity, X also denotes the element
in Y which assigns probability 1 te.

Preferences will be defined on sets of acts. An acs;phe {0, 1, ..., n}, is a function
fi + S; = Y. The setof all acts o8 is F;. Giventwo actsf;, g; on S;, the acth. f; + (1— 1) g;
forsomex € [0, 1]is defined byAfi+ (1 —21)g)(s) = Afi(s) +(1—A1)g;(s) foralls € S;.
For the sake of simplicity; (s) denotes both the probability measure assigned tostiten
act f; and the act which yields the probability measyre) for all s € §;, i.e. a constant
act. Analogouslyy denotes both an elementihand the constant act which yielgsn all
states. As usudlf;, E; g;, S;/ E) denotes the act which yields the same probability measure
on X as actf;, if s € E, and the same probability measureXms actg;, if s € S;/E.

We now consider some preference relationfrfor somei € {0, 1,...,n} and the
following properties:

(i) A preference relatiorr; on F; satisfies weak order, if: (a) For af], g; € F;: fi =i g
org; Zi fi. (b) Forallf;, gi, hi € Fi: (fi Zi gi andg; =i hi) = fi Zi hi-

(i) z; satisfies independence, if: For &, g;, h; € F; and allx €]0,1[: f; > g =
Afi+ (A —Mh; =i Agi + (1 — L)h;.

(iii) =; satisfies continuity, if: For allf;, g;, h; € F;: If f; =; g; andg; >; h;, then there
arex, u €]0, 1[ such thatf; + (1 — Mh; >; g andg; >; ufi + (1 — wh;.

(iv) ~; satisfies monotonicity, if: For alf;, g; € F;: If fi(s) =i gi(s) for all s € S;, then
fi Zi &

(v) z; satisfies nondegeneracy, if: There greg; € F; such thatf; >; g;.

The following theorem is due tinscombe and Aumann (1968hd the proof can be found

in Fishburn (1976

6 Proof of theorem 13.3. See alSehmeidler (1989or the relation between (i), (iv) and the property of strict
monotonicity used ifrishburn (197Q)
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Theorem 11. A preference relation ~—; on F; for somei € {0, 1, ... , n} satisfies (i), (ii),
(iii), (iv) and (v), if and only if there are (1) an affine’ function u : ¥ — R unique up to
positive linear transformations and (2) a unique probability measure r; on S; such that for
al fi, gi € F;

fiZi & © Cq(uo f;) = Cr(uogi)

We now consider a list of preference relations Bnfor all i € {0,1,...,n} and the
following property:

(u-i) Alist (o, =1, ... , Zn) Of preference relations; on F; foralli € {0,1, ..., n}
satisfies Bayesian updating, if: for &), go, ho € Foandf;, g; € F; with f;(s) = fo(s)
andg;(s) = go(s)foralls € S;andalli = 1, ... ,n: f; =i g < (fo, Si; ho, So\Si) o
(g0, Si; ho, So \ Si).

The theorem we get is:

Theorem 12. Alist (o, 71, - - - » 7on) Of preferencerelations—; on F; fori = 0,1, ... ,n
satisfies (u-i) and is such that —; satisfies (i), (ii), (iii), (iv) and (v)foralli € {0, 1, ... ,n},
if and only if there are (1) an affine function # : ¥ — R unique up to positive linear
transformations and (2) a unique probability measure = on Sp such that for all f;, g; € F;

fiZi g © Cr(uo fi) = Cri(wog)
with ; defined by ;(E) = (E) /(S for all E € §; (fori = 0,1, ... . n).

Ifalist (o, =1, ... , Zn) satisfies (u-i) and is such thap satisfies (i), (ii), (iii), (iv) and
(v), thenz; does not necessarily satisfy (i), (ii), (iii), (iv) and (v) for ak {1, ... , n}. Iffor
example= is associated with a probability measug= ) with ¢(S;) = 0 for some,
then (u-i) would implyf; ~; g; forall f;, g; € F;, thus’z; would not satisfy (v). Therefore,
if some list(*-o, 721, - - . , 7o) Satisfies (u-i) and is such thay; satisfies (i), (i), (iii), (iv)
and (v) for alli € {0, 1,...,n}, then the probability measure associated with this list
satisfiest(S;) > O foralli € {0, 1,...,n}. This is implicitly mentioned inTheorem 12
since otherwiser; would not be defined for somes {1, ... , n}.

4. Choquet expected utility and lower bound capacities
The following concept of comonotonicity is crucial in Choquet expected utility theory:

Definition 13. Two actsf;, g; € F; are called comonotonic given the preference relation
ZionF;, iffornos, s’ € S;: fi(s) =; fi(s") andg;(s") =; gi(s).

In order to obtain the Choquet expected utility theory, we just have to replace the inde-
pendence property (ii) by the following property:

7 Affinity of u meansu(Ly + (1 — 1)y) = ru(y) + (1 — Mu(y') for everyr €]0, 1[, implying u(y) =
D vex YOU(X).
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(vi) z; satisfies comonotonic independence, if: For all pairwise comonotonigagts
h; € F;andalla €]0, 1[: f; =i g = Afi + (A — Mh; >=; Agi + (L — A)h;.

The following theorem is presented and prove&ahmeidler (1989)

Theorem 14. A preferencerelation >—; on F; for somei € {0, 1, ... , n} satisfies (i), (iii),
(iv), (v) and (vi), if and only if there are (1) an affine function # : ¥ — R unique up
to positive linear transformations and (2) a unique capacity v; on S; such that for all f;,
g €F

fi Zi & & Cy(uo fi) = Cy(uog)
Next we compare two preference relations on the same set of acts:

Definition 15. A preference relatioir; on F; is called less constancy-loving than another
preference relatiofr; on F; if and only if

yZi fi =y Zi fiandy =} fi =y =i f;
forally e Yandf; € F;.

It has been argued that “less constancy-loving” means “less uncertainty abahe”.
reject this interpretation. Assume that a decision makbas preferences; and decision
maker P' has preferences; and thatz! is less constancy-loving than;. This may be
because”’ perceives less uncertainty th@n though P’ may be more uncertainty averse
thanpP.?

Let e(’Z;) denote the set of all preference relations/nwhich (1) satisfy (i), (ii), (i),
(iv) and (v) and (2) are less constancy-loving than the preference relgtiam F;. Let
FE(z) =1{fi e Fil fi=(y, E; Y, S;\ E) for somey, y € Y with y ~; y'}. Obviously, if
two actsf;, g; are in FiE(ﬁ,-), then they are comonotonic giver. Moreover, all constant
acts are inFf (7).

(vii) z; satisfies expected utility relatedness, if: For evErg S; there is aZ}e e(Z)
such thatz; and’=; agree onFf ().

A decision maker who's preference relatign satisfy property (vii) reveals that he
considers a sei(Z;) of preference relations somehow sensible. But he does not know
which preference relation i(>z;) he should choose, since he faces uncertainty. He finally
chooses a preference relatign which is not ine(’Z;). But it is closely connected with
e(=i), since (1) every preference relationei;) is less constancy-loving than;and (2)
the restriction of-; on a setFiE(ii) agrees with some preference relatioa(hy;) for every
E C S; and is in this sense justified by a preference relation which is deemed sensible.

