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Abstract 
 
The patient scheduling problem in outpatient clinics has been studied extensively in literature with several 
mathematical, simulation and heuristic based solutions. Factors that influence a clinic’s decision to follow a specific 
scheduling method depend on the patient arrival factors and the expected encounter time. A significant number of 
small clinics use Bailey’s rule or an adaptation of the Bailey’s rule for patient scheduling due to its simplicity and lack 
of resources to invest in a complex scheduling software system. Often there are competing factors that a scheduler or 
decision maker has to evaluate. These include maximizing clinical resource utilization levels from an economic 
standpoint versus attempting to minimize waiting time for patients from a patient satisfaction/ quality of care 
standpoint. Additional parameters that make the scheduling problem challenging are the variability in patient arrival 
time, no-shows, variability in patient-physician encounter times, emergency patients, and several related factors. This 
research studies the patient scheduling problem in an outpatient clinic using entropy as a common measure to classify 
the dominating factors that contribute towards intended clinic performance criteria and patient satisfaction criteria. 
The goal is to provide an effective and insightful method to study the clinic outpatient scheduling problem which can 
benefit the clinic and the patients. 
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1. Introduction 
Frequently, the performance metrics of an outpatient clinic are characterized by utilization or idle time of the clinic 
system and waiting time of patients. Patient arrival time, no-show, service time and appointment rule have been 
identified as key factors impacting the performance of outpatient clinics according to a number of research studies in 
literature. There are three primary questions related to these factors: How does one factor or several factors affect the 
clinic system utilization and average patient waiting time? Are their impacts on the performance significant? Can these 
factors be classified by relative importance? Majority of the research studies in this area focus on answering the first 
question by either studying one factor while keeping the remaining factors fixed or evaluating choices among several 
levels of factors. This paper intends to explore all of the three questions by identifying dominating factors and 
investigating the potential impact ranking of all the input factors towards intended clinic performance criteria. To 
achieve this objective, simulation experiments are designed to control and compare the effects of these factors. 
Shannon Entropy is introduced as a measure to quantify the relative importance of these factors. The rest of the paper 
is arranged as follows: Section 2 discusses the relevant literature review, followed by the methodology in Section 3. 
Section 4 shows the simulation results and data analysis, followed by concluding remarks in Section 5. 
 
2. Literature Review  
According to Cayirli and Veral’s [1] literature review, “environment factors” of outpatient clinics include: number of 
services, number of doctors, number of appointments per clinic session, unpunctuality of patients, no-show 
probability, walk-ins, presence of companions, service time, lateness and interruption of doctors, and queue discipline. 
These factors and their effects on clinic performance have been studied extensively over the past few decades. A 
number of these studies are based on investigation and experiments due to the complexities involved in analytically 
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modeling and solving such problems. Welch and Bailey [2] provided constructive suggestions on setting the 
punctuality of patient and doctor, service time and scheduling rules to reduce the cost of idle time of both doctors and 
patients. Huarng and Lee [3] proposed a few alternatives to improve the queuing problem in the clinic. There are 
several studies that explore one specific factor. Examples include Bailey [4] that studied the effect of appointment 
scheduling rules. In the following half century, “Bailey’s rule” has performed very well under the tests with different 
scenarios. Ho and Lau [5, 6] also studied scheduling rule and discover the inner relationship of this factor and three 
other factors: the probability of no-show, the coefficient of variation of service times, and the number of patients per 
session. Gupta and Denton [7] provide a comprehensive review of research on scheduling rules. Zhu et al. [8] study 
the optimal appointment number for clinics. Klassen and Yoogalingam [9] discuss the effect of physician interruption 
and lateness. Hofmann and Rockart [10] as well as Bigby et al. [11] address the no-show rate problem. Although none 
of these papers have explored the three questions that are mentioned at the beginning of this paper, they provide 
valuable insight on parameter settings and experiment design in our work.  
 
