
Cui HM, Wang Lei, Fang DR, Feng XB. Landing Stencil Code on Godson-T, JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 1

Landing Stencil Code on Godson-T

Huimin Cui
1,2

, Lei Wang
1,2

, Dongrui Fan
1
, and Xiaobing Feng

1

1 Key Laboratory of Computer System and Architecture, Institute of Computing Technology, CAS,
100190 Beijing, China
2
 Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R. China

E-mail: {cuihm, wlei, fandr, fxb}@ict.ac.cn

Abstract The advent of multi-core/many-core chip technology offers both an extraordinary opportunity

and a profound challenge. In particular, computer architects and system software designers are faced with

a unique opportunity to introducing new architecture features as well as adequate compiler technology –

together they may have profound impact.

 This paper presents a case study (using the 1D Stencil computation) of compiler-amendable

performance optimization techniques on a many-core architecture Godson-T. Godson-T architecture has

several unique features that are chosen for this study: (1) chip-level global addressable memory – in

particular the scratchpad memories (SPM) local to the processing cores; (2) fine-grain memory based

synchronization (e.g. full-empty bit for fine-grain synchronization).

 Leveraging state-of-the-art performance optimization methods for 1-D stencil parallelization (e.g.

timed tiling and variants), we developed and implement a number many-core based optimization for

Godson-T. Our experimental study show good performance improvements in both execution time

speedups and scalability, validated the value of globally accessed SPM and fine-grain synchronization

mechanism (full-empty bits) under the Godson-T, and provide some useful guidelines for future compiler

technology of many-core chip architectures.

Keywords: many-core, stencil, Jacobi, compiler, SPM, fine-grain synchronization

 Supported by the National Grand Fundamental Research 973 Program of China (No. 2005CB321602), National Natural Science Foundation

of China (No. 60736012), National High Technology Research and Development Program of China (No. 2007AA01Z110), and the National

High-Tech Research and Development Plan of China (No.2009AA01Z103).

1 Introduction

 High-performance processor design is rapidly

moving towards many-core architectures that

integrate 10s (or beyond) of cores on a single chip

[1,2]. Intel recently announced Larrabee, a

many-core x86 architecture [3]. IBM Cyclops-64

will support 160 hardware thread units in one chip

[4,5]. Many-core architecture offers opportunities

and challenges to architects and system software

designers. Their cooperation of new architecture

features design would have profound impact.

Stencil computations represent a practically

important class of computations that arise in many

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357537247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Landing Stencil Code on Godson-T

scientific/engineering codes. Computational

domains that involve stencils include those that

use explicit time-integration methods for

numerical solution of partial differential equations,

and multimedia/image-processing applications that

perform smoothing and other neighbor pixel based

computations [6]. There has been some prior work

that has addressed [6,7,8,9,10,11,12,13,14,15].

In this paper, we develop and implement a

number many-core based optimization for

Godson-T, leveraging state-of-the-art performance

optimization methods for 1-D stencil

parallelization (e.g. timed tiling and variants). Our

experimental study show good performance

improvements in both execution time speedups

and scalability, validated the value of globally

accessed SPM and fine-grain synchronization

mechanism (full-empty bits) under the Godson-T,

and provide some useful guidelines for future

compiler technology of many-core chip

architectures.

The paper is organized as follows. Section 2

overviews Godson-T. Section 3 introduces our

motivation example and states our problem.

Section 4 presents our methods. Section 5 shows

our experimental results, and section 6 and 7

presents the related work and conclusions

respectively.

2 Godson-T Architecture

Godson-T [16,17,18,19] is a processor

prototype of many-core chip. Figure 2.1 gives the

overview of the Godson-T processor architecture.

It has 64 homogeneous, in-order and dual-issue

processing cores. The target frequency of each

core is 1GHz.

Each processing core has a 32KB local

memory. It is private L1 cache by default, and can

be configured as an explicitly-controlled

Scratchpad Memory (SPM), or a hybrid of cache

and SPM. SPM can be globally accessed, and the

bandwidth is 256GB/s. It provides low-latency

access, that is, 1 cycle for local SPM access, and 2

cycles/hop for remote SPM access. In addition,

Godson-T has shared L2 cache.