8 SeeKelsey and Nandeibam (1998), Ghiradato and Marinacci (2002)

9 This view is partly supported bigpstein (1999)how associates less constance loving with less uncertainty
averse only if the two preference relatign and>-; which are compared reveal at least up to a certain degree the
same level of uncertainty.
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Theorem 16. A preferencerelation >—; on F; for somei € {0, 1, ... , n} satisfies (i), (iii),
(iv), (v), (vi) and (vii), if and only if there are (1) an affine function « : ¥ — R unique up
to positive linear transformations and (2) a unique lower bound v; on S; such that for all

figi€F;
fi Zi g & Cy(uo fi) > Cy(uog)

Let E(Z0, 21, - - - » 7=n) be the set of all lists of preference relat|o¢j§0, T on
which satisfy (1) property (u-i) and (2);e e(Z;) for aIIz €{0,1,...,n}. That means, if
some preference relatigyf. is part of some I|s(N0, Zhe---a2pin E(>o, Tl Zn),s

then 2Z/satisfy (i), (i), (iii), (iv) and (v) and is less constancy-loving than. The set

E(Zo, 71, --- » Zon) IS the natural generalization of the s&};) on lists of preference
relations.

(u-ii) (o, 1, - - - » on) Satisfies expected utility relatedness, if: For evErng S; and
ie€{0,1,...,n}thereisa’zy, ). ..., Z) € E(Zo, 21, - - - » Zn) SUch thatz; and
= agree onF.E(N,).

Clearly, if (-0, 721, - - . , Zn) Satisfies (u-ii), therr; satisfies (vii) forall € {0, 1, ... , n}.

(u-iii) (2o, 1. - - - » Zn) Satisfies completeness, if;je e(ZZo) = there is a(z; ,
ZhoeeosZn) € E(Z0, 21, -+, o) SUCh thatsy =28,

If some list(Zo, Z1. ... , Zn) satisfies (u-iii), then every preference relatiog which

satisfies (i), (i), (iii), (iv) and (v) and which is less constancy-loving thenappears in
some listinE(Zo, =1, ... , Zn)-

Theorem 17. Alist (2o, 221, - - - » Zon) Of preferencerelationsz; on Fifori = 0,1, ... ,n
satisfies (u-ii) and (u-iii) and is such that »—; satisfies (i), (iii), (iv), (v) and (vi) for alli €
{0,1,...,n}, if and only if there are (1) an affine function u : ¥ — R unique up to
positive linear transformations and (2) a unique lower bound v on Sp with v(S;) > 0 for
alie{l,...,n}suchthat forall f;, g; € F;

fi Zi g & Cy(uo fi) > Cy(uog)

withv; defined by v; (E) = v(E)/v(E)+1—v(EUSo\S;) forall E C §; (fori = 0,1, ... , n).

The updating rule for lower bounds statedTiheorem 17has been proposed affray
(1992)1° The proof of the theorem makes direct use of Jaffray’s argumentation.

In this section we have presented properties of a very extreme list of preference relations
(=0, 71, ..., =n). Itis extreme in so far as we assume that the decision maker deviates
from the setE(o, =1, ... , ZZn) Very far into the direction of constance love. The other
extreme is given, if he just chooses one of the list&{ixo, =1, ... , Zn), i-€. a list with
the properties stated ihheorem 12instead of deviating fronk (>o, =1, ... , ZZ,). In the
next section we present properties of lists between these two extremes.

10 Some other updating rules for capacity are proposégilinoa and Schmeidler (1993)



782 J. Tapking/ Journal of Mathematical Economics 40 (2004) 771-797
5. Uncertainty and uncertainty aversion revealing preferences

We now combine the lists of preference relations described in the previous two sections
to define one more list of preference relations. We first need a definition:

Definition 18. Let =1 =i 2 be preference relations dmn . If there exists an acf; € F;
such thanf; ~ l y1, fi ~i yand f; ~2 y, for somey1, y, y2 € Y (neithery; ~; y nor
y1 ~i y2 hory ~; y2), then the ordered tripley1, y, y2) is called a description ¢f ; relative
to 1 andz2.

The main property in this section is

(u-iv) (o, =1, - - - ,Nn) satisfies constant relative description, if: There exists (1) a list
(=&, =E, ..., zE) which satisfies (u-i) and is such thaf satisfies (i), (ii), (iii), (iv)

~Q°~1° ’Nn

and (v) foralli € {0, 1,... ,n}and (2) alist’z§, =k, ... , k) which satisfies (u-ii)
and (u-iii)andis such tha;t,iL satisfies (i), (iii), (iv), (v) and (vi)forall € {0, 1, ... , n},
such that: (I) For alf € {0, 1,...,n}: F is less constancy-loving thap; and =;
is less constancy-loving thag”, (Il) for all f;, g; € F; and alli € {0,1,...,n}:
(fi NIE gi and f; NiL &)= fi ~i g and (lll) There is an ordered tripleg, v, yr)
which is a description of;; relative to and = for all i € {0, ..., n} for which
notzf=ri= 2}
If a list (*Zo, =1, ... , ZZp) Satisfies (u-iv), then it is somehow located between two ex-
tremes, alistzf. 7. ... . ;) which is not uncertainty averse at all and a lisfy. 22§
) >-L) which is extremely uncertainty averse. The ne&ray, =1, ... , =) is located
to (NO, Nf, ..., =Ey, the less uncertainty averse is it. Part (1) of (u-iv) makes sure that
there is a probability measurg and a lower boundiL on S; such that the capacity char-
acterizing the preference relatign is between both, i.et;(E) > v;(E) > viL(E) for all
E C S; (seeLemma 20in the appendix). Part (1) and (Il) together imply that there is a
€ [0, 1] such that;(E) = a,»viL(E) + (1 —a)m;(E). Ontop of part (I) and (11), part (1)
ensures that; =« foralli € {0,... ,n}.
We finally need a technical property:

(u-v) o, Z1, - . - » on) Satisfies richness, ift > 3 and there is a partitio, B, C) of
Sowith A, B, C # @, such that (1§51 = AUB,S2 = AUC, S3= BUC, (2)forall
¥1. y2, ¥3 € Y With y1, y2 >0 y3: (y1. A; y3, So\ A) ~o (y2, A: y3, So\ A), (3) not for
all y1, y2, y3 € Y with y1 >0 y2, y3: (y1, BUC; y2, A) ~o (y1, BUC; y3, A) and (4)
forall A1, A2, A3 € [0, 1] with 1 — A1 = A1 — A2 — Az andys, y2 € Y with y1 >¢ y2!
If (y1, BUC; y2, A) ~0 A1y1 + (1 — A1)y2, then not both(y1, B; y2, AU C) ~¢
A2y1+ (1= A2)y2 and(y1, C; y2, AU B) ~g Azy1 + (1 — A1) y3.