Experimental design is an effective way to detect the impact of effects. It has been widely used in the health care 
domain for research and practical implementations. For example, Provost [12] describes an experimental design to 
analyze the influence of source of reminders, timing of reminder and clinic appointment number on no-show 
probability. Swisher and Jacobson [13] introduce fractional factorial design into a simulation experiment on a family 
practice healthcare clinic. Schruben and Margolin [14] simulate the patient paths in a hospital and attempt to reduce 
the variability in response surface parameter estimates where the response is the expected number of patients per 
month unable to enter the hospital facility due to space limitations. So far we did not find any research studies in the 
literature related to mixed linear model of experimental design and ANOVA analysis that is presented in this paper. 
These approaches are reliable and helpful from the perspective of both practical feasibility and theoretical validity. 
 
Shannon Entropy and information gain is widely used in machine learning, but it is seldom used in health care. Entropy 
has been introduced to facilitate experimental design. For example, Box and Hill [15] use the expected increase of 
Shannon Entropy as a criterion on model selection. Bernardo [16] sets the Shannon Entropy as the expected utility of 
the experimental design. Ng and Chick [17] propose an entropy-based design criterion to identify important parameters 
and reduce the variance of parameter estimates. Malakar and Knuth [18] present an entropy-based search method to 
select most informative experiments. These studies have led us to explore entropy-based method to determine the 
importance rank among contributing factors.  
 
 
3. Methodology 
 
3.1 Simulation Model Design 
A simulation-based approach is used here to study the performance of an outpatient clinic. In the simulation model, 
the service processes of the clinic are treated as a single server process. We set one hour as a session period, so the 
pattern of appointments repeats each hour. For patients in the clinic, the service will have accumulated delay from 
previous session period to successive session period. An eight-hour work day is set as the simulation run-length in 
order to observe the daily performance of the clinic. As found in typical small practice settings, a one-hour lunch break 
is considered in addition to the eight-hour work day. Given these considerations, there are some assumptions being 
made while developing the model. 
 

 Patient arrival time follows the appointment schedule with certain deviation and no-show probability. 
 Walk-in patients (patient served without and appointment) are not considered. 
 The clinic keeps seeing patient until all patients have been seen. Absence or lateness of clinic staff is not 

considered.   
 No patient arrives during the lunch break (arrival deviations are not included), but the clinic will still see 

patients during the lunch break. 
 Warm-up period at the start of each day is not considered for the simulation experiments. 

 
There are several processes in an outpatient clinic setting, such as check in, interaction with nurse, physician encounter, 
and check out. For the purpose of simplification, the service processes of the clinic is treated as a single server process 
focusing primarily on the physician encounter. Simio is used as the simulation tool to build the model. The simulation 
model is shown in Figure 1. The source object, referred to as Enter, creates patient arrivals in the form of discrete 
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entities. The server object, referred to as SeePhysician, simulates the wait and delay associated with the physician 
encounter process. If needed, the process can be easily expanded to represent all the processes associated with an 
outpatient clinic. The sink object, referred to as Exit, represents the departure of each patient after completion of 
service. The arrival pattern of patients is controlled by the source object, which determines the arrival time of each 
entity through three types of input data: schedules patient arrival time, arrival deviation and no-show probability. The 
service time for each patient is controlled by the server object. Once an entity is created, it is sent to the server 
immediately; similarly, once the service is completed on an entity, it will be sent out of the system immediately. As 
the output of the experiments, resource (physician) utilization and average waiting time of patients are collected during 
each run.  
 

 
 

Figure 1: Simio Model for Outpatient Clinic System. 
 
3.2 Experimental Design 
Input factors for this simulation model are labeled as:  SR: Scheduling Rule, ST: Service Time, AD: Arrival Deviation, 
and NP: No-show Probability. Each of these factors has several levels, and a full factorial design involves all possible 
combinations of these levels across all factors. The notations ݈ௌோ, ݈ௌ், ݈஺஽, ݈ே௉ represent the number of levels of each 
factor, and 365 replications (one-year) are used for each combination. The total number of runs of the experiments is: 
 

ܰ ൌ 365 ൈ ݈ௌோ ൈ ݈ௌ் ൈ ݈஺஽ ൈ ݈ே௉                                                                 (1) 
                        