Fig. 2.1 Overview of Godson-T

Fig.2.2 State machine for full-empty bit of Godson-T

When configured as SPM, 8 bits of tag a

cacheline become word-level full-empty bit for

fine-grain synchronization. The full-empty bit

tagged on memory cell indicates the presence of

data on the memory location, e.g. “1” for “full”,

and “0” for “empty” [20]. There are two types of

fine-grain synchronization instructions: sync type

and future type. The former is used for

producer-consumer style synchronization, whereas

Landing Stencil Code on Godson-T

the latter is used for future data object protection.

Figure 2.2 illustrates the state machine of

full-empty bit.

3 Motivation Example

3.1 1-D Jacobi

At each time t, 0 < t < T, a stencil

computation updates a grid point based on the

values of the point and some neighboring points to

produce the value of the point at time t+1 [7]. The

simplest stencil computation is 1-D Jacobi. It

updates a point using the average of it and its

neighbors, and the code is shown in Figure 3.1

[21]. For simplicity of explanation, the code is

rewritten to Figure 3.2 [6].

3.2 Existing Methods

1-D Jacobi’s performance would be limited

by memory bandwidth if naïve implemented [22].

To reduce memory traffic, leverage tiling in both

the spatial and temporal dimensions uses loop

skewing in order to increase data reuse. Studies by

McCalpin [11] and others [12, 13] have shown

time skewing can benefit [8]. Time skewing

involves loop skewing and tiling [13], and tiles of

shape are shown in Figure 3.3(a) which was called

standard tiling [6]. The horizontal axis represents

the spatial dimension and the vertical is time

dimension. Figure 3.3(b) shows the execution

order with pseudo-code. We can see that the tiles

are started in a pipeline manner.

On multi-core/many-core architecture,

standard tiling must tradeoff between achieving

good data reuse and load balance of parallel

execution [6]. So overlapped and split tiling are

presented in [6].

(b) pseudo-code to show the execution order

Fig.3.3 standard tiling of 1-D Jacobi, time skewing

(b) pseudo-code to show the execution order

Fig.3.4 Overlapped tiling of 1-D Jacobi [6].

Overlapped tiling is shown in Figure 3.4. An

additional triangular region (Q) is added to the left

of the tile P. It eliminates the dependence between

tiles along the horizontal direction, and all the tiles

belonging to the same time slice can start

concurrently. The time slices are executed in

sequential order.

(a) tile shape

for (tt = 0; tt < t_tiles ; tt++) {
 forall (it=0; it < i_tiles, it++) {
 generate local new_tile using
tile(tt, it) and tile(tt, it-1);
 compute new_tile;

 }
}

for (lt =0; lt <i_tiles + t_tiles ;
lt++) {
 forall tiles indexed as (it, tt)
 if (it + tt == lt)
 compute tile(it, tt)
}

Fig.3.1 1-D Jacobi code

for t = 0 to T-1

 for i = 1 to N-2

 B[i] = (A[i-1]+A[i]+A[i+1])/3;

 for i = 1 to N-2

 A[i] = B[i];

for t = 1 to T-1

 for i = 1 to N-2

 A[t, i] = (A[t-1,i-1]+

 A[t-1,i]+A[t-1,i+1])/3;

Fig.3.2 Single statement form of 1-D Jacobi

(a) tile shape

Landing Stencil Code on Godson-T

But overlapped tiling has redundant

computation, Q is calculated twice. To eliminate

the redundancy, [6] presented split tiling, as shown

in Figure 3.5. It splits each standard tile into two

sub-tiles (Ai and Bi). At first step all

non-dependent sub-tiles Ai are executed

concurrently, and then the dependent sub-tiles Bi

[6]. Similar with overlapped tiling, the order of

time slices is kept sequential.

(b) pseudo-code to show the execution order

Fig.3.5 Split tiling of 1-D Jacobi [6]

3.3 Some Open Questions and Problem

Statement

There are three challenges (open questions)

that need to be addressed for stencil running on

Godson-T. We take Figure 3.5 to present these

open questions. For clarification, we explicitly

write barrier statements implied by forall clause.

How to keep good scalability with large

number of cores? Muthu presented bad

scalability of existing methods in [14]. This is

critical for many-core architecture.