Part (2) of the property is the most restrictive. It implies that the capagitgssoci-
ated with - satisfiesvg(A) = 0 for someA C Sp. Part (3) guarantees thay(B U
C) < 1, i.e.vp is not a probability measure. Finally, because of part (4) we get 1
vo(B U C) # vo(B U C)— vo(B) — vo(C). Property (u-v) is helpful, though in many
cases not necessary to get uniqueness of a numlaelower bound” and a probability
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measurer as described in the following theorem, which is the main theorem of this
article:

Theorem 19. Alist (2o, 221, - - - » 2on) Of preferencerelations’z; on Fifori = 0,1, ... ,n
satisfies (u-iv) and (u-v) and is such that -; satisfies (i), (iii), (iv), (v) and (vi) for all
i €{0,1,...,n},if and only if there are (1) an affine function u : ¥ — R unique up to
positive linear transformations, (2) a unique number « €]0, 1], (3) a unique lower bound
vl on Sowith vl (S;) > Oforalli € {1, ..., n} and (4) a probability measure r on Sp with
7(E) > vE(E) for all E C Sg and uniqueif and only if « < 1, such that for all f;, g; € F;

fiZigi e Cy(uofi)=Cy(uog)

ith - — gul 4 L _ L (E) ) _
with v;(E) = av;y(E) + (1 — a)mi(E), vy (E) = vL(E)-i-llivL(EUSo\Si) and m;(E) =
w(E)/n(S;) forall E C S;andall i € {0,1,...,n},n > 3,v9(A) = 0, 9(BUC) <
1,1— vo(BUC) # vo(BU C) — vo(B) — vp(C) for some partition (A, B, C) of Sp with

A,B,C#0,S1=AUB,S2=AUCand S3=BUC.

The interpretation of the unique numbeand the unique lower bound has already
been given inSection 1.2 The lower bound is a measure of the decision maker’s sub-
jectively perceived uncertainty: 62 (A) + vE(So \ A) < vE(B) + v (So \ B), then
the decision maker perceives the evanais more uncertain than the evaht And « is
the parameter of the decision maker’s individual uncertainty aversienidfclose to 0,
the decision maker is almost uncertainty neutraty i= 1, he is completely uncertainty
averse.

6. An example

We are now going to discuss an example of a list of a prior and some updated pref-
erence relations which does not satisfy part (Ill) of (u-iv). We start with some general
remarks on how to test whether preferences satisfy part (Ill) of (u-iv). Then we discuss our
example.

Assume that all preference relations(ino, =1, ... , 7-,) are of the Choquet expected
utility type (characterized by the same utility functiepand that(vo, . . . v,) is the related
list of capacities. Moreover assume that part (1) and (Il) of (u-iv) are satisfied. Then there
are a lower bound?, a probability measure(> v%) and a numbet; < [0, 1] for all
i=0,...,nsuchthav; = a;vF +(1—a;)m; foralli =0, ..., n. Only if we additionally

havea; = aforalli = 0, ... ,n, then part (iii) of (u-iv) is also satisfied. This is shown
in the appendix. One important implication is the following: Take any two suldsatsl
10of{0,...,n}If v; = avF + (1 — a)m; for alli € T has a unique solution with = @,

vi = avk + (1 —a)r; foralli e 1 has a unique solution witlh = & anda # &, then part
(1) of (u-iv) is not satisfied.

In our example, we assume that there are five evantg, C, B, C C So such that
BUC=BUC=S\AandBNC = BN C = ¢. For technical reasons, we assume
that part (1) and (2) of (u-v) are satisfied. Moreover, we assumet, whereS; = AU B,
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S =AUC,S3=AUBandS; = AU C The decision maker prefers a bet Brover
a bet onB and a bet orC over a bet orC, i.e. for anyyi, y2_ with y1 >0 y2, we have
(y1. B: y2, 50\ B) >0 (y1, B; y2, So \ B) and (y1. C; y2, So \ C) >0 (y1, C:y2. 5\ 0).
Furthermore we assume that there ageya, ys such that(ys, £ B; y4, 51\ B) <1 ¥5 <3
(y3, B; va, S3°\ B) and that there argg, y7, yg such that(yg, 57, 82\ C) <2 yg <4
(e, C‘ 7, S4\C) In oursettrng all this requirag)(B) > vo(B), vo(C) > vo(C) v1(B) <
v3(B) andva(C) < v4(C)

In the appendix (proof ofheorem 19part (1.2)) we show that for any partitig®, C}
of Sp \ A, our setting requires

[1 —vaup(B)]

— — L
@ =M= vaun(B) + et (B

and

[1 - vauc(O)]
[vo(BU C) — vauc(0O)]

avt (B)

a = [vg(B U C) — vg(B) — vo(C)]

[1 —vauc(O)]
[vo(BU C) — vauc(CO)]

This is a system of two equations that are linear in the variablsdav’ (B). The system
normally has a unique solution fer It is obvious that the solution far that we get if we
replaceB andC by B andC is not the same as the solution tethat we get if we replace
BandC by B andC. Thus, the list of preferences of our example does not satisfy part (l11)
of (u-iv).

7. Gajdos, Tallon and Vergnaud (2004)

The paper by Gajdos, Tallon and Vergnaud is important for our model in two ways:
Firstly, it axiomatizes preferences with a representation very similar to ours. And secondly,
it indirecly supports our interpretation of the parametess a parameter of uncertainty
aversion. It is therefore discussed here in more detailssdle¢ the set of all pairsl7, 7)
with IT a closed set of probability distributions ¢g andx € I1. A pair (11, r) is called
a situation. Assume that decision makers have preferenoesthe setFp x £2. In their
Theorem 2, Gajdos, Tallon and Vergnaud describe preferences characerised by a function
u : Y — R unique up to positive linear transformations and a unique numbe(0, 1]
such that for allf, g € Fo, (I11, m1), (IT2, 2) € £2:

[f U, m)] Z g (T2, m2)] & min - Cyluo f)> min Cyuog)
qell (o, I11,m1) qgell(a, ITp,m2)

wherell («, IT, 1) = {p*|p* = ap+ (1 — )7, p € co(IT)} andco(I7T) is the closed convex
hull of IT. Thus, the decision maker has preferences of the multiple prior type&{Hea
and Schmeidler (198P)hat are characterised by the set of (additive) pridts, 7, ) for
a given situation(IT, ). Note thatl («, I1, 7) is a linear combination afo(/7) andx with
a being the linear weight.
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To understand how this result relates to our paper, recall the relation between the Choquet
expected utility and the multiple prior theory as for example described in the proposition
in Schmeidler (1989)f a preference relation of the multiple prior type is characterised by
a closed convex set of priors (i.e. the lower bound of this set is a convex capacity), then it
is also of the Choquet expected utility type and the capacity characterising the preferences
is the lower bound of the set of priors. Thus, the preferences described by Gajdos, Tallon
and Vergnaud are for a given situatigf, ) of the Choquet expected utility type with the
associated capacitydefined by

v(E) =min{p®(E)| p*(E) = ap(E) + (1 — a)n(E), p € co(IT)}
= vl (E) + (1 — a)n(E)

for all E € So with v defined byvk (E) = min{p(E)|p € co(D)}. Sincevk is a lower
bound, the structure of the decision maker’s capacity coincides with the one assumed in our
paper.

In the setting of Gajdos, Tallon and Vergnaudand I7, thus the lower bound’, are
objectively given, while we derive and the lower bound from preferences. Since we derive
more information from preferences, we need to take updating of preferences into consid-
eration. While we assume that the parameter of uncertainty aversitmes not change
when preferences are updated, Gajdos, Tallon and Vergnaud assumddleatnot change
when the situatioii/7, ) changes. Most important for our model: The approach of Gajdos,
Tallon and Vergnaud leaves no room for subjective uncertainty, since the uncertainty is
objectively given by the sdfl. It is therefore clear that is not a parameter of subjective
uncertainty, but of uncertainty aversion. Since their model and our model lead to the same
structure of the decision maker’s capacity, the model of Gajdos, Tallon and Vergnaud sup-
ports our view thatr can be interpreted as a parameter of uncertainty aversion in our model
as well.

