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Abstract. Air-assisted atomizers in which a thin liquid sheet is deformed under the action of a
high-speed air flow are extensively used in industrial applications, e.g., in aircraft turbojet injectors.
Primary atomization in these devices is a consequence of the onset and growth of instabilities on the
air/liquid interfaces. To better understand this process, a temporal linear instability analysis is applied
to a thin planar liquid sheet flowing between two semi-infinite streams of a high-speed viscous gas.
This study includes the full viscous effects both in the liquid and gas basic states and perturbations.
The relevant dimensionless groups entering the non-dimensional Orr–Sommerfeld equations and
boundary conditions are the liquid and gas stream Reynolds numbers, the gas to liquid momentum
flux ratio, the gas/liquid velocity ratio, the Weber number and the equivalent gas boundary layer to
liquid sheet thickness ratio. Growth rates and temporal frequencies as a function of the wavenumber,
varying the different dimensionless parameters are presented, together with neutral stability curves.
From the results of this parametric study it is concluded that when the physical properties of gas and
liquid are fixed, the momentum flux ratio is especially relevant to determine the instability conditions.
It is also observed that the gas boundary layer thickness strongly influences the wave propagation,
and acts by damping sheet oscillation frequency and growth. This is especially important because
viscosity in the basic gas velocity profile has always been ignored in instability analysis applied to
the geometry under study.
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1. Introduction

Although spray flows are present in many daily applications, the basic physical
mechanisms underlying the atomization processes are still not completely un-
derstood. Two typical designs are pressure atomizers, where a pressurized liquid
stream exits into a quiescent atmosphere, and twin-fluid atomizers, where an inter-
acting gas/vapor coflow induces the liquid breakup. To this second group belongs
the so-called air-assisted or “air-blast” type, in which the air stream flows at a much
higher speed surrounding the liquid. In order to accelerate the atomization process,
the liquid stream in atomizing nozzles is injected as a sheet, which in many cases is
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axisymmetric. However, for basic studies of primary atomization, the large aspect
ratio planar liquid sheet is almost becoming a canonical flow because of its relative
simplicity, in particular, for flow visualization and for numerical simulation.

The first systematic studies on the breakup of a liquid sheet into droplets to
generate a spray date back to the past century with the experiments performed
by Savart [31] in 1833. The sheet was formed by impinging a water jet onto a
disk, forming a water bell similar to those studied by Taylor [35] a century later.
Over the last five decades, experimental studies, mostly based on visual obser-
vations, have been conducted together with theoretical analysis. Restricting this
review to numerical simulations, linear stability methods were first applied to a
planar sheet geometry by Squire [34], York et al. [42], Hagerty and Shea [15] and
Taylor [36]. The case of thin liquid sheets in quiescent air was treated considering
potential flows. Sinuous (antisymmetric) and varicose (dilatational or symmetric)
waves were predicted. It is noteworthy that the two wave types were experimen-
tally observed in the research of Hagerty and Shea, forcing initial perturbations by
oscillating the nozzle tip.

Numerous papers by Dombrowski and coworkers have dealt with experimental
and theoretical investigations on short aspect ratio nozzles generating the so called
water fans [10, 12]. Dombrowski and Johns [11] assumed a viscous liquid sheet
in a quiescent inviscid gas; from a balance of forces acting upon a fluid element
at the interface, they concluded that liquid viscosity adds a dependence of the
growth rate not only on wavenumber but also on sheet thickness. Crapper et al.
[7] unsuccessfully tried to compare their inviscid results with experimental data. In
all these studies, boundary conditions at the gas/liquid interfaces corresponded to
those of a shear-free surface. Under this simplification, the tangential stress of the
liquid was set equal to zero and the dynamic effect of the gas on the liquid sheet
was, thus, completely ignored. Aiming at treating a more realistic configuration,
Crapper et al. [8] considered viscosity in both fluids and parabolic velocity profiles
for the basic liquid flow, with no free stream gas velocity; moreover, the equations
were solved approximating the liquid profile to a constant velocity. The frequency
instability range was widened due to viscosity and the oscillation was found to be
independent of the liquid viscosity. Lin et al. [21] found that a viscous ambient
gas dragged along by the liquid motion tended to destabilize the sheet and to
shorten both sinuous and varicose mode wavelengths. Li and Tankin [22] treated a
viscous liquid sheet in an inviscid gas, based on the perturbation, and conducted a
temporal growth study, obtaining a viscosity-enhanced instability coincident with
that predicted by Crapper et al. Rangel and Sirignano [29] performed linear and
non-linear stability analyses of an inviscid liquid sheet in a moving inviscid gas.
Ibrahim [17] analyzed the spatial growth of a perturbation for the configuration
of Li and Tankin, obtaining different results. These studies were extended to a
three-dimensional geometry in [19].

When the results obtained for quiescent air cases are directly applied to predict
air-blast configurations, comparisons with experimental data fail dramatically, be-
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cause the sheet oscillation has been proved to be mainly controlled by the air flow
dynamics [1]. Consequently, the air effects cannot be neglected.

The problem considering high-speed air streams has been analyzed by Yang
[39], Ibrahim [18] and Cousin and Dumouchel [6]. None of them, however, has
included air viscosity in the perturbation equations.

Teng et al. [37] investigated the stability of a thin viscous liquid sheet flowing
into a quiescent viscous gas confined between two parallel walls. In this study, the
fully developed velocity profiles and the perturbations vanish at the solid walls.
Absolute instability did occur when the Weber number was approximately one.
Although this analysis includes the viscous effects thoroughly, the physical con-
figuration of this problem corresponds to a pressure atomizer rather than to an
air-assisted one. Therefore, the instability mechanisms triggered by the high-speed
gas dynamics coupled to the liquid sheet motion are absent.