How to reduce the cost of barriers, and

furthermore eliminate them? As we know,

barrier is expensive [22]. In existing methods, all

the up-to-date values need to be written to the

shared L2 cache at barrier points. Can we reduce

the cost?

Furthermore, In Figure 3.5, suppose Ai and

Bi is executed by Pi sequentially. P2 can execute

Q just after B2 is finished, and is unnecessary to

wait for others. Therefore barrier is unnecessary.

Can we find some method to totally eliminate

them?

Would traditional optimizations be

applicable for many-core, and how to

determine the optimization parameters?

Traditional optimizations are widely used in

current compilers. But the effect and scalability is

still a problem on many-core.

We state our problem as follows. Given a

Godson-T like many-core architecture (with two

features: globally accessed SPM and fine-grain

memory based synchronization), how to land a

stencil program such that the open issues (as

outlined above) will be effectively addressed.

4 Optimizations on Godson-T

Our optimizations utilize two hardware

features: globally accessed SPM and fine-grain

synchronization. Similar but different mechanisms

are supported on Cyclops64 [4]. We choose split

tiling as our startup, since it has no redundancy.

4.1 Overview of Our Method

To expose fine-grain synchronization chances,

we must determine the tile schedule policy. We use

static binding as our policy. As shown by Figure

4.1(a), each core executes a highlighted

parallelogram. We use tile to represent it, and

sub-tile for triangle (Ai) and trapezium (Bi) areas.

In Figure 4.1(a), the highlighted tile contains 10

for (tt = 0; tt < t_tiles ; tt++) {

 forall (it = 0; it < i_tiles, it++)
 compute triangle_area A(it);
 barrier
 forall (it = 0; it<i_tiles, it++)
 compute trapezia_area B(it);
 barrier
}

(a) tile shape

Landing Stencil Code on Godson-T

sub-tiles (A1~A5, B1~B5). The execution order of

sub-tiles is shown in (b).

We can see that each core would use

xtilesize*ttilesize spaces for calculating a tile

(xtilesize and ttilesize represent space and time tile

size respectively), which should not exceed the

size of SPM. As the problem size grows, we use

DTA [18] to overlap data transferring and

computing, but it’s beyond the scope of this paper.

We manually applied three major

optimizations starting from naïve split tiling: (1)

traditional optimizations for single thread; (2)

using SPM to reduce barrier cost; (3) using

fine-grain synchronization to eliminate barriers.

Fig.4.1 Our method: split tiling without barriers

4.2 Traditional Optimizations

Using multiplication replacing division.

Division has longer latency than multiplication, so

we replace it by multiplication.

Loop unrolling + register allocation +

instruction schedule + bottom loading. The

unroll factor is decided by the number of registers.

Register allocation and instruction scheduling are

done after loop unrolling. Bottom loading is an

effective technique for overlapping loop control

and loading of operands for the next iteration of

the loop [23].

Computation transformation and

optimization (loop unrolling + common

sub-expression elimination (CSE) + Using

MADD + register allocation + software

pipelining + instruction schedule). It seems we

cannot use multiply-and-add (MADD), but it

would turn around after some transformations. The

original statement can be rewritten into

A[t,i]=A[t-1,i-1]*1/3+(A[t-,i]+A[t-1,i+1])*1/3 or

A[t,i]=(A[t-1,i-1]+A[t-1,i])*1/3+A[t-1,i+1]*1/3.

Thus MADD instructions can be used.

Furthermore, after loop unrolling, the calculation

of A[t, i] and A[t, i+1] would have a common

sub-expression (A[t-1,i]+A[t-1,i+1])*1/3, and can

be eliminated by CSE.

4.3 Using SPM

As mentioned in section 2, Godson-T can be

configured to use SPM instead of cache. In this

configuration, SPMs are mapped to a consecutive

global address space. Therefore, all SPMs can be

easily accessed by either local or remote cores.

It is not difficult for the programmers to use

SPM. The program needs minor modification, just

declaring a pointer or array on SPM, and it can be

used as ordinary memory. Programmers can move

original data from off-chip memory to SPM,

calculate, and then store the data to off-chip

memory. Godson-T runtime system provides a

clear interface for programmers.