ܶ is the interarrival time of patient, ߤ	and			ߪ are the mean and standard deviation of service time	ߜ ,ݐ is the arrival 
deviation and ߟ is the no-show probability. Based on practical considerations and literature review, the levels of each 
factor are determined as follows: 

 Service Time:  In the literature, the service time is always considered using certain distributions, such as 
gamma [2, 8], lognormal [8], uniform, exponential [5, 6] and a few other choices. Here we set: 
 

ߤ ൌ 10	minutes;		ߪଶ ൌ 1	, 2; ,ߤሺ݈ܽ݉ݎ݋݊	~	ݐ		  ଶሻ                                          (2)ߪ
 

Since the service time is a random factor, we adopt random effect model to study the experiment results. 
 Scheduling Rule: Scheduling rule defines the arrival pattern of patients specifying the number of patients 

scheduled for a session period. Bailey [4] proposed the cornerstone of the scheduling rules, which suggests 
assigning multiple patients at the beginning of a session, and one patient thereafter with an interval equaling 
the average service time. Ho and Lau [5, 6] designed more than 40 scheduling rules and tested them under 
various scenarios. For our experiments, since ߤ ൌ 10	minutes, then for a session period of one hour, the 
average number of patients served is 
 

଺଴

ఓ
	ൌ 6                                                                           (3) 

 
Based on (2) as well as practical experience and literature review, we have designed three scheduling rules. 
Let  ௜ܶ

௝ be the interarrival time of the ݅௧௛ patient of the ݆௧௛ level, then we have: 
o Rule 1: assign two patients every quarter of the first half hour and one patient every quarter of the 

remaining half hour, i.e. 
 

௜ܶ
ଵ 	ൌ ቄ

					0,					݅ ൌ 1, 2, 4		
 (4)                                                      		݁ݏ݅ݓݎ݄݁ݐ݋				,15				

 
o Rule 2: (Based on Bailey’s rule) assign one patient every ten minutes, i.e. 
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 ௜ܶ
ଶ 	ൌ 	 ቄ

0,					݅ ൌ 1
 (5)                                                    ݁ݏ݅ݓݎ݄݁ݐ݋					,10							

 
o Rule 3: (Based on Bailey’s rule) assign two patients at the beginning of the period, and one patient every 

twelve minutes, i.e.  
 

௜ܶ
ଷ 	ൌ ቄ

0,			݅ ൌ 1, 2		
 (6)                                                       		݁ݏ݅ݓݎ݄݁ݐ݋			,12				

 
 Arrival Deviation: Based on data from Welch and Bailey [2], we set seven levels of arrival deviation ranging 

from -3 min to +3 min, where a negative value means that the patient arrives earlier than scheduled time. Let 
 :௝ be the ݆௧௛ level of arrival deviation, then we haveߜ
 

௝ߜ ൌ 	െ4 ൅ ݆,					݆ ൌ 1	~	7                                                                 (7) 
 

 No-show Probability:  Bigby et al. [11] stated that no-show probability of patients for medical centers are in 
the range of 10% to 30%, however, using telephone and mail reminder, the no-show probability and be 
reduced significantly. In their experiments, Ho and Lau [5, 6] set no-show probability as high as 20%. 
Considering text and email reminders are common in modern clinical appointment systems, we set the no-
show probability from 0 to 10%.  Let ߟ௝ be the ݆௧௛ level of no-show probability, then we have: 
 

ଵߟ ൌ 0, ଶߟ ൌ 0.02, ଷߟ ൌ ସߟ				,0.05 ൌ 0.1                                                    (8) 
 
Let ௞ܻ be the average response of the ݇௧௛ model, then the linear relationship between output and input factors are: 
 

௞ܻ ൌ ܽ ൅ ܶ௝భ		ௌோߚ ൅ ௝మߜ	஺஽ߚ ൅	ߚே௉	ߟ௝య ൅ ௝రݐߙ ൅	߳௞                                            (9) 
 

In (9), ܽ is the grant mean,  ߚ is the coefficient of fixed factors SR, AD, NP, and ߙ is the coefficient of random 
variables ST,  ߳௞ is the error of the ݇௧௛ model, where ߙ	~	݈ܽ݉ݎ݋݊	ሺ0,			ߪఈଶሻ,  ߳௞~	݈݊ܽ݉ݎ݋	ሺ0,			ߪఢଶሻ.  In this paper, we 
have two responses, resource utilization and average waiting time of patient. We analyze these two response variables 
according to (9). Table 1 is the factor-and-level table of the experiments.  
 