Yiantsios and Higgins [40], Smith [32] and Tilley et al. [38] have described
the instability mechanisms induced by viscosity and density differences in channel
flows. Interfacial shear plays a crucial role in other related problems, such as wind-
generated waves [3, 5, 27] and wind-sheared liquid films in contact with solid walls
[9, 26, 33, 41].

This study is aimed at improving the understanding of the interaction at the
gas/liquid interfaces among a thin liquid sheet and two gas coflows, in the region
very near the injection nozzle exit. To this end, an improved mathematical formula-
tion has been developed considering viscous forces in the air and liquid basic flows,
as well as in their perturbations. In doing so, the interface boundary conditions
better reflect the real situation, including pressure and viscous stresses in balance
with surface tension forces. Velocity profiles at a given downstream location have
been approximated by parabolic ones. The dependence with the x-coordinate in the
solution has not been considered for two main reasons. First, once the instability
has been triggered the frequency remains constant, as has been shown experimen-
tally [25], and there is no need to recalculate the oscillation frequency at different
x-stations. Consequently, this study will not be able to predict the actual physical
shape of the interphase once the non-linear effects become apparent. However, the
instability triggering mechanisms should be properly described. The second reason
why the x-dependence has been ignored is the extraordinary complexity of per-
forming a full spatially and temporally evolving instability analysis, which exceeds
the present framework. The mathematical formulation is analyzed in Section 2 of
the paper. Section 3 is devoted to explain the numerical method used to solve the
dispersion relation. The main results are presented in Section 4. Conclusions are
drawn in Section 5.

2. Mathematical Formulation

The linear stability analysis of a two-dimensional sheet of constant thickness, 2h,
of a viscous liquid sandwiched between two identical semi-infinite viscous gas
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Figure 1. Sketch of the flow configuration considered in the study.

streams is considered. High Reynolds-number gas flows are assumed, thus charac-
terizing them by the speed U2∞ far from the liquid sheet centerline and by the
gaseous boundary layer local thicknesses, δ. The gas streams interact with the
liquid sheet through pressure and viscous stresses at the interfaces y = ±h (see
Figure 1). Liquid and gas phases are identified by subindices 1 and 2, respectively.

2.1. BASIC FLOWS

At a particular x station of the boundary layers (the nozzle exit), the velocity pro-
files are approximated by quadratic functions of y; at the same time, since within
the boundary layer the transverse velocity component is much smaller than the
downstream one, both liquid and gas flows are assumed parallel. The error involved
in this approximation is of the order of the relative boundary layer thickness, i.e.
δ/x ≈ 1/

√
Rex , which for large Reynolds numbers is small. Furthermore, Gaster

[13] and Bertolloti et al. [4] show that the effects of non-parallelism are weak and
not responsible for discrepancies between theory and experiments. In any case,
the definite instability frequency is set at the nozzle exit and spread by convection
downstream [25], making the first sections of the flow essential to the onset and
development of the overall instability.

An alternative to define the basic unperturbed flows could have been to solve
two Blasius type equations (for the gas-side and liquid-side boundary layers) cou-
pled through the interface velocity. The numerical solution for the basic flows could
then be used to conduct the perturbation study. However, the difference between a
parabolic and a Blasius velocity profile is not significant for the physical mech-
anisms controlling the instability onset, whereas the parabolic profiles ease the
analytical treatment of the equations.

The unknown coefficients of the assumed basic state velocity profiles are cal-
culated by forcing them to satisfy certain constraints, in a manner similar to that of
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the von Kármán–Pohlhausen method for integral boundary layer solutions. This is
only considered a first attempt to understand the basic mechanisms of this problem
and it is basically expected, for the reasons already stated, that the proposed local
approximation does not alter the underlying physical processes. On the other hand,
direct numerical simulations of these flows near the nozzle exit tend to indicate
that, under conditions for which the linear instability analysis may be valid, the
liquid sheet thickness remains approximately constant [23].

The unperturbed velocity profiles are therefore approximated by

Û1(ỹ) = a0 + a2ỹ
2, −h ≤ ỹ ≤ h, (1)

Û2(ỹ) = b0 + b1

(
ỹ − h

δ

)
+ b2

(
ỹ − h

δ

)2

, h ≤ ỹ ≤ h+ δ, (2)

Û2(ỹ) = b0 − b1

(
ỹ + h

δ

)
+ b2

(
ỹ + h

δ

)2

, −(h + δ) ≤ ỹ ≤ −h, (3)

with h ≤ ỹ ≤ h + δ for the upper gas stream and −(h + δ) ≤ ỹ ≤ −h for the
lower gas stream. In order to determine the coefficients ai and bi (i = 0, 1, 2), the
following five constraints are imposed:

(i) The volumetric liquid flow rate or, equivalently, the liquid mean velocity, Ū1,
is given.

(ii) The air and liquid velocities at the unperturbed interfaces, y = ±h, are equal.
(iii) The tangential viscous stresses balance at the unperturbed interface.
(iv) The air velocities at the boundary layer edges, ỹ = ±(h+ δ), equal U2∞.
(v) The air velocity gradients at the boundary layer edges vanish.

Solving the five algebraic equations yields

a0 = Ū1

(
1 + 1

3

µr

�

)
− U2∞

1

3

µr

�
,

a2 = U2∞ − Ū1

h2

µr

�
,

b0 = U2∞
(

1 − l

�

)
+ Ū1

l

�
,

b1 = (
U2∞ − Ū1

) 2l

�
,

b2 = − (U2∞ − Ū1
) l

�
, (4)

where µr = µ2/µ1 is the gas/liquid viscosity ratio, l = δ/h is the ratio of the gas
boundary layer thickness to the liquid sheet half thickness and � = (2/3)µr + l.
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The parallel flow approximation for the basic flows implies a balance between
pressure and viscous forces; the assumed quadratic profiles lead to constant pres-
sure gradients of opposite sign in the gas and the liquid flows, namely, linear
downstream pressure variations with a positive slope for the liquid and a negative
slope for the gas. This might lead to inconsistencies due to the pressure imbalance
in the two fluids. However, due to the smallness of the pressure gradients, for flows
at atmospheric pressures and for the region very near the nozzle tip, the pressure
changes are extremely small (less that 0.10%).