Using SPM won’t eliminate the barriers, but

it reduces the cost of barriers. At the barrier point,

the up-to-date data needn’t to be written to the

shared cache any more.

(a) tile shape with our method

forall (it = 0; it < i_tiles; it++)
 for (tt = 0; tt < t_tiles; tt++) {
 if (A(tt-1, it) has been passed out))
 compute A(tt, it);
 if (dependencies of B (tt, it) satisfied)
 compute B(tt, it)
}

(b) execution order of tiles and sub-tiles

Landing Stencil Code on Godson-T

4.4 Using Fine-Grain Synchronization

Godson-T supports full-empty bit based on

SPM. So this optimization must be applied after

the optimization of using SPM is done. Fine-grain

synchronization has been researched on many

architectures: HEP [24], Tera [25], MDP [26],

Alewife [27], M-Machine [28], Cray MTA-2 [29],

and the start-of-the-art many-core Cyclops-64 [4].

Data Distribution. We take Figure 4.2 for

presenting our data distribution. Each core

allocates a buffer on its SPM with size of

ttilesize*xtilesize to hold the points of a time slice.

In Figure 4.2, Bi represents the black points and Ai

the white points, i is the core id. Their storage has

no isolation, which means Ai’s n-th line exactly

follows Bi’s. At the beginning of each time slice,

all the data are located at buffer[ttilesize-1]. The

generated data are stored into

buffer[0]~buffer[ttilesize-1] in sequential order

with t increasing from 0 to ttilesize-1. The buffer

would be used repeatedly for each time slice, for

good data reuse.

Fig.4.2 data distribution of 1-D Jacobi on Godson-T

Data Communication. Figure 4.3 shows the

communication pattern. For each line, the two

points of the right-side would be used by another

core. Some would be used only once, while some

twice.

It seems that we can use one-writer-multiple-

reader synchronization as our implementation. But

actually it doesn’t work. Because the buffer is used

repeatedly for each time slice, the next time slice

must determine when a location can be rewritten.

The new data cannot be written until the original

value has been taken away. So this problem should

be modeled as single-producer-multi-consumer.

Godson-T’s full-empty bit only implements a

single-producer-single-consumer model. Weirong

presented synchronization state buffer in [4], using

counter for multi-consumers. Our architecture

designers are considering about this problem.

Without hardware support of

multi-consumers, we can use a naïve method for

stencil computation. At first step, using

synchronized load operations to read the data from

remote SPM into a temporary variable. And

second step, using ordinary load instructions at

each consuming point. Only 2*ttilesize points need

to be synchronized loaded and stored, which is a

tiny portion of the computation set.

Things would turn more complex if the

consumers belong to different tiles executed by

different cores and the execution order is

non-deterministic. That’s beyond the scope of this

paper.

Fig.4.3 Communication pattern of 1-D Jacobi

5 Experimental Results

5.1 Experimental Framework

Our experiments are implemented on

Landing Stencil Code on Godson-T

Godson-T, which was introduced in Section 2. The

program is compiled using the GCC compiler with

–O3 option, and the kernel loop is written with

assembly language. For the sake of comparison,

we also implemented overlapped tiling.

Since the floating point registers of Godson-T

is 32 bits, all the experiments are single floating

point computations. We take FLOPS (floating

point operations per second) as our performance

evaluation. For 1-D Jacobi, in each iteration of t,

the total computation is 3NT. 3NT/exec-time is the

performance we can get.

5.2 Summary of Main Results

Our main experimental results can be

summarized as follows.

Observation 1 (see also Section 5.3.1 for

details): Our program optimization methods can

be applied effectively to the stencil computation in

the 1-D Jacobi code tested. Performance

improvements on our experimental platform are

observed in both execution time speedups and

scalability.

Observation 2 (see also Section 5.3.2 for

details): Our experimental results show the

important value of optimization of using new

hardware features. In particular, the globally

accessed SPM and the fine-grain synchronization

mechanism (full-empty bits) under the Godson-T

many-core chip technology is studied and

evaluated. The former reduces barrier cost, and the

latter eliminates barriers totally.

Observation 3 (see also Section 5.3.3 for

details): Our experimental results provide some

useful guidelines for future compiler technology

of many-core chip architectures. Our findings are

three fold.