Table 1: Factor-and-level Table of the Experiments. 
 

 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 

Factors 

SR Rule 1 Rule 2 Rule 3     
ST (min) norm(10,2) norm(10,1)      
AD (min) -3 -2 -1 0 1 2 3 
NP 0 0.02 0.05 0.1    

 
 
3.3 Data Analysis Methods 
We apply ANOVA on the output data from the simulation experiments to obtain brief information about the 
significance of each factor. The P-values from the F-test in ANOVA table offers an intuitive explanation whether a 
factor is significant (P-value < 0.05) or not (P-value > 0.05). Using ANOVA we can easily answer the question whether 
a factor’s contribution to the response is significant, while we are still unable to answer the question about the extent 
of a factor’s effect on the response. The use of clustering analysis and entropy measurement can provide further 
insight.  
 
Before we evaluate the impact rank of the factors on response	ܻ, we need to measure different levels (or classes) of 
the response. A clustering analysis approach makes it convenient to classify the response. Here we adopt two different 
methods to divide the response data into clusters. The first one uses customized boundary to split the data. For resource 
utilization, we use 80% as the boundary to split the data into two subsets. For waiting time, we use 0.08 hours (or 4.8 
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minutes) as the boundary to split the data into two subsets. The second method is to use fuzzy C-means clustering 
analysis to divide the data into two or three clusters.  
 
Let Y be the set of response elements gained from each experiment model, x be any fixed or random input factor of 
the model, ݈௫ be the number of levels of factor x. After classification, we can use the information gain of the response 
set ܻ	to measure the expected reduction in entropy due to one factor. Let ܩሺܻ,  ሻ be the information gain of responseݔ
vector ܻ on factor x, let ܪሺܻሻ be the Shannon Entropy of response vector Y after clustering, then we have: 
 

ሺܻሻܪ ൌ െ∑ ௜	஼௟௨௦௧௘௥	௜݌ logଶ  ௜                                                           (10)݌
 
where ݌௜ is the proportion of response elements in Cluster i. It is the ratio of number of response elements in Cluster 
i to the total number of response elements |Y|. 
 
If we classify the response set Y by the levels of x associated with each response elements, then we get ݈௫ subsets of 
Y. Then we perform clustering analysis on each of the subset. Let ܪሺ ௫ܻሻ௝ be the Shannon Entropy of the response 
subset classified on level j of factor x, then the information gain on factor x can be calculated by: 
 

,ሺܻܩ ሻݔ ൌ ሺܻሻܪ െ	∑ ሺܪ௝ݍ ௫ܻሻ௝
௟ೣ
௝ୀଵ 	                                                        (11) 

 
where ݍ௝ is the proportion of response elements in the subset on level j of factor x. It is the ratio of number of response 
elements in the subset on level j of factor x to the total number of response elements |Y|.  ܪሺ ௫ܻሻ௝ is also called the 
conditional Entropy, i.e. 
 

ሺܪ ௫ܻሻ௝ ൌ ݔ	of	level	|	ሺܻܪ ൌ ݆ሻ                                                           (12)  
  

Information Gain in (11) shows the relevance of factor x to the response. The higher the information gain on x, the 
more important factor x is.  
 
4. Experimental Results and Analysis 
 
4.1 Plot for Experiment Results 
We set inputs for the simulation model according to the factors and levels shown in Table 1. The total number of 
combinations of levels is 3 ൈ 2 ൈ 7 ൈ 4 ൌ 168 and we set 365 replications for each combination, so the total number 
of runs is 61320. We take the average resource utilization and patient average waiting time (in hours) over 365 
replications for each combination as our Y, and plot the responses against each factor. Figures 2 to 5 show the scatter 
plot of responses versus each factor.  
 