8. Conclusion

In this article it has been shown how both a decision maker’s subjectively perceived
uncertainty and his individual degree of uncertainty aversion can be concluded unequiv-
ocally from his prior and updated preferences, if his preferences satisfy certain prop-
erties. We do not claim that most decision maker's usually satisfy these properties.
Therefore we are reluctant to call them axioms. But if they are satisfied, then there are
good reasons for a distinction between subjective uncertainty and individual uncertainty
aversion.
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Appendix

Proof of Proposition 8. The first statement dProposition &ollows directly from propo-
sition 11 inChateauneuf and Jaffray (1989Ye give an example of a lower bound on some
setM = {m1, m», ma, ma}, which is not convex. Consider the 98t= {z1, 72} wherer?!
andz? are the probability measures given by

mi ma2 m3 maq
7t({m;}) 1/4 1/4 1/4 1/4
7%({m;}) 1/2 0 1/2 0

The lower bound(A) = min{r(A)|z € [T} satisfiesv({m>}) = 0, v({m1, m2}) = 1/2,
v({mo, m3}) = 1/2, v({my, mp, m3}) = 3/4. Let A = {m1, mp} and B = {mo, m3}, i.e.
v(AU B)+ v(AN B) =3/4 < 1=v(A) + v(B), thusv is not convex. O

Proof of Proposition 9. Let v(A) = min{m(A)|wr € IT} for some sefll of probability
measures oM. If v were not superadditive, then there would be event® C M with
AN B = @, such thab(A U B) < v(A) + v(B). Becausaw(A) = min{n(A)|nr € IT},
there arer, 7, € IT such thatv(A) = n(A), v(B) = 7(B), V(AU B) = (A U B)
= 7(A) + 7(B). Thus, ifv were not superadditive, thef(A) + 7(B) < w(A) + 7(B).
But this is not possible since&(A) < 7(A) anda(B) < 7(B). Thus every lower bound is
superadditive.
Now consider the following superadditive capacitydn= {m1, mo, m3}:

v({m;}) = 3, v({m;, m;}) = 3firallei, j € (1,2,3},i # j.
v(M)=1,v®W) =0

If this capacity were alower bound, then there would exist alsaftprobability measures on
M and ar € IT with 7({m1}) = 1/8, n({m1}) + w({m2}) > 5/8 andr({m1}) + n({m3z}) >
5/8. From that we get({m>}) >5/8—1/8 = 4/8 andr({m3}) > 5/8—1/8 = 4/8. Thus
a({m1}) + 7({m2}) +7({m3}) > 9/8 andx would be no probability measure. Thus not
every superadditive capacity is a lower bound. O

Proof of Theorem 12.

Q) If (zo, Z1, .- , on) Satisfies (u-i) and is such that satisfies (i), (i), (iii), (iv) and (v)
foralli € {0,1,...,n}, then there are andx as described in the theorem: Sirce
satisfies (i), (ii), (iii), (iv) and (v), there is according Tdheorem 11a utility function
u; . Y — R unique up to positive linear transformations and a unique probability
measurer; on S; associated withz; for all i € {0,1,...,n}. From (u-i) it follows
that for all yx, y; € Y we havey, 7Z; y1 < yk o y, i.e. all preference relations;,

i =0,1,...,n agree on the set of constant acts. By the von Neumann—Morgenstern
theorem (see for exampBchmeidler (1989)p. 577) we thereforegep = u1 = ... =
u, = u. Clearly, we haverg(S;) > O foralli € {0, 1, ..., n}. Otherwise (u-i) would
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imply f; ~; g; forall f;, g; € F; and’-; would not satisfy (v). Thus the condition in
(u-i) can be translated into

Criuo f) =Y ul fi®]mi({sh) = Y ulgi)]mi({s}) = Cr,(u 0 g))

sES; seS;
& Y ulfie)S 0({ }) >3 ulg <)]”°({S
seS; seS;

Sinceu is affine and unique up to positive linear transformations, it has a nondegenerated
convex range and we can assume that,[1] is a subset of the range of Thus for
everyE C S; there exist acty;, g; € F; with

—mi(S;\ E)fors € E Ofors e E

ulfi)] = 1forse S;\ E andufgi(9)] = 1-m(E)forse S\ E

ThusCy; (u o f;) = Cr,(u o g;). To meet (u-i) we therefore have to ensure

mo({s}) 7no(E)  7wo(S; \ E)
i i(Si\E 1
ZS WLAW) TS o = (S BT 1T S
mo(Si \ E)
+[1 - m(E)] 0(S)
— mols) gy 7o)
g g1 o e mE) =2

With g = = the first part of the theorem is proved.

(2) If there arex andr as described in the theorem, thero, -1, . .. , 7=,) satisfies (u-i)
and is such that; satisfies (i), (ii), (iii), (iv) and (v) for alk € {0, 1, ... , n}: Sincer;
defined byr; (E) = n(E)/n(S;) forall E C S; is a probability measure af), we know

from Theorem 11that ~—; satisfies (i), (i), (iii), (iv) and (v) for alli € {0, 1, ... ,n}.
Since
D ulfi@lmi(s) =Y ulgi@)]mits) & > ul fo®lms) + Y ulho()]m(s)
SES; seS; sES; s€So\S;
> ulgo®]n(s) + Y ulho(s)]m(s)
SES; s€So\Si

for all fo, go, ho € Fp and f;, g; € F; with f;(s) = fo(s) andg;(s) = go(s) for all
se S;andalli =1,...,n,itis clear that(’-o, -1, . . . , Z,) Satisfies (u-i). O

For the next step we need to prove two lemmas:

Lemma 20. Let 2Z; and Z; be two preference relations on F; satisfying (i), (iii), (iv), (v)
and (vi). Let v} and u' be the capacity and utility function associated with 2} and v; and
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u be the capacity and utility function associated with 2Z;. Then ! is less constancy-loving
than 2Z; if and only if v;(E) > v;(E) for all E € S; and u’ = u.

1)

)

If 27 is less constancy-loving thap;, thenv/(E) > v;(E) for all E C S; andu’ = u:

If 2Z7 is less constancy-loving thary, then we have befinition 15for all y;, y; € Y:

Yk Zivi € vk Zi i, i.e. i andz;agree on the set of constant acts. By the von
Neumann-Morgenstern theorem (see for exangdbmeidler (1989)page 577) we
therefore getr = u’. Fix someE C S; and somey, y; € Y with yi >/ y;, i.€.yc =i v
Because of (v) such elementslrexist. Becausg;; is less constancy-loving than;,

we have for every € Y by Definition 15

y ~i Ok, E; y1, Si \ E) = Ok, E; y1, Si \ E) =
which can be translated into
u(y) = u(y)vi(E) + u(yp[l — vi(E)] = u(y) < u(y)v;(E) + u(y)[1 — v;(E)]

Sinceu is affine, it has a convex range and there exisise Y defined byu(y) =
u(yvi(E) +u(y)[l — vi(E)]. Thus

u(yvi(E) + u(y)[1 — vi(E)] < u(y)vi(E) + u(y)[1 — vi(E)]

which is (because(yx) > u(y)) equivalent tov; (E) < vi(E).