First, it appears that the major optimization

methods reported in our work (such as efficiently

usage of globally accessed SPM and fine-grain

synchronization exploration) should be considered

to be incorporated in future many-core

compiler/tools to explore the performance

advantages.

Second, some traditional compiler

optimizations still play important roles on

many-core platform – such as loop unrolling,

register allocation, instruction scheduling, and

software pipelining – their judiciary application

are important to the overall performance.

Third, parameters for compiler optimizations

can be statically determined, including the time

tile size and space tile size. Space tile size can be

chosen according to the size of SPM while time

tile size can be chosen from a set of small integers.

5.3 Detailed Results and Analysis

5.3.1 Overall Performance

Fig.5.1 Performance and scalability of overall

performance

Figure 5.1 shows the overall performance we

can get when we vary the number of cores from 2

Program size: N = 128K, T = 256.

TTILESIZE = 4

Number of cores: varies from 2 to 64.

0

20

40
60

80

100

2 4 8 16 32 64

Perf(GFLOPS)

of cores

Overall Performance

Landing Stencil Code on Godson-T

to 64. It shows that the performance can be almost

doubled as the number of cores is doubled, and we

get almost linear performance as the number of

cores increases (the horizontal axis uses

logarithmic scale, so it’s a curve).

5.3.1 SPM and Fine-grain Synchronization’s

Effects

0
20
40
60
80

100

b
as

e

u
si

n
g
 S

P
M

fi
n

e-
g
ra

in

sy
n

c

o
v

er
la

p
p

ed

ti
li

n
g

P
er

f(
G

F
L

O
P

S
)

opts

Fig.5.2 Performance of our major opts. (using SPM and

fine-grain synchronization)

Fig.5.3 Scalability of our major optimizations (using

SPM and fine-grain synchronization)

First, we fix the number of cores to 64,

Figure 5.2 shows the performance. Before using

SPM and fine-grain synchronization, we can get

the performance of 24.13GFLOPS (with

traditional optimization done, and its contribution

would be evaluated in section 5.3.3). Using SPM

reduces the barrier cost, and the performance

improves to 72.12GFLOPS. Finally, barrier is

eliminated by fine-grain synchronization, and we

get the performance of 82.98GFLOPS. The best

performance using overlapped tiling is also shown

in Figure 5.2 for comparison.

Second, we evaluate the scalability of our

major optimizations. Figure 5.3 shows the effects

of our optimizations as number of cores varies

from 2 to 64. Each line represents the performance

scalability when adding a new optimization. We

can see that each newly-added optimization

provides good scalability.

5.3.1 Guidelines for Compiler

Section 5.3.2 shows the value of our major

optimizations, including efficiently usage of

globally accessed SPM and fine-grain

synchronization exploration. These optimizations

should be considered in future many-core

compilers for performance.

Figure 5.4 shows the performance

improvement with traditional optimizations

applied. The performance is improved to

24.13GFLOPS from 3.77GFLOPS. And Figure 5.5

shows the traditional optimizations’ scalability.

Time tile size is an important parameter

during our optimization. In previous methods,

larger time tile size would bring better data reuse

and benefit. But in our method, SPM is used

repeatedly as a rotating buffer, and barrier is

eliminated. So it’s unnecessary to choose a large

time tile size any more.

Figure 5.6 shows the performance with time

tile size as 2, 4 and 8. We can see that time tile size

can be fixed as a small value set, e.g. 2 and 4.

Increasing time tile size doesn’t benefit.

Meanwhile, it causes the space tile size decreasing,

since ttilesize*xtilesize cannot exceed the size of

Program size: N = 128K, T = 1024.
Number of cores: 64; TTILESIZE = 4

0

20

40

60

80

100

2 4 8 16 32 64

P
er

f(
G

F
L

O
P

S
)

of cores

naïve method

using SPM

using F/E bit

Program size: N = 128K, T = 256.
Number of cores: varies from 2 to
64. ttilesize = 4

Landing Stencil Code on Godson-T

SPM. So the performance declines as time tile size

increases.