On the other hand two coupled boundary layer type integral equations can be
easily obtained for the liquid sheet and the gas boundary layer, respectively; the
sheet thickness and the boundary layer thickness are considered functions of x.
The approximate velocity profiles can then be inserted into the integral equations
to calculate momentum thickness and friction coefficients. As a consequence, the
approximate evolutions of h(x) and δ(x) for a consistent boundary layer type of
approach can be obtained. However, this alternative is of no relevance to the local
instability approximation adopted here.

2.2. PERTURBATION FLOWS

The perturbation flow stream functions, �α(x̃, ỹ, t), are expressed as a normal
mode decomposition, namely,

�α(x̃, ỹ, t) = φ̃α(ỹ) eik̃x̃+ω̃t , (5)

where φ̃α(ỹ) are the amplitudes of the normal mode disturbances, ω̃ is the complex
frequency and k̃ is the real wavenumber of the perturbation. By definition, the
perturbation velocity field is

uα = ∂�α(x̃, ỹ, t)

∂ỹ
,

vα = −∂�α(x̃, ỹ, t)

∂x̃
. (6)

The linear stability of the basic state, given by (1–3), with respect to the normal
mode two-dimensional perturbations is governed by two coupled Orr-Sommerfeld
equations

φ̃iv
α (ỹ) − ik̃

να

[
ω̃

ik̃
+ Ûα(ỹ) + 2ναk̃2

ik̃

]
φ̃

′′
α(ỹ)

+ ik̃

να

{
k̃2

[
ω̃

ik̃
+ Ûα(ỹ) + ναk̃

2

ik̃

]
+ Û

′′
α(ỹ)

}
φ̃α(ỹ) = 0, (7)

where, as already stated, α = 1 for the liquid and α = 2 for the gases. The pressure
and interfacial displacement modes are written as

[p̃α(x̃, ỹ, t), ζ̃ (x̃, t)] = [p̃α(ỹ), η̃±] eik̃x̃+ω̃t , (8)
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where ζ̃+(x̃, t) and ζ̃−(x̃, t) are, respectively, the upper and lower interface dis-
placements from the equilibrium position. For sinuous waves ζ̃−(x̃, t) = ζ̃+(x̃, t)
and for varicose waves ζ̃−(x̃, t) = −ζ̃+(x̃, t).

The kinematic boundary conditions at the interfaces can be written as

ik̃φ̃α(±h)+ [ω̃ + ik̃Ûα(±h)]η̃± = 0 for α = 1, 2. (9)

The boundary conditions at the interfaces ỹ = ±h + ζ̃±(x̃, t) are linearized
about ỹ = ±h and only the first order perturbations are retained. The no-slip
conditions at the interfaces result in

[φ̃′
α(±h)+ η̃±Û ′

α(±h)]2
1 = 0, (10)

[φ̃α(±h)]2
1 = 0. (11)

The linearized equations for the tangential and normal stress balances are expressed
as

[µα(φ̃
′′
α(±h)+ k̃2φ̃α(±h) + η̃±Û ′′

α (±h))]2
1 = 0, (12)

[µα(φ̃
′′′
α (±h)− 3k̃2φ̃′

α(±h)) − ρα(ω̃ + ik̃Ûα(±h))φ̃′
α(±h)

+ ik̃Û ′
α(±h)φ̃α(±h)]2

1 = ∓ik̃3σ η̃±. (13)

To these boundary conditions, one should add vanishing perturbation velocity
far from the centerline,

φ̃2(±∞) = 0,

φ̃′
2(±∞) = 0. (14)

The choice of the dimensionless variables

y = ỹ

h
, ω = ω̃h

Ū1
,

k = k̃h, η± = η̃±
h
,

U1(y) = Û1(ỹ)

Ū1
, φ1(y) = φ̃1(ỹ)

Ū1h
,

U2(y) = Û2(ỹ)

Ū2∞
, φ2(y) = φ̃2(ỹ)

Ū2∞δ
, (15)

transforms the liquid domain to −1 ≤ y ≤ 1, the upper gas domain to 1 ≤ y ≤
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1 + l and the lower gas domain to −(1 + l) ≤ y ≤ −1. The dimensionless Orr–
Sommerfeld equations become

1

Re1
φiv

1 (y) −
[
ω + ikU1(y) + 2

Re1

]
φ′′

1 (y)

+
[
k2

(
ω + ikU1(y) + k2

Re1

)
+ ikU ′′

1 (y)

]
φ1(y) = 0, (16)

l

Re2
φiv

2 (y) −
[
ωV12 + ikU2(y) + 2l

Re2

]
φ′′

2 (y)

+
[
k2

(
ωV12 + ikU2(y) + k2l

Re2

)
+ ikU ′′

2 (y)

]
φ2(y) = 0. (17)

The boundary conditions in dimensionless form are written as

ikφ1(±1) + [ω + ikU1(±1)]η± = 0, (18a)

V12φ
′
1(±1) − lφ′

2(±1) + [V12U
′
1(±1) − U ′

2(±1)]η± = 0, (18b)

V12φ1(±1) − lφ2(±1) = 0, (18c)

φ′′
1 (±1) + k2φ1(±1) − Mfr

Re1

Re2
l2[φ′′

2 (±1) + k2φ2(±1)]

+
[
U ′′

1 (±1) − Mfr
Re1

Re2
l U ′′

2 (±1)

]
η± = 0, (18d)

−[ω + ikU1(±1)]φ′
1(±1) + lMfr[ωV12 + ikU2(±1)]φ′

2(±1)

− 3k2

Re1
φ′

1(±1) + 3
l2Mfr

Re2
k2φ′

2(±1)

+ ikU ′
1(±1)φ1(±1) − ilMfrkU

′
2(±1)φ2(±1)

+ 1

Re1
φ′′′

1 (±1) − l2Mfr

Re2
φ′′′

2 (±1) ∓ ik3

We
η± = 0, (18e)

φ2(±∞) = 0, (18f)

φ′
2(±∞) = 0, (18g)

In the previous equations Re1 = Ū1h/ν1 is the liquid sheet Reynolds num-
ber, Re2 = U2∞δ/ν2 the gas stream Reynolds number, Mfr = ρ2U

2
2∞/(ρ1Ū

2
1 )
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the gas/liquid momentum flux ratio and We = ρ1Ū
2
1h/σ the Weber number.