If vi(E) > v;(E) forall E C S; andu’ = u, thenZ; is less constancy-loving thamn:
This follows directly from the obvious fact thaf(E) > v;(E) for all E C S; implies
Cyuo f) = Cy,(uo fi) forall f; € F;. u

Lemma 21. Let ; satisfy (i), (iii), (iv), (v) and (vi) and let e e(Z;). Let v; be the
capacity associated with 7Z; and ; be the probability measure associated with 7. Then 7Z;
and = agree on F,.E(b-) for some E € S; if and only if v;(E) = 7;(E).

)

1

If —; and;; agreeing 0|FiE(§l~), then; (E) = m;(E): Since; is less constancy-loving
than’;, the utility function associated with;(x) and the utility function associated
with 77 (1) are according themma 20dentical ¢ = u’). Sinceu is affine and unique
up to positive linear transformations, it has a nondegenerated convex range and we can
assume that{1, 1] is a subset of the range of Thus there are actg, g; € FiE(zi)
with

vi(E)fors € E 1fors e E

el {Ofors ese MMEOT=N L pyorse s

We obviously geC,,[uo f;] = C,,[uog;]fromthis. Sincez; andz; agree orEE(?vi),
we also have to ensui®;,[u o fi] = Cr,[u o g, i.e.

Vi (E)mi(E) = mi(E) — v;(E)[1 — m;(E)]

which is equivalent tar; (E) = v;(E).
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(2) If v;(E) = m;(E), thenz; and’ agreeing orFiE(ti): trivial since the utility function

1

associated witfr;and the utility function associated witty; are identical. O

Proof of Theorem 16.

(1) If ; satisfies (i), (iii), (iv), (v), (vi) and (vii), then there ateandv; as described in
the theorem: FronTheorem 1&ve know that there is a utility functiom as described
in Theorem 1@nd a unique capacity; associated witty;. We therefore just have to
show that (vii) implies that; is a lower bound. But this is now obvious: Witkmma
20 we know that the set of probability measui@sassociated witla(>Z;) contains all
probability measures; satisfyings; (E) > v;(E) for all E C S;. FromLemma 21we
learn that there is at least one probability meastfer every E C S; in IT;, such that
7;(E) = v;(E). Thusv;(E) = min{m;(E)|n; € I1;}. A look at Definition 7completes
the proof.

(2) Ifthere are: andv; as described in the theorem, thepsatisfies (i), (iii), (iv), (v), (vi)
and (vii): Since every lower bound is a capacity, we know froheorem 14hat =,
satisfies (i), (iii), (iv), (v) and (vi). Since; is a lower bound o1;, there is according to
Definition 7 a setlT; of probability measures ofy such that;(A) = min{x;(A)|x; €
IT;} for all A € §;. Thus for everyE C §; there is somer, € IT; with v;(E) = n/(E)
andv;(A) < m;(A) for all A C ;. The preference relation; associated withr; and
u according torheorem 1is according td.emma 20n e(7;) and agrees according to
Lemma 21with —; on E.E(zl-). Thus’,; satisfies (vii). O

The following lemma is due tdaffray (1992)

Lemma 22. Let v be a lower bound on Sp with v(S;) > Ofor all i € {0,1,...,n}. Let
IT = {7|7 is a probability measure on Sp and n(E) > v(E) for all E C So}, I1; = {m;|m;
isa probability measure on S; and thereisa = € IT such that 7;(E) = =n(E)/n(S;) for all
E C S;} and v;(E) = min{rm;(E)|m; € IT;} forall E C S;andalli € {0,1,...,n}. Then
vi(E) = v(E)/Ju(E) +1—v(EU S\ ;) forall E C S;andall i € {0,1,... ,n}.

Clearly,v;(E) = min{z(E)/7(S;)|7w € [T} = min{x(E)/7n(E) +1—n(EUSp\ S;)|m €
IT}. If v(E) > 0O, thenn(E) > O forallwr € IT andv;(E) = (1 + max1l — 7(E U Sp \
Si)/m(E)|m € IT})~L. Because of the definition @f in the lemma and becausés a lower
bound, there is &’ € IT with 7n/(E) = v(E) andn/(E U Sp \ S;) = v(E U Sp \ S;). Since
1-m(EUSo\ S)/m(E) <1—v(EUSp\ S;)/v(E) =1—7'(EUSp\ S;)/7'(E) for all
7 € IT,we get;(E) = (1+1—7/(EUSo\ S) /7' (E)) L = v(E) Jv(E)+1—v(EUSo\ ).
If v(E) = 0, thenthereisa € IT with 7(E) = 0 and therefore; (E) = 0 = v(E)/v(E) +
1—-v(EUSy\ S). (Note thatv(E) + 1 —v(E U Sp \ S;) = 0 impliesv(E) = 0 and
v(EU Sp\ S;) = 1. Sincev is a lower bound, it follows that there is a probability measure
7 with 7(E) = 0 andr(A) > v(A) forall A C So, i.e.n(E U Sg \ S;) = 1 and therefore
7(S; \ E) = 0, implyingn(S;) = 0 < v(S;). Thusv(E) +1 —v(E U S\ S;) > 0.) O

Proof of Theorem 17.

Q) If (=0, 71,..., 7 satisfies (u-ii) and (u-iii) and is such thgt; satisfies (i), (iii),
(iv), (v), and (vi) for alli € {0, 1, ..., n}, then there ara@ andv as described in the



790 J. Tapking/ Journal of Mathematical Economics 40 (2004) 771-797

theorem: Since alt; in (=0, =1, ..., Zn) satisfy (i), (iii), (iv), (v) and (vi), there
is according toTheorem 14a capacityv; on S; and a utility functionu; associated
with every ;. Because of (u-ii),E(*Z0, 21, ... » 7on) IS NOt empty. Take some list
(Z0» Zhs - -+ > Zn) In E(Z0, Z1, - - - » Zn)- According toTheorem 1Zhere is a utility
functionu’ assomated withi>Z, 5/1, ..., Zn). Sincez} is less constancy-loving than
i, we getfromLemma 2Qu; = u’ = uforalli € {0, 1, ... , n}. (This implies that the
utility function associated with some list iB(*-o, 221, - . . , 7x) IS equal to the utility
function associated with another listE(o, =1, ... , ZZn)-)

Moreover there is according Ttheorem 12 list (7o, 71, . . . yrn) with a probability
measurer; on S; foralli € {0, 1, ..., n} associated witli:Zj, 27, . .. , 2Z,,), such that
7 (E) = mo(E)/mo(S;) forall E C S;. (The list of probability measures associated with
onelistinE(=o, =1, ... , ZZn) is not equal to the list of probability measures associated
with another list InE(Zo, 221, - .. » 7n).) Thus E(Zo, 71, ... , ZZn) generates a list
(IT = Iy, I4, . .. , IT,) such thafll; = {;|r; is a probability onS; and there is & €
[T suchthatr;(E) = n(E)/n(S;) forall E C S;}foralli € {0, 1, ..., n}. FromLemma
20 we know thatv;(E) < m;(E) forall E C S,, allm7; e IT; and alli € {0, 1, ... ,n}.
From (u-ii) we know that there is a Ilsto, ~1 yeee s )N E(Z0, 71, - - - 5 Zon) SUCH
that Z} and Z; agree onFE( ;). Thus (because diemma 2] there is ar; € II;
for everyE C §; such thatr;(E) = v;(E). It follows that for alli € {0,1,...,n}
and allE C S; we havev;(E) = min{m;(E)|r; € I1;}, i.e.v; is a lower bound for
alli € {0,1,...,n}. Sincen(S;) > 0 for all # € IT, we knowvg(S;) > O for all
i €{0,1,...,n}. With Lemma 20we learn from (u-iii) thafl = {x|x is a probability
measure orfp andn(E) > vo(E) for all E € Sp}. FromLemma 22we conclude
vi(E) = vo(E)/(vo(E) + 1 — vo(EU Sp\ S)) forall E C S;and alli € {0, 1, ... ,n}.
With v = vg the first part of the theorem is proved.