0

5

10

15

20

25

30

original using mul opt1 opt2

P
er

f(
G

F
L

O
P

S
)

Fig.5.4 Traditional optimizations’ contributions

0

5

10

15

20

25

2 4 8 16 32 64

P
e
rf

(G
F

L
O

P
S

)

of cores

original

using mul

opt1

opt2

Fig.5.5 Traditional optimizations’ scalability

Fig.5.6 Performance with time tile size

6 Related Works

Many-core architectures have been

considered by both academia and industry. Besides

Larrabee and Cyclops-64 mentioned earlier,

[30][31][32][33][34] also presented many-core

researches, including IBM Cell, Merrimac and

nVidia GeForce. Godson-T is a many-core chip

with new features. There are many researches on it,

including performance optimization [17,18,19]

and architecture design [16].

 On many-core architecture, performance

tuning for specific application is a research focus,

including matrix-multiplication [5], irregular

computation [19], LU decomposition [35], FFT

[36]. There experiences give us important

guidelines during our performance tuning, e.g.

using SPM, loop tiling, register tiling, instruction

scheduling, etc. We adjust these optimizations

aiming at the new target (Godson-T) and

application (stencil), with new hardware and

application features into consideration.

Stencil is important for many

scientific/engineering applications, as mentioned

earlier. Stencil optimization has been researched

on single-core processors [7, 11, 12, 21] for many

years to achieve good data locality. And it is also a

research focus on multi/many-cores in recent years

[6, 8, 9, 10, 13, 14, 22], in order to increase data

locality, obtain good parallelism, balance

workload and reduce memory traffic. We extend

the critical issues with globally accessed SPM and

fine-grain synchronization exploration.

Related works most relevant to this paper

have been discussed in earlier section (Section

3.2), and here we will not repeat.

7 Conclusion & Future work

Our results demonstrate that

globally-accessed SPM and fine-grain memory

0

20

40

60

80

100

2 4 8 16 32 64

P
e
rf

(G
F

L
O

P
S

)

of cores

ttilesize:8

ttilesize:4

ttilesize:2

Performance has no difference when time

tile size is 2 and 4. But it has obvious

slowdown when 8, because of the

decreasing of space tile size.

Opt 1: loop unrolling + register allocation +

instruction schedule + bottom loading

Opt 2: computation transformation + loop

unrolling + madd instruction + register

allocation + instruction scheduling + software

pipelining + CSE

Program size: N = 128K, T = 1024.
Number of cores: 64. TTILESIZE = 4

Program size: N=128K, T= 256.

Number of cores: 64. TTILESIZE = 4.

opt1/opt2 same with Fig 5.4

Landing Stencil Code on Godson-T

based synchronization make great contributions to

stencil code running on Godson-T. We design and

implement a number of many-core based

optimizations for stencil code. Our experimental

study show good performance improvements in

both execution time speedups and scalability,

validated the value of globally accessed SPM and

fine-grain synchronization mechanism (full-empty

bits) under the Godson-T.

Our work also provides some useful

guidelines for future compiler technology of

many-core architecture. First, our optimization

methods can be incorporated in future many-core

compiler/tools to explore the performance

advantages. Second, Traditional optimizations still

play important roles on many-core. Third, the

parameters for compiler optimizations can be

statically determined.

For 1-D Jacobi, the surface-to-volume ratio is

small, and cost of load/store of the boundary

points does not play a critical role for the overall

performance. But for multiple-dimensional

problem, as the surface-to-volume ratio increases,

we should pay more attention to the data layout on

SPM, e.g. if each core reads boundary data from

its preceding core as we did for 1-D Jacobi, cores

with index (x,0) have to pay longer latency than

others due to the longer distance to its preceding

core(x-1, 7), so that these cores become the slower

points of the chip. We will consider this problem

in the future.

References

[1] W. J. Dally. Computer architecture in the

many-core era. In keynote at the 24th Intl.

Conf. on Comput. Design, Oct 1, 2006. San

Jose, CA, USA.

[2] S. Y. Borkar, H. Mulder, P. Dubey, S. S.

Pawlowski, K. C. Kahn, J. R. Rattner, and D.

J. Kuck. Platform 2015: Intel processor and

platform evolution for the next decade, 2005.