Apart from these four dimensionless groups, the ratio of the gas boundary layer
thickness to the liquid sheet half thicknesses, l = δ/h, and the velocity ratio
V12 = 1/V21 = Ū1/U2∞ enter the solution.

Note that the boundary conditions (18f, 18g) are imposed at infinity. In order
to reduce the computational domain to a finite size, the analytical solution in the
outer, constant velocity domains, i.e.,

φ(y) =
{

C eky, y > 0,
C e−ky y < 0,

(19)

(C is a free constant) is matched to the computed solution at the outer edge of the
gas boundary layer, y = ±(1 + l). Thus, the new boundary conditions are

φ2((1 + l)) = C ek(1+l),

φ2(−(1 + l)) = C e−k(1+l). (20)

In order to retain the linearity of the boundary conditions, in (19) only the inviscid
part of the analytical solution has been considered. Therefore, to replace the two
boundary conditions and to determine the constant C, three constraints are nec-
essary, namely, continuity of downstream velocity, of transverse velocity and of
normal stresses. Thus, (18f, 18g) are replaced by

φ′
2(±(1 + l)) ± k φ2(±(1 + l)) = 0,

φ′′′
2 (±(1 + l)) ± k3 φ2(±(1 + l)) = 0. (21)

These boundary conditions allow the investigation of the viscous instability in
an infinite domain, including the high-speed air effects and the gas boundary layer
thickness. The flow confined between two parallel walls, with the liquid sheet flow-
ing into a quiescent gas and the perturbation vanishing at the walls has been treated
by Teng et al. [37]. However, the present configuration is clearly different from the
latter, both, from a physical standpoint and from their mathematical formulation.

3. Numerical Procedure

In order to solve the previous system of coupled Orr–Sommerfeld equations, the
Tau–Galerkin projection method is employed. The solution space is expanded in
Chebyshev polynomials, which are defined in the closed interval [−1, 1]. The
procedure is illustrated in detail in [14, 28, 37].

Since there are two media, the computational domain was divided into three
zones: one liquid domain surrounded by two gas domains. For the uniform semi-
infinite gas zones, analytical solutions for the perturbation were derived and, then,
used as boundary conditions for the gas boundary-layer regions.

Within each zone the spatial coordinates must be mapped to [−1, 1]. This has
already been done for zone 1, where −1 ≤ y ≤ 1. The corresponding mappings



244 G. HAUKE ET AL.

for the remaining zones are defined as y ∈ [1, 1 + l] −→ y2+ ∈ [1,−1], and
y ∈ [−(1+ l),−1] −→ y2− ∈ [1,−1] which are expressed by the following linear
transformations

y = 1 − 1

2
l (y2+ − 1),

y = −1 − 1

2
l (y2− + 1). (22)

After introducing the change of variables, the basic velocity profiles can be
expressed as

U1(y) = 1

2
K1y

2 + B1,

U2±(y2±) = Ey2
2± ± Fy2± + H, (23)

where

K1 = 2
a2h

2

Ū1
,

B1 = a0

Ū1
,

E = 1

U2∞
(
1

4
b2),

F = − 1

2U2∞
(b1 + b2),

H = 1

U2∞
(b0 + 1

2
b1 + 1

4
b2). (24)

The change of variables also affects the derivatives, which must be multiplied by
the Jacobian of the transformation. That is, in medium 2, the nth derivative of φ2

and U2 is multiplied by (−2/ l)n.
The perturbation amplitudes are then expanded in series of Chebyshev polyno-

mials,

φ1(y) =
N1∑
n=0

anTn(y), −1 ≤ y ≤ 1, (25a)

φ2+(y2+) =
N2∑
n=0

bnTn(y2+), −1 ≤ y2+ ≤ 1, (25b)

φ2−(y2−) =
N2∑
n=0

dnTn(y2−), −1 ≤ y2− ≤ 1. (25c)
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In medium 1, the odd and even modes decouple and any solution can be ex-
pressed as a linear combination of the odd and even solutions. The even mode (the
symmetric solution, formed by functions with even powers of y, i.e. a2n+1 = 0)
generates the sinuous mode. In this mode φ(y) = φ(−y), ζ+(x, t) = ζ−(x, t). The
odd mode (the antisymmetric solution, formed by odd powers of y, i.e., a2n = 0)
generates the varicose mode. Here φ(y) = −φ(−y) and ζ+(x, t) = −ζ−(x, t). In
the solution of φ2 and φ3, the even and odd powers do not decouple.