(2) If there arex andv as described in the theorem, thgro, 721, . . . , 77,) satisfies (u-ii)
and (u-iii) and is such that; satisfies (i), (iii), (iv), (v), and (vi) forall € {0, 1, ... ,n}:
FromLemma 22we know thaty; defined byv;(E) = v(E)v(E) + 1 —v(E U Sp \ ;)

forall EC S;and alli € {0, 1, ..., n}is alower bound and therefore a capacity, thus
~-; satisfies (i), (iii), (iv), (v), and (vi) for alk € {0, 1, ..., n} according toTheorem
14.

LetH = {m|7 is a probability measure afy andz(E) > v(E) for all E C Sp}. If

o€ e(Zo), then the probability measure associated withr g according torheorem
11|s according td.emma 20n IT. Let (g, 227, - - - » 22,) be the list associated with
andr* according torheorem 120f course we have, ={. Sincev(E)/(v(E)+1—
v(EUSo\ S;)) is increasing in(E), 7*(E) /7*(S;) < v(E)/v(E) +1—v(EUSo\ S))
would imply #*(E) /7*(S;) < n*(E)/7n*(E) + 1 — v(E U Sp \ S;), which is equiva-
lenttov(E U Sp \ S;) > 7#*(E U So \ S;) and thus a contradiction te* € IT. Thus
7*(E)/7*(S;) = v(E)/v(E)+1—v(EUSp\ §;) forall E C S;andi € {0, 1,...,n},

i.e. (because okemma 20 (7. 25, --- . Zn) € E(Zo, Z1.--- > Zn) @and (o, 21
, ..., Zn) Satisfies (u-iii).
Fixsomei € {0, 1, ... ,n}andE C S;. Obviously, there is a* € IT with n*(E) =

v(E) andz*(E U Sg \ S )=v(EUSo\ S)). Let(Zy, 2y - .-, 2y, ) bethe listassoci-
ated withu ands* according torheorem 12Becauser*(A)/m*(S;) = v(A)/v(A) +
1-v(AUSy\ Sy forall A C S;andj e {0,1,...,n} (see above), we know from
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Lemma 20that (Z,, t’l oo s ) € ECZ0, 21, -+, Zn). Sincen*(E)/n*(Si) =
m(E)/7*(E) + 1 = 7" (EU So \ §) = v(E)/v(E) + 1 —v(EU So \ ) = vi(E),
=, and’z; agree according themma 21on F£(xz;) and (o, 71, - . . , Zoa) Satisfies
(u-ii). a

Proof of Theorem 19.

Q) If Czo, 1, - - - » on) Satisfies (u-iv) and (u-v) and is such that satisfies (i), (iii),
(iv), (v) and (vi) for alli € {0, 1, ... , n}, then there are, «, v* andr as described
in the theorem:

(1.1) Existence of, a, v* andm: Since(o, =1, . . . » =) is such that; satisfies (i), (iii),
(iv), (v) and (vi) for alli € {0, 1,...,n}, there exist for every € {0,1,... ,n} a
utility function u; and a capacity>, on S; associated with; according toTheorem
14. Since (o, Z1,--- , Zn) Satisfies (u-iv), there is a I|3(NO,Nf,... , 2By
with a utility functionu and a probability measureon Sy associated witi =5, =¥
... zEyaccording tarheorem 12such thal © is less constancy-loving tha for
alli € {0,1,...,n}, thus according tbemma 20v;(E) < n(E)/n(S;) = m;(E) and
u; = u for aII i€{0,1,...,n}andE C S;. And thereis a listz5, =k, ... D)
with a utility function u” and a lower bound“ on Sy associated with(z5, =
, ... k) according toTheorem 17such thatz; is less constancy-loving than-
foralli € {0, 1, ..., n}, thus according themma 20v; (E) > vL(E)/ (v (E) +1—
vE(E U Sp \ S,»)) = vH(E) andu; = u = u* forall E C S; andi € {0, 1,... ,n}.
We now prove:

Lemma 23. For every pair A, B C S; with m;(A) > vF(A), m:(B) > v (B) there are

Y1, Y2, ¥3,y4 € Y such that y1 =% yp, y3 =F ya (thus y1 =% yo and y3 =% ya),

(1, A; y2, Si \ A) ~F (y3, B; ya, Si \ B) and(y1, A; y2, i \ A) ~F (y3, B; ya. S; \ B).

Sinceu is affine and unique up to positive linear transformations, it has a nondegenerated
convex range and we can assume thdt,[1] is a subset of the range ©f Thus we have to
prove the existence of numberéy1), ... , u(ys) such that

i (Au(yr) + [1 — mi(A)]u(y2) = mi(B)u(ys) + [1 — mi(B)]u(ya)

vF (Au(y) + [1 = vf (A)]u(y2) = vf (Byu(ys) + [1 — vf (B)]u(ya)

1>u(y) >u(2) > —-1,1>u(ys) >u(ys) > -1
for all 7;(A), mi(B), v (A), vE(B) € [0,1], mi(A) > vF(A), mi(B) > vF(B). Simple
calculations show that
v (B)[1 — 7i(A)] — m(B)[1 — v (A)]

u(y1) =

vE(A) — i (A) ’
(y2) = 8viL(A)7Ti(B) — mi(A)vF(B)
uly2) = UiL(A)—JZ,'(A) s

u(ys) =& u(ys) =0
for a sufficiently smalk > 0 satisfy the above conditions.
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Next we prove

Lemma24. Forall f;, g; € F;: (f; ~ZE gi andf; ~iL gi)= fi ~i gi, ifand only if there is
aa; € [0, 1] such that;(E) = a;v- (E) + (1 — o) (E) forall E C S;.

(1) Ifforall f;, gi € Fi: (fi ~f gi and f; NiL gi)= fi ~i g, thenthereis &; € [0, 1]
such thab;(E) = a,-viL(E) + (A —apmi(E) forall E C S, : Let—; satisfy (i), (i), (iii),
(iv) and (v), i.e.v; is a probability measure. Sian;E is less constancy-loving thary,
we learn fromLemma 20thatv; = 7; must hold, thus;; = 0 and the lemma is true.
Now assumez; does not satisfy (i), (ii), (iii), (iv) and (v), thus; is not a probability
measure. Then there is either only one evknt S; with 7;(A) > viL(A) (i.e.mt;(B) =
viL(B) forall B C S;, B # A) andLemma 24is true withe; (implicitly) defined by
vi(A) = a,-viL(A) + (1—a;)m;(A). Or there are at least two evemts B C S; such that
mi(A) > vE(A), i (B) > vE(B). In this case we useemma 23 from which we know
that there aren, y2, y3, y4 € Y such thatyy =5 yo, y3 = ya, y1 =F y2, y3 =F ya,
(y1. A; y2. Si\ A) ~F (y3, B; ya, S;\ B) and(y1, A; y2, Si\ A) ~F (y3, B; ya. S;\ B).
Now assume thaty1, A; y2, S; \ A) ~; (y3, B; ya, S; \ B), thus

u(yDmi(A) + u(y2)[1 — mi(A)] = u(y3)mi(B) + u(y4)[1 — 7;(B)]
u(yDvF(A) + u(y2)[1 — vF(A)] = u(yz)vF (B) + u(ya)[1 — vF(B)]
u(yp)vi(A) + u(y2)[1 — vi(A)] = u(yz3)vi(B) + u(y4)[1 — v;(B)]

Definea; implicitly by v;(A) = a,-viL(A) 4+ (1—aj)m;(A). By the three equations above
it is easy to see that(B) = ;v (B) + (1 — a;)7;(B) ande; € [0, 1].