  
 

Figure 2: Scatter Plot of Responses vs. Scheduling Rules. 
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Figure 3: Scatter Plot of Responses vs. Service Time. 
 

  
 

Figure 4: Scatter Plot of Responses vs. Arrival Deviation. 
 

  
 

Figure 5: Scatter Plot of Responses vs. No-show Probability.  
 

From Figure 2 we can see that Rule 3 and Rule 2 lead to higher utilization level than Rule 1, and also lead to lower 
average waiting time than Rule 1. This proves that Bailey’s Rule contributes to better system performance. Figure 3 
implies that given the same mean, service time with lower variance can lead to higher utilization and lower average 
waiting time. Figure 4 shows that patients arrive later than the scheduled time will cause lower system utilization 
although the average waiting time drops. From Figure 5, it is clear that utilization and waiting time decreases with 
increasing no-show probability is. Among the four factors, we see that patient arrival deviation and no-show 
probability cannot reach consistent trends on the two responses. Thus to achieve a better system performance, the 
clinic can choose Rule 2 or Rule 3, reduce the service time variance, and create an intervention to improve the patient 
punctuality and no-show probability to draw a balance between resource utilization and average waiting time. 
 
4.2 ANOVA Tables of Experiment Results 
The plots in section 4.1 offer an intuitive way to observe the impacts of factors on the responses. An ANOVA analysis 
is required to show whether the impacts of factors are statistically significant. Table 2 summarizes the results of 
ANOVA analysis using MINITAB. The row names, SR, ST, AD and NP, represent the four factors. In the columns, 
DF is the degree of freedom for each factor. The degree of freedom equals ݈௫ െ 1, the total degree of freedom is 168 
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– 1. SS is sum of squares, MS is the mean of squares, F is the test value of F test of the factor, P is the p-value for the 
F test. The test results in Table 2 show that all the four factors are have a significant effect on the two responses.   
 

Table 2: ANOVA for Responses V.S. Factors. 
 

    Response: Utilization Response: Waiting Time 
Source DF SS MS F P SS MS F P 

SR 2 22.4 11.2 95.71 0 0.239232 0.119616 4627.45 0 

ST 1 19.42 19.42 165.98 0 0.008397 0.008397 324.83 0 

AD 6 24.59 4.1 35.02 0 0.001518 0.000253 9.79 0 

NP 3 1446.93 482.31 4121.86 0 0.017679 0.005893 227.97 0 

Error 155 18.14 0.12     0.004007 0.000026     

Total 167 1531.47       0.270831       

 
4.3 Information Gain 
Using (11) and (12) we calculate information gain of each factor corresponding to the two responses. As stated in 
Section 3.3, we use simple data split and fuzzy C-means clustering analysis to classify the response elements. Tables 
3 and 5 use the simple data split with customized boundaries. Tables 4 and 6 are based on fuzzy C-means clustering 
analysis. The results under both methods are consistent. From Tables 3 and 4 we infer that the rank of importance of 
factors on resource utilization is: service time > no-show probability > scheduling rules ≈ arrival deviation. From 
Tables 5 and 6, the rank of importance of factors on average waiting time is: scheduling rules > service time > no-
show probability > arrival deviation.  

 
Table 3: Entropy & Information Gain towards Utilization based on Data Split. 

 
Factor Levels # of >80 # of <= 80 Entropy Proportion 
Total   73 95 0.9876   

SR 
Level1 21 35 0.9544 0.3333 
Level2 25 31 0.9917 0.3333 
Level3 27 29 0.9991 0.3333 

Information Gain 0.0058553       

ST 
Level1 63 21 0.8113 0.5000 
Level2 10 74 0.5266 0.5000 

Information Gain 0.3186468       

AD 

Level1 11 13 0.9950 0.1429 
Level2 11 13 0.9950 0.1429 
Level3 11 13 0.9950 0.1429 
Level4 11 13 0.9950 0.1429 
Level5 10 14 0.9799 0.1429 
Level6 10 14 0.9799 0.1429 
Level7 9 15 0.9544 0.1429 