The sinuous mode is obtained by retaining the even expansion for φ1 and the
varicose mode, by retaining the odd terms in the expansion. Attention will focus
on the sinuous mode since the varicose mode is not experimentally observed. The
boundary conditions for the sinuous mode, at y = y2+ = 1, are

N1∑
n=0

ika2n + [ω + ikU1(1)]η+ = 0, (26a)

N1∑
n=0

V12(2n)
2a2n −

N2∑
n=0

l

(
−2

l

)
n2bn

+
[
V12U

′
1(1) −

(
−2

l

)
U ′

2+(1)
]
η+ = 0, (26b)

N1∑
n=0

V12a2n −
N2∑
n=0

lbn = 0, (26c)

N1∑
n=0

[
4n2(4n2 − 1)

3
+ k2

]
a2n

−
N2∑
n=0

Mfr
Re1

Re2
l2

[(
−2

l

)2
n2(n2 − 1)

3
+ k2

]
bn

+
[
U ′′

1 (1) − Mfr
Re1

Re2
l

(
−2

l

)2

U ′′
2+(1)

]
η+ = 0, (26d)

N1∑
n=0

[
−
(

3k2

Re1
+ ikU1(1)

)
4n2 + ikU ′

1(1)

+ 4n2(4n2 − 1)(4n2 − 4)

15Re1
− ω 4n2

]
a2n
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+
N2∑
n=0

lMfr

[(
3k2l

Re2
+ ikU2+(1)

)(
−2

l

)
n2 − ik

(
−2

l

)
U ′

2+(1)

− n2(n2 − 1)(n2 − 4)

15

l

Re2

(
−2

l

)3

+ ωV12

(
−2

l

)
n2

]
bn

− ik3

We
η+ = 0. (26e)

At y2+ = −1, the boundary conditions are

N2∑
n=0

((
−2

l

)
(−1)n+1n2 + k(−1)n

)
bn = 0, (27a)

N2∑
n=0

((
−2

l

)3
(−1)n+3n2(n2 − 1)(n2 − 4)

15
+ k3(−1)n

)
bn = 0. (27b)

All the equations have been written taking into account that Tn(±1) =
(±1)n, T ′

n(±1) = (±1)n+1n2, T ′′
n (±1) = (±1)n+2n2(n2 − 1)/3, T ′′′

n (±1) =
(±1)n+3n2(n2 − 1)(n2 − 4)/15.

The unknowns are the coefficients a2n (0 ≤ n ≤ N1), bn (0 ≤ n ≤ N2) and
η. That is, N1 + N2 + 3 unknowns. In the Tau–Galerkin method, the boundary
conditions are imposed as additional equations which replace the higher order
projections. Thus, 0 ≤ n ≤ N1 − 1 equations are retained for the liquid domain
and 0 ≤ n ≤ N2 − 3 for the gas domain; the 7 boundary conditions are added in
order to close the system of equations.

All the computations where performed in double precision arithmetic. The
computation of the generalized eigenvalue problem was solved with the LAPACK
zgegv.f subroutine [20] which required the BLAS library. The computer code was
checked against other published data. In particular,

(i) Stability of Poiseuille flow [28].
(ii) Temporal stability of stratified flow [30].
(iii) Stability of a liquid sheet in a quiescent gas [37].

An example of convergence of the eigenvalue of maximum amplification is
shown in Table I. In this method, one should be aware of spurious diverging
eigenvalues, which should not be taken into account.

4. Results

A temporal stability analysis has been performed; for a given wavenumber, k, the
complex temporal frequency, ω, is found. Temporal growth appears for a positive
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Table I. Example of convergence of the maxi-
mum amplification rate at a fixed wavenumber.
ρ1 = 998.0 kg/m3, ρ2 = 1.21 kg/m3,
µ1 = 0.89e − 3 kg/ms, µ2 = 0.018e − 3 kg/ms,
σ = 71.99e − 3 Pa m, U2∞ = 15 m/s, Ū1 = 1 m/s,
h = 0.175 mm, δ = 0.32 mm, k = 0.02.

N1 N2 ωr ωi

4 8 0.0633400524 –0.0365095214

8 16 0.0633355793 –0.0364495698

16 32 0.0633355780 –0.0364495705

real part, ωr > 0. The imaginary part of the temporal frequency, ωi , corresponds to
the wave oscillation frequency and can be related to the wave propagation speed,
c, through c = ωi/k.

The selected values for the variables employed in the analysis, such as the
boundary layer thicknesses and air and water mean velocities, have been chosen
to reflect realistic situations of atomization processes or values of reported experi-
ments. In particular, air boundary layer thickness has been estimated according to
the expression for a flat plate laminar boundary layer at a distance of 6 mm.

In Figure 2, the non-dimensional growth rates are plotted as functions of the
non-dimensional wavenumber for a 350 µm thick water sheet exiting at 5 m/s, with
coflowing air moving at 15 m/s (dotted line) and 0.1 m/s (solid line). The higher air
velocity would correspond to an air-assisted atomization whereas the lower value
would be close to a pressure atomizer. The present computer code is capable of
analyzing both situations. Although not shown in the figure, it is to be noted that
a decrease in air velocity does not necessarily imply a decrease in growth rate;
however, for an air-blasted configuration with air velocity amply exceeding the
water speed, this is true. Incidentally, for a water velocity of 5 m/s, the same sheet
thickness and a solid wall placed at ±(h+ δ), the physical configuration described
by Teng et al. [37] is stable. This result may well indicate that the physics involved
in the problem of Teng et al. is different from that in the present one due to the
specific basic states and boundary conditions (wall confined flow in the former,
and infinite free air stream in the latter).

Figure 2 is customary for the amplification rate curves; for small wavenumbers,
the curves monotonically increase until a maximum is reached; the presence of a
maximum is due to surface tension effects; otherwise, the curve is monotonically
increasing. Above the maximum, the curve decreases until the coordinate axis is
crossed. The observed inflection point (change of curvature) and long tail are due
to viscous effects in the perturbation flow.
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Figure 2. Dimensionless temporal growth rates obtained for two typical configurations for
an air/water system. Air speed larger and smaller than liquid velocity. For the two cases,
water velocity is kept constant at 5 m/s (Re1 = 850). For the higher air velocity (15 m/s)
δ = 0.32 mm and for the lower one (0.1 m/s) δ = 23.95 mm.