(2) If there is ao; € [0, 1] such thaty;(E) = a;vi(E) + (1 — o) (E) for all E €
S;, then for or all f;, gi € Fi: (fi ~F giand f; ~L g)= fi ~i g ltis easy to
see that;(E) = a;vi(E) + (1 — ay)m;(E) for all E € S; implies Cy,[u o fi] =
a;Cluo fil + A —a)Cxluo fi]forall fi € F;. Thus Cc[u o fi] = Cclu o gi]
andCrlu o fi] = Cluo gi)= Cyluo fi]l = Cyluogl. '

We now know that there isg < [0, 1] such thav;(E) = Ol,'UiL(E)-i-(l—Oli)JTi(E) for all

E C S;andalli € {0,1,...,n}. Next we show thato = a1 = ... = . If ;=2 F =2k
forsomei € {1,... ,n}, thent; = v; = vk andv;(E) = a;vf (E) + (1— ;)7 (E) holds for
any numbety;. Thus we can set; = ao. If not ;==F==F forsomei € {1, ... , n}, then

we know from (u-iv) (lll) that there is a descriptidivg, y, yr) of o relative toig and
=& with yg >0 y. which is also a description ¢f; relative to- andzF. Thus there is a
fo € Foand af; € F;suchthaCy [uo fj] = u(yE),CUJL_[uofj] = u(yr) andCy,[uo fj] =

u(y) for j = 0,i. Because;(E) = v} (E) + (1 — a))n;(E) for all E C §;, we know
Cyjluc fil =a;jCypluoc fil+ A —ajCxjluc fj]. thusu(y) = aju(yL) + (1 —apulye)
S oj=u(y) —u(yp)/u(yr) —u(yg) for j =0, i, thuse; = ap = a.

In the next part of the proof it will become apparent hat 0,vg(A) = 0,v9(BUC) < 1
and 1— vp(B U C) # vg(B U C) — vp(B) — vo(C) for some partition(A, B, C) of Sp with
A,B,C#0,5=AUB,S=AUCandS3=BUC.

(1.2) Uniqueness af, v’ andxz: We now know: If(-g, =1, . .. , 2=,) satisfies the prop-
erties mentioned iMheorem 19then there are (1) a utility functian: ¥ — R unique up
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to positive linear transformations, (2) a numbee [0, 1], (3) a lower bound’ on Sy and
(4) a probability measure on So with 7(E) > v (E) for all E € S, such that for allf;,
gi € F O

fiZi g & Cy(uo fi) > Cy(uog)

with v;(E) = av?(E) + (1 — )i (E), vE(E) = vI(E) /v (E) + 1 — vE(EU So \ S))
andrn;(E) = n(E)/7(S;) forall E C S; (fori = 0,1,...,n). We now prove unigueness.
According toTheorem 14ve have a unique capacityon S; foralli € {0, 1, ... ,n}. We
get uniqueness af, 7(A), 7(B), 7(C), v (E) for E= A, B,C,AUB,AUC, BUC, if
the following has a unique solution for these variables:

1), (2,3 vo(E) = av*(E) + (1 — a)n(E), E= A, B, C
ONGNE) vo(E1U E2) = avE(E1 U Ep) + (1 — a)[7(E1) + n(E2)],
(E1, E2) = (A, B),(A,0), (B, C)
_ vl (E) n(E) _

(7),(8) Ul(E)_aUL(E)+1—vL(EUC) +(1—a)m,E—A,B
9), (10) (E) = vH(E) tAea—"B) g A
©, V) = L E) + 1= vL(EU B) YA ey T
11). (12) (E) = vH(E) ta—a— "B p_pc
(1D, € P = MLE) + 1 oL(EU A) B )T

o € [0, 1], = a probability measure anda lower bound orsg

(If it has no solution for these variables at all, théno, =1, ... , =) by (1.1) does
not satisfy the properties mentionedTheorem 19 Because of (u-v) (2), we know that
u(y)vo(A)+ u(y3)[1 —vo(A)] = u(y2)vo(A)+ u(ys)[1 — vo(A)] for all u(y1), u(y2) >
u(y3), thusvg(A) = 0. Moreover we know that(y1)vg(BU C) + u(y2)[1 — vg(BUC)] =
u(y1)vo(BUC) +u(y3)[1 —vo(BUC)] notforallu(y1) > u(y2), u(ys),i.e.vgp(BUC) < 1.
Thusvg(A) < w(A) orvg(BU C) < (B U C) or both. Sincex = 0 would implyvg(A) =
m(A) andvg(B U C) = n(B U C), we know thate > 0. This implies (withvg(A) = 0
and equation (1))X(A) = 0 andn(A) = 0 ora = 1 and therefore1(A4) = v2(A) = 0.
Summation of some of the above equations yields

D+ @+ Q) vo(B) + vo(C) = a[vE(B) + vH(O)] + (1 — o)
1) + (6) vo(BUC) = avE(BUC) + (1 — )

7)+ @8 B) = v (B) 1

(7 + (8 v1( )_avL(B)+1L—vL(BUC)+( — )
9 + (10 12(C) =« v(©) +(1-a

vL(C) +1— vl (BUC)
Elimination of v’ (B U C) and rearranging yields

vo(B) + vo(C) = avE(B) + avE(C) +1—
a[1 — vo(BU O)] = avt(B)[1 — vi(B)] + [1 — vo(BU O)][1 — v1(B)]
a[1 — vo(BU O)] = avE (O)[1 — v2(O)] + [1 — vo(BU O)][1 — v2(C)]

Finally we eliminatexv” (C) and get
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1—-vi(B
a=[1-v(B)] + %av%ma[vxo —w0(BUC)]

= [vo(B) + vo(C) — vo(BU O)][1 — v2(O)] — [1 — v2(O)]av™ (B)

This is a system of linear equations in the variabl@mdav' (B). Sincevg(BU C) < 1, we
knowv! (BUC) < 1, thus with (7)+(8) and (9)-(10) [1—v1(B)] > 0 and [1-v2(C)] > O.