Information Gain 0.0027214       

NP 

Level1 31 11 0.8296 0.2500 
Level2 21 21 1.0000 0.2500 
Level3 21 21 1.0000 0.2500 
Level4 0 42 0.0000 0.2500 

Information Gain 0.2801926       
 

Table 4: Entropy & Information Gain towards Utilization on Two and Three Clusters. 
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Factor Levels 
# of < 

75.8668 
# of > 

85.1312 
Entropy 

Propor
-tion 

# of < 
78.4077 

# of < 
71.9680 

# of > 
85.8809 

Entropy 
Proport

-ion 
Total   101 67 0.9702   79 29 60 1.4799   

SR 
Level1 35 21 0.9544 0.3333 24 14 18 1.5502 0.3333 
Level2 34 22 0.9666 0.3333 27 8 21 1.4391 0.3333 
Level3 32 24 0.9852 0.3333 28 7 21 1.4056 0.3333 

Information Gain 0.001489692 0.0148665 

ST 
Level1 21 63 0.8113 0.5000 24 0 60 0.8631 0.5000 
Level2 80 4 0.2762 0.5000 55 29 0 0.9297 0.5000 

Information Gain 0.426513173 0.58342384 

AD 

Level1 13 11 0.9950 0.1429 11 4 9 1.4773 0.1429 
Level2 14 10 0.9799 0.1429 11 4 9 1.4773 0.1429 
Level3 14 10 0.9799 0.1429 11 4 9 1.4773 0.1429 
Level4 15 9 0.9544 0.1429 11 4 9 1.4773 0.1429 
Level5 15 9 0.9544 0.1429 12 4 8 1.4591 0.1429 
Level6 15 9 0.9544 0.1429 12 4 8 1.4591 0.1429 
Level7 15 9 0.9544 0.1429 11 5 8 1.5157 0.1429 

Information Gain 0.002755899 0.002243112 

NP 

Level1 17 25 0.9737 0.2500 21 0 21 1.0000 0.2500 
Level2 21 21 1.0000 0.2500 21 0 21 1.0000 0.2500 
Level3 21 21 1.0000 0.2500 16 8 18 1.5100 0.2500 
Level4 42 0 0.0000 0.2500 21 21 0 1.0000 0.2500 

Information Gain 0.226832933 0.352363581 
 

Table 5: Entropy & Information Gain towards Waiting Time based on Data Split. 
 

Factor Levels # of >0.08 # of <= 0.08 Entropy Proportion 
Total   49 119 0.8709   

SR 
Level1 38 18 0.9059 0.3333 
Level2 0 56 0.0000 0.3333 
Level3 11 45 0.7147 0.3333 

Information Gain 0.330645906       

ST 
Level1 39 45 0.9963 0.5000 
Level2 10 74 0.5266 0.5000 

Information Gain 0.109397677       

AD 

Level1 9 15 0.9544 0.1429 
Level2 8 16 0.9183 0.1429 
Level3 8 16 0.9183 0.1429 
Level4 6 18 0.8113 0.1429 
Level5 6 18 0.8113 0.1429 
Level6 6 18 0.8113 0.1429 
Level7 6 18 0.8113 0.1429 

Information Gain 0.008559017       

NP 

Level1 21 21 1.0000 0.2500 
Level2 13 29 0.8926 0.2500 
Level3 8 34 0.7025 0.2500 
Level4 7 35 0.6500 0.2500 

Information Gain 0.059586473       
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Table 6: Entropy & Information Gain towards Waiting Time based on Two and Three Clusters. 
 