4.1. VARIATION OF NON-DIMENSIONAL GROUPS

A parametric study of growth rates as a function of the wavenumber, varying the
different dimensionless groups, is next presented. In order to independently and
individually vary the relevant non-dimensional numbers (liquid and gas Reynolds
numbers, momentum flux ratio, Weber number, gas boundary layer to liquid sheet
thickness ratio and gas/liquid velocity ratio), the properties of the two fluids are first
varied maintaining h, δ, Ū1 and U2∞ constant. A change of µ1, then, yields a varia-
tion of Re1, the other dimensionless groups remaining constant. Figure 3 is a plot of
the temporal growth rate in terms of the wavenumber varying the liquid Reynolds
number, Re1. Increasing Re1 leads to a wider range of unstable wavenumbers on the
small wavelength side. It is to be noted that the wavelength at which the maximum
growth rate occurs, as well as the value of the maximum growth rate, are extremely
insensitive to these variations. In practical terms, this means that the characteristics
of the spray are almost independent of the liquid viscosity. The imaginary part of
the temporal frequency as a function of the wavenumber is presented in Figure 4.
The slope of this curve yields the wave propagation speed, which is largely inde-
pendent of the liquid Reynolds number. Below the inflection point, the propagation
speed remains approximately equal to the liquid velocity (non-dimensional slope
equal to one). Above the inflection point, the slope increases up to about two.

Changing only the gas dynamic viscosity, µ2, causes a variation of Re2, main-
taining the five remaining dimensionless numbers constant. Figure 5 plots the
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Figure 3. Dimensionless temporal growth rate as a function of non-dimensional wavenumber
for Re2 = 460, We = 9.7, Mfr = 0.181, l = 1.4, V21 = 12.5 and several liquid Reynolds
numbers (Re1).

Figure 4. Dimensionless temporal frequency as a function of non-dimensional wavenumber
for the same values of Re2, We, Mfr, l and V21 as in Figure 1,and several liquid Reynolds
numbers (Re1).
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Figure 5. Dimensionless temporal growth rate as a function of non-dimensional wavenumber
for Re1 = 340, We = 9.7, Mfr = 0.181, l = 1.4, V21 = 12.5 and several gas Reynolds
numbers (Re2).

growth rate as a function of the wavenumber for several gas Reynolds numbers,
Re2; increasing Re2 has a stabilizing effect on the sandwiched liquid sheet for small
wavelengths. This influence is still moderate. The trends displayed in Figure 6 are
almost identical to those of Figure 4, the non-dimensional frequency and wave
speed being practically insensitive to changes in the gas Reynolds number.

Changing only the gas density, ρ2, and its dynamic viscosity, µ2, in such a
manner that the gas kinematic viscosity remains constant, ν2 = µ2/ρ2, yields
a variation of Mfr, solely. Figure 7 indicates that an increase in the momentum
flux ratio significantly enhances the growth rate, simultaneously destabilizing the
small wavelengths. Larger momentum flux ratio numbers increase the wavenum-
bers where the maximum growth rate is attained. Viewing the momentum flux
ratio as the relation between the gas and the liquid dynamic pressures, it is to be
expected that larger gas pressures are potentially favorable for triggering the liquid
sheet instability. Changes in the wave propagation speed with Mfr are apparent in
Figures 8 and 9. Figure 9 shows the wave propagation speed at the wavenumber
of maximum growth as a function of the Mfr. It can be seen that variations of Mfr

have also a substantial effect on this parameter, which ranges from 1 for small Mfr

to values in the neighborhood of 1.6 at large Mfr numbers.
Varying only the value of the surface tension, σ , changes the Weber number,

We, while maintaining constant the five remaining dimensionless groups. Figure 10
depicts the temporal growth rate in terms of the wavenumber for several We;
increasing surface tension has a stabilizing effect on the sheet oscillation as one
could expect on intuitive grounds; the increment in σ reduces both the temporal
growth rate and the range of unstable wavenumbers. Small wavelengths are prone
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Figure 6. Dimensionless temporal frequency as a function of non-dimensional wavenumber
for the same values Re1, We, Mfr, l, V21 as in Figure 3, and several gas Reynolds numbers
(Re2).

Figure 7. Dimensionless temporal growth rate as a function of non-dimensional wavenumber
for Re1 = 340, Re2 = 460, We = 9.7, l = 1.4, V21 = 12.5 and several momentum flux ratios
(Mfr).
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Figure 8. Dimensionless temporal frequency as a function of non-dimensional wavenumber
for Re1, Re2, We, l, V21 as in Figure 5, and several momentum flux ratios (Mfr).

Figure 9. Dimensionless wave propagation speed as a function of Mfr.
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Figure 10. Dimensionless temporal growth rate as a function of non-dimensional wavenumber
for Re1 = 340, Re2 = 460, Mfr = 0.181, l = 1.4, V21 = 12.5 and several Weber numbers
(We).

Figure 11. Dimensionless temporal frequency as a function of non-dimensional wavenumber
for the same values of Re1, Re2, Mfr, l, V21 as in Figure 8, and several Weber numbers (We).
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Figure 12. Blowup of Figure 11 for small values of the non-dimensional wavenumbers.

to instabilities as We is increased because the surface tension has a minor effect on
small curvatures. Figures 11 and 12 illustrate the behavior of the wave propagation
speed. A change of slope in the dimensionless frequency (and thus, in the wave
propagation speed) can be again observed at the inflection point of the growth rate-
wavenumber curve. For wavenumbers below the inflection point (i.e., for small
wavenumbers), the wave speed is independent of the We number and is basically
equal to the liquid speed (for small Mfr numbers). For wavenumbers above the
inflection point (i.e., for large wavenumbers), an increase of the wave speed can be
noticed, which decreases with increasing Weber number. In this case, the behavior
of the interface, significant for larger values of the surface tension, yields an incre-
ment of the wave speed to values almost twice that of the liquid velocity; this trend
is also present for large wavelength oscillations.