From (1H-(6) and (9)%(10) we easily getio(C) — vo(B U C)] < 0. If [v2(C) — vo(B U

O)] = 0, the system obviously has a unique solutionvi({") — vo(B U C)] < 0, the
system has a unique solution, if both equations are not identical. They are identical only if
both [1— v1(B)] = [vo(B U C) — vo(B) — vo(O)][1 — v2(O)]/[vo(B U C) — v2(C)] and
[1—v1(B)]/[1—vo(BUC)] = [1—v2(C)]/[vo(BUC)—v2(C)]. This implies 1-vg(BUC) =

vo(B U C) — vo(B) — vo(C). Now look at (u-v), part (4): Since for ~o y' we have

(0, E; ¥, So\ E) ~o Ay + (1 — 1)y < u(y)vo(E) + u(y)[1 — vo(E)]
=u(y+ 1 —-21)y)

and (becauseis affine according tdheorem 13u(Ay+ (1—1)y") = Au(y) +(1—A)u(y),
we know (y, E; ¥, So \ E) ~o0 Ay + (L — 1)y’ is equivalent tavg(E) = A. Thus we get
from (u-v) (4) 1— vo(B U C) # vo(B U C) — vo(B) — vo(C) and the above system has a
unique solution inv andxv'(B). With that we get a unique solution farandv’ (B) (since
a > 0) and (using (1)-(2)+(3) and (1)(6)) also forv/ (E), E=C,BUC.If « = 1, we
obviously can not conclude a uniquelf « < 1, we getz(E), E = A, B, C from (1), (2)
and (3). Finally, Eq. (4) yields a uniqué (A U B) and Eq. (5) yields a unique” (A U C).
Thus the system (1) to (12) has a unique solution.

If we founda = 1, then itis clear that there is no uniguebut a unique” with v% = v.
If @ < 1, we first consider somP C B (analogous foD c A or D C C). The following
must hold:

vo(D) = av (D) + (1 — a)(D)
vo(D U C) = avk (DU C) + (1L — a)[n(D) + 7(C)]
vL(D) (D)

D) 11— k000 T T Ya) 1B

v1(D) =«

wheren(A), 7(B) andx are already known. From the first two equations wewdgiD) —
vH (DU C) = Luo(D) — vo(D U €) + (1 — @)7(C)] = a, which is known. We get

vo(D) = av’ (D) + (1 — a)7(D)

vH (D) +

-
R T

(D)

We now have to show that this pair of equations has a unique solutiatk &) andn(D)

for somex < 1. It has a unique solution, if both equations are not identical, i.e. if not both
a = 0 andn(A) + n(B) = 1. Sincex < 1 implies (because afp(A) = 0) 7(A) = 0O,
m(A) + m(B) = 1impliesn(A U C) = n(S2) = 0, which is not possible (s€gheorem 12
Thus the system has a unique solutiondfb(¢D) andw(D).
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Finally if neitherD c AnorD C BnorD C C, thenthere are of courde; C A, Do C
B, D3 C C such thatD = D1 U D, U D3. Because of the above arguments we get unique
n(Dj)for j = 1, 2, 3, thus a unique(D). Sincev(D) = av (D) + (1—a)7(D), we easily
get a uniquev” (D). This completes the proof of the uniqueness.

(2) Ifthere arer, a, v andr as described in the theorem, th@m, =1, . .. , I, satisfies
(u-iv) and (u-v) and is such that; satisfies (i), (iii), (iv), (v) and (vi) forall € {0, 1, ... ,n}:

We first prove thal; satisfies (i), (iii), (iv), (v) and (vi) for ali € {0, 1, ... ,n}. From
Theorem 14ve know that we just have to prove, that a linear combination of a lower bound
and a probability measure is always a capacity.;eE) = ozviL(E) + (1 — o) (E) for
all E C S;, let viL be a lower bound o8; and; a probability measure ofj;. Of course
we getv;(S;) = 1 andv;(#) = 0. LetA < B. Of course we have’(A) < v*(B) and
;i (A) < m;(B), thusv;(A) < v;(B) andv; is according tdefinition 5a capacity.

Next we prove that=o, =1, ... , ) Satisfies (u-iv). We just have to prove that the
relations betwee=o, 21, . .. , ), the list(=E, =F, ..., =F) associated withk andx
according tarheorem 1ndthe lis(2§, =5 . .. , k) associated with andv” according

to Theorem 1&atisfy part (1), (11) and (1) of (u-iv). FromLemma 20wve know that part (1)
holds, ifvX(E) < v;(E) < m;(E) forall E € §; andi € {0,1,... , n}. Sincev(E) is not
decreasing in’ (E), we know thab* (E) > 7;(E) would imply (because’ (E) < n(E))

n(E) (E)
2E)+1—oL(EUSo\S) _ 7(S)

This is equivalent ta” (E U S \ S;) > m(E U Sp \ S;) which is in contradiction to the
assumption’ < z. Thusv?(E) < m;(E) and, because €]0, 1], v (E) < vi(E) < mi(E)
forall E C S; andi € {0, 1, ..., n}. Part (Il) holds because dlemma 24 Now consider
part (Ill). If v; = 7; = vF for somei € {1,...,n}, then clearlyz;==F=xF and part
(1) imposes no restriction on the relation betweep ¥ and-F. Now assume that not
v = m; = vk Thenthere is & C S; with ;(E) > vF(E). Sincevg(A)+ vg(BUC) < 1,
we havevl (4) < n(A) or vE(BUC) < 7(BUC). Let D = A if vL(A) < n(A) and
D = BUC otherwise. Becauseis affine and unique up to positive linear transformations,
it has a nondegenerated convex range and we can assume-1haf js a subset of the
range ofu. Thus, for a sufficiently smalt > 0 there areyg, y, yp with u(yg) = ¢,
u(y) = ¢[1 — 2], u(yr) = —e and actsfp € Fo, f; € F; with

L
2= D) —ve(D) g o eD
(D) — UL(D)
ul fo(s)] = .
(D) 4+ v* (D)
e BT T fors e So\ D
n(D) — vl (D)
and
— T _ L
ELTCEC P
T — V;
ul fi(9)] = .
LT AU B gk
mi(E) — v (E)
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Some simple calculations show tl@ai(u o fo) = &, Cyy (1o fo) = e(1—2a), Cypr(uo fo) =
—&, Cr(uo fi) =& Cy(uo fi) = e(l - 2w), CviL(u of)) = —&, i.e. (g, y,yL) IS
both a description of;o relative to & and -5 and a description of;; relative to=f
and=F.

Finally we prove that>o, 1, . .. , 2Z,) satisfies (u-v). Part (1) of (u-v) obviously holds.
Part (2) obviously holds becausg(A) = 0. Part (3) holds becausg(B U C) < 1
and (sinceu is affine and unique up to positive linear transformations) thereyare
y2,¥3 € Y with u(y1) > u(y2),u(ys). Part (4) holds, if the following is contra-
dictory:

1—- A1 =X —A2— A3

u(yD)vo(BU C) + u(y2)[1 — vo(BU O)] = Aqu(y1) + (1 — Apu(y2)
u(y1)vo(B) + u(y2)[1 — vo(B)] = Azu(y1) + (1 — A2)u(y2)
u(yp)vo(C) + u(y2)[1 — vo(C)] = Agu(y1) + (1 — A3)u(y2)

u(y1) > u(yz2),

1—vo(BUC) # vo(BU C) — vo(B) — vo(C)

Summation of the third and fourth equation and elimination.of- A3 by means of the
first equation yields

u(yD)3[1 + vo(B) + vo(O)] + u(y2)3[1 — vo(B) — vo(C)
= Au(yD) + A — r)u(y2)

By using the second equation anfly;) > u(y2) we get 1— vg(BU C) = vo(BU C) —
vo(B) — vo(C) and the contradiction is clear.
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