Factor Levels 
# of  > 
0.0873 

# of < 
0.0092 

Entropy 
Propor
-tion 

# of > 
0.1133 

# of < 
0.0664 

# of < 
0.0032 

Entropy 
Proporti-

on 
Total   92 76 0.9934   32 80 56 1.4937   

SR 
Level1 56 0 0.0000 0.3333 28 28 0 1.0000 0.3333 
Level2 0 56 0.0000 0.3333 0 0 56 0.0000 0.3333 
Level3 36 20 0.9403 0.3333 4 52 0 0.3712 0.3333 

Information 
Gain 

0.680018585 1.036632104 

ST 
Level1 56 28 0.9183 0.5000 32 24 28 1.0587 0.5000 
Level2 36 48 0.9852 0.5000 0 56 28 0.3900 0.5000 

Information 
Gain 

0.041685253 0.769358311 

AD 

Level1 14 10 0.9799 0.1429 6 10 8 1.5546 0.1429 
Level2 13 11 0.9950 0.1429 5 11 8 1.5157 0.1429 
Level3 13 11 0.9950 0.1429 5 11 8 1.5157 0.1429 
Level4 13 11 0.9950 0.1429 4 12 8 1.4591 0.1429 
Level5 13 11 0.9950 0.1429 4 12 8 1.4591 0.1429 
Level6 13 11 0.9950 0.1429 4 12 8 1.4591 0.1429 
Level7 13 11 0.9950 0.1429 4 12 8 1.4591 0.1429 

Information 
Gain 

0.000621849 0.004782954 

NP 

Level1 28 14 0.9183 0.2500 10 18 14 1.0213 0.2500 
Level2 22 20 0.9984 0.2500 8 20 14 0.9840 0.2500 
Level3 21 21 1.0000 0.2500 7 21 14 1.4591 0.2500 
Level4 21 21 1.0000 0.2500 7 21 14 0.9308 0.2500 

Information 
Gain 

0.014282362 0.394898042 

 
5. Discussions and Conclusions  
From the above analysis we find the following properties of relationship between the four input factors, scheduling 
rules, service time, arrival deviation and no-show probability; and two responses, resource utilization and average 
patient waiting time:  

 As for the scheduling rules, Bailey’s rule can reduce the idle time of resources (physicians) and patients. The 
effect of scheduling rules on reducing average patient waiting time is the most important one. So if the 
decision-maker has a higher emphasis on patient waiting time for evaluating performance or wants to improve 
customer satisfaction, they need to focus on determining and implementing the optimal scheduling rule.  

 As for the service time, a clinic decision-maker should attempt to standardize the encounter time of physicians 
to reduce the variance of the service time in order to improve the utilization and shorten patient waiting time. 
Based on our research, service time is the most important factor related to the performance of a clinic since 
it strongly impacts system utilization and average patient waiting time. Thus it deserves enough emphasis for 
improvement with the highest priority.  

 As for the arrival deviation, if a clinic can intervene on the punctuality of patients to make them arrive on 
time, then it is beneficial to do so since zero deviation can reduce the waiting time and improve utilization. 
Since it has the weakest impact on both responses, so a cost-efficient intervention policy should be adopted.  

 The impact of no-show probability on utilization is very strong, so a reminder policy should be adopted to 
reduce the no-show probability. However, a certain degree of no-show rate can help shorten the average 
waiting time. 

 One should also consider the interaction-effectors of these single factors when making choices.  
 



Fu and Banerjee 

This paper studies four factors affecting outpatient clinic resource utilization and average patient waiting time based 
on a mixed (with fixed and random effects as shown in Formula (9)) linear experimental model. With results generated 
from simulation experiments, a three-step data analysis method is used to explore the impact of the factors. These 
three steps are: (i) response-factor plot, (ii) ANOVA table, and (iii) Entropy and information gain analysis. The three-
step method starts from intuitive observation and gradually gets more advanced, and presents a progressive analysis. 
In the meanwhile, each of the steps contains unique information that the other two steps do not offer. The response-
factor plot answers the question about the choice of level of each factor to achieve higher system utilization and lower 
average waiting time. The ANOVA table verifies that all the four factors contribute significantly towards the two 
responses. The Entropy and information gain analysis introduced from machine learning helps us obtain a clear 
information on the rank of importance of the factors towards the two responses. All these information form the 
recommended suggestions for decision-makers. Additionally, the three steps provides a mutual validation for the other 
two steps. We can observe the consistency among the rank of slopes of the lines in Figures 2 to 5, the rank of F-values 
in Table 2, and the rank of information gain in Tables 5 and 6. One of the topics of future work is to explain or prove 
the consistency of the observed experimental results. 
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