4.2. VARIATION OF DIMENSIONAL PARAMETERS

In the previous subsection an analysis varying a single dimensionless group and
keeping the remaining ones constant has been performed. However, in most ex-
perimental situations, only the physical variables, such as velocity, pressure or
geometrical parameters, can be directly controlled whereas the fluid properties are
usually kept constant.

For this reason, an analysis has also been performed for constant properties of
the two fluids as well as constant liquid and gas velocities, Ū1 and U2∞, respec-
tively; the parameter δ, representative of the gas boundary layer thickness, has then
been varied, while the liquid sheet thickness, h, has been kept constant. Re1, Mfr,
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Figure 13. Dimensionless temporal growth rate as a function of non-dimensional wavenumber
for Re1 = 340, Re2 = 0.83l Re1, Mfr = 0.181, We = 9.7, V21 = 12.5 and several ratios of
the boundary layer thickness to liquid half-width (l = δ/h).

We and V21 are, therefore, constant and Re2 is linearly dependent of l = δ/h.
(Re2 ≈ 0.83lRe1). Figure 13 displays the influence of l upon the temporal growth
rate as a function of the wavenumber. Increasing the thickness ratio, l, has a stabi-
lizing effect on the liquid sheet oscillation, specially on the growth rate value. For
a constant h, larger l implies a thicker boundary layer; as Ū1 is constant, a thicker
boundary layer (large l) contains less vorticity than a thinner one (small l). As the
liquid sheet deforms, the more intense the vorticity patterns (small l) in the basic
flow, the stronger the induced destabilizing pressure fields. This behavior has been
unveiled by López-Pagés [23] through numerical simulation of a two-dimensional
liquid sheet with gaseous coflows.

The boundary layer thickness is then one of the key physical parameters gov-
erning this process. Therefore, the boundary layer and its associated viscous effects
cannot be ignored if the instability of sheets in air-assisted situations is to be
correctly predicted.

Figure 13 can also be used to discuss the effect of liquid sheet thickness varia-
tion. Reducing h while maintaining δ constant has the same effect as increasing l

through a boundary layer thickness increment. Thinner liquid sheets seem to be
more stable for all wavelengths, but specially for the small wavenumber range
where the maximum growth rate takes place. However, this behavior is not ob-
served experimentally. In this respect, it is worth pointing out that keeping constant
the properties of the two fluids, Ū1, U2∞ and δ, and varying the liquid sheet thick-
ness, h, will imply simultaneous variations in Re1, We and l; a reduction in h
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Figure 14. Dimensionless temporal growth rate as a function of non-dimensional wavenumber
for Re1 = 460, U2∞ = 25 m/s, l = 1.4, physical liquid properties corresponding to the water,
and several liquid Reynolds numbers. For Ū1 = 1 m/s; Re1 = 170, Mfr = 0.73, We = 2.43
and V21 = 25; for Ū1 = 3 m/s; Re1 = 510, Mfr = 0.08, We = 21.88 and V21 = 8.33; and
for Ū1 = 5 m/s; Re1 = 850, Mfr = 0.03, We = 60.76 and V21 = 5.

simultaneously leads to a combination of stabilizing effects due to the increment
of l and to the reduction of Re1 and We.

Figures 14 and 15 are plots of the growth rate as a function of the wavenumber
for several Ū1 and U2∞, respectively; maintaining all the remaining fluid properties
and thicknesses constant. These are typical experimental results (see, for example,
[1]) when liquid and air velocities are easily controlled. All one can say in connec-
tion with Figure 14 is that the combined action of de-stabilizing effects, through
the increments of Re1 and We, and stabilizing effects, through the reduction of
Mfr, yield an overall stabilizing result, manifested mainly in significantly lower
growth rates. Similarly, Figure 15 illustrates that, for Re1, We and l constants, the
de-stabilizing action of an increment in the Mfr overcomes the stabilizing effects of
a growth in the Re2. In both instances, the controlling dimensionless group seems
to be the momentum flux ratio.

Changing only the liquid density, ρ1, simultaneously changes the values of Re1,
Mfr and We. Figure 16 indicates that the overall effect of increasing ρ1 is a stabi-
lization of the liquid sheet with a significant reduction in the growth rate for small
wavenumbers and comparable growth rates for asymptotically large wavenumbers.
Again, the de-stabilizing action of the increments of Re1 and We is overcome by the
stabilizing effects of the reduction in the Mfr. Figure 17 clearly shows that liquid
density variations lead to significant changes in the wave propagation speed.
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Figure 15. Dimensionless temporal growth rate as a function of non-dimensional wavenumber
for U1 = 2 m/s, Re1 = 340, We = 9.7, l = 1.4, physical gas properties corresponding
to air and liquid corresponding to water. For U2∞ = 15 m/s; Re2 = 343, Mfr = 0.07
and V21 = 7.5; for U2∞ = 35 m/s; Re2 = 525, Mfr = 0.35 and V21 = 17.5; and for
U2∞ = 55 m/s; Re2 = 660, Mfr = 0.88 and V21 = 27.5.

Figure 16. Dimensionless temporal growth rate as a function of non-dimensional wavenumber
for Ū1 = 2 m/s, U2∞ = 25 m/s, Re2 = 460, V21 = 12.5, l = 1.4, and several liquid
densities. For ρ1 = 100 kg/m3, Re1 = 34, Mfr = 1.81 and We = 0.97; for ρ1 = 1000 kg/m3,
Re1 = 340, Mfr = 0.181 and We = 9.72; and for ρ1 = 10000 kg/m3, Re1 = 3400,
Mfr = 0.018 and We = 97.2.
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Figure 17. Dimensionless temporal frequency as a function of non-dimensional wavenumber
for the same conditions as in Figure 14.

Figure 18. Comparison of temporal growth rate as a function of non-dimensional wavenum-
ber resulting from the various existing studies and the present one. The parameters considered
in this figure are U1 = 5 m/s (Re1 = 850), U2∞ = 10 m/s (Re2 = 330) and for a water/air
system.
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Figure 19. Neutral stability curves for various gas velocities and Ū1 = 1 m/s,
ρ1 = 998 kg/m3, ρ2 = 1.2 kg/m3, µ2 = 0.018 · 10−3 Pa-s, σ = 0.072 N/m and
h = 0.175 mm. The gas boundary layer thickness is, respectively, 0.32, 0.25, 0.18 and
0.14 mm (U unstable region and S stable region).

Finally, for the same values of the physical parameters, Figure 18 compares the
results of previous studies (inviscid, [22] and inviscid basic flow/viscous perturba-
tion) with those of the present study. The inviscid and the Li and Tankin predictions
perfectly coincide. This is so because the Mfr = 0.004 is very small. For the values
used in this comparison the discrepancies seem to be limited to large wavenumbers
beyond the region of maximum growth rates. In general, the effects of the bound-
ary layer cause a reduction in the maximum growth rate and the corresponding
wavenumber.

4.3. NEUTRAL STABILITY CURVES

Figures 19 and 20 show neutral stability curves (Re1 versus k) for various air
velocities. The properties of air have been taken for the gas, whose boundary
layer thickness has been changed accordingly to the air speed. The liquid Reynolds
number has been obtained keeping the water properties constant with a liquid speed
of 1 m/s, but varying the liquid viscosity. The abscissa of the plots has been limited
to a dimensionless wavenumber of 22, which for a sheet thickness of 350 µm
corresponds to a fairly small wavelength of 100 µm; this wavelength is much
shorter than the experimental value observed under these conditions [1].

Each curve in Figure 19 separates the zones of stability, (to the right of the
curves and marked as S) and instability (to the left of the curves and marked as U).
Figure 20 has been obtained at a fixed water velocity of 1 m/s and air velocity of
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Figure 20. Neutral stability curves for an air speed of 45 m/s (δ = 0.25 mm). The remaining
parameters are the same as in Figure 19 (U unstable region and S stable region).

45 m/s. The only difference with the data of Figure 19 is that the boundary layer
thickness for that air speed (0.18 mm) has been changed to 0.25 mm; the influence
of δ/h and the viscous effects are thus apparent. It can be observed how a slight
variation of the δ/h ratio dramatically change the curves of neutral stability. In this
case, even a stability island, which was not present before, is apparent.

Figure 21 depicts the evolution of the non-dimensional growth rates along the
cuts displayed in Figure 20. The changes in slope of the neutral stability curves
depend on different eigenvalues emerging and disappearing.

4.4. STREAMFUNCTIONS

Figure 22 shows the real part of a typical streamfunction at the wavenumber of
maximum growth rate. The imaginary part is negligible. It can be noted that the ver-
tical velocity perturbation is basically constant and decreases in the gas boundary
layer region to match the decaying analytical solution of the outer part. A smooth
tiny kink can be observed at the interface y = 1 in the gas region. This maximum
can be explained by the continuity of the streamfunction and its derivative across
the gas/liquid interface. Since the slope of the streamfunction is positive in the
liquid region and at the same time it has to vanish very far from the centerline, there
must exist and inflection point in the gas boundary layer. Therefore, although the
present computation cannot give reliably the magnitude of the kink, its presence is
physically plausible. Similar behaviour was found in [21]. The horizontal velocity
perturbations are basically zero in the liquid domain, whereas they are large in
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Figure 21. Dimensionless temporal growth rate as a function of non-dimensional wavenumber
for the Reynolds numbers shown in Figure 20.
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Figure 21. Continued.

the gas region, specially, at the kink nearby the interface. Therefore, it might be
concluded that the horizontal instability is mainly engendered at the interface and
resides in the gas boundary layer.

5. Conclusions

The viscous linear temporal instability of a plane liquid sheet between two semi-
infinite gaseous coflows has been studied. This configuration is representative of
air-assisted atomizers. It is the first time in which both fluids have been treated as
viscous. The complete Orr–Sommerfeld equations and boundary conditions have
been formulated and numerically integrated. Only the antisymmetric or sinuous
mode has been investigated, since this is the only one experimentally observed.
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Figure 22. Non-dimensional streamfunction (modulus) versus non-dimensional cross-stream
distance for Ū1 = 1 m/s (Re1 = 170) and U2∞ = 15 m/s (Re2 = 343). Physical properties
for the gas and the liquid correspond to those of air and water respectively (ρ1 = 998 kg/m3,
µ1 = 0.89 · 10−3 Pa-s, ρ2 = 1.2 kg/m3, µ2 = 0.018 · 10−3 Pa-s, σ = 0.072 N/m), and a
non-dimensional wavenumber value of 0.02 corresponding to the point for maximum growth
rate for δ = 0.32 mm and h = 0.175 mm.

Six relevant dimensionless groups have emerged in this analysis. Apart from the
liquid and gas Reynolds numbers, the Weber number and the gas/liquid velocity
ratio, two previously ignored dimensionless numbers, namely, the momentum flux
ratio and the gas boundary layer thickness to the liquid sheet thickness relation, l,
have been observed to have a rather significant effect on the sheet instability.

A detailed parametric analysis has been conducted, first varying individually
Re1, Re2, Mfr, We, and then changing several physical quantities (l, ρ1, Ū1, U2∞).
Neutral stability curves have also been presented. As a summary, increasing the
momentum flux ratio has a de-stabilizing effect upon the liquid sheet as the dy-
namic pressure of the gas increases compared to that of the liquid. Increasing l

leads to a more stable behavior of the sheet. The boundary layer thickness has
demonstrated to have a large influence upon the neutral stability curve. Therefore,
the viscous effects are of paramount importance to predict this instability, which
governs the mechanics of twin-fluid atomization processes.
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