[3] Seiler, L., Carmean, D., Sprangle, E., Forsyth,

T., Abrash, M., Pradeep Dubey1, Stephen

Junkins1, A.L., Sugerman, J., Cavin, R.,

Espasa, R., Grochowski, E., Juan, T. &

Hanrahan, P. Larrabee: A Many-Core x86

Architecture for Visual Computing. ACM

Transactions on Graphics Vol. 27.

[4] Weirong Zhu, Vugranam C. Sreedhar, Ziang

Hu, Guang R. Gao: Synchronization state

buffer: supporting efficient fine-grain

synchronization on many-core architectures.

ISCA 2007: 35-45, San Diego,California,USA

[5] Ziang Hu, Juan del Cuvillo, Weirong Zhu,

Guang R. Gao: Optimization of Dense Matrix

Multiplication on IBM Cyclops-64:

Challenges and Experiences. Euro-Par 2006:

134-144, Dresden, Germany.

[6] S. Krishnamoorthy, M. Baskaran, U.

Bondhugula, J. Ramanujam, A. Rountev, P.

Sadayappan, "Effective Automatic

Parallelization of Stencil Computations," in

Landing Stencil Code on Godson-T

Proc. ACM SIGPLAN Conference on

Programming Language Design and

Implementation, June 2007, San Diego,

California, USA.

[7] M. Frigo and V. Strumpen. The memory

behavior of cache oblivious stencil

computations. Journal of Supercomputing,

2006.

[8] S. Kamil, K. Datta, S. Williams, L. Oliker, J.

Shalf, and K. Yelick. Implicit and explicit

optimizations for stencil computations. In

Proceedings of MSPC ’06, pages 51–60, 2006,

San Jose, California, USA.

[9] K. Datta, M. Murphy, V. Volkov, S. Williams,

J. Carter, L. Oliker, D. Patterson, J. Shalf, K.

Yelick, Stencil Computation Optimization and

Auto-tuning on State-of-the-Art Multicore

Architectures, SC2008, Austin, Texas, USA.

[10] L. Renganarayanan, M. Harthikote-Matha, R.

Dewri, and S. V. Rajopadhye. Towards

optimal multi-level tiling for stencil

computations. In IPDPS, pages 1.10. IEEE,

March 2007, Long Beach, California, USA.

[11] J. McCalpin and D. Wonnacott. Time skewing:

A value-based approach to optimizing for

memory locality. Technical Report

DCS-TR-379, DCS, Rugers University, 1999.

[12] Y. Song and Z. Li. New tiling techniques to

improve cache temporal locality. In Proc.

ACM SIGPLAN Conference on Programming

Language Design and Implementation, 1999,

Atlanta, Georgia, USA.

[13] D. Wonnacott. Using time skewing to

eliminate idle time due to memory bandwidth

and network limitations. In

IPDPS:Interational Conference on Parallel

and Distributed Computing Systems, 2000,

Cancun, Mexico.

[14] M. Baskaran, U. Bondhugula, S.

Krishnamoorthy, J. Ramanujam, A. Rountev

and P. Sadayappan, "Automatic Data

Movement and Computation Mapping for

Multi-level Parallel Architectures with

Explicitly Managed Memories," in Proc. 13th

ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, (PPoPP

2008), Salt Lake City, Utah, USA.

[15] K. Datta, S. Kamil, S. Williams, L. Oliker, J.

Shalf, K. Yelick, "Optimization and

Performance Modeling of Stencil

Computations on Modern Microprocessors",

SIAM Review, 2008.

[16] He Huang, Nan Yuan, et al, architecture

supported synchronization-based cache

coherence protocol for many-core processors,

CMP-MSI, 2008, Beijing, China.

Landing Stencil Code on Godson-T

[17] Xiaochun Ye, Van Hoa Nguyen, Dominique

Lavenier, Dongrui Fan, "Efficient

Parallelization of a Protein Sequence

Comparison Algorithm on Manycore

Architecture," pdcat,pp.167-170, 2008 Ninth

International Conference on Parallel and

Distributed Computing, Applications and

Technologies, 2008, Dunedin, Otago, New

Zealand.

[18] Guoping Long, Dongrui Fan, et al: A

Performance Model of Dense Matrix

Operations on Many-Core Architectures.

Euro-Par 2008: 120-129, Las Palmas de Gran

Canaria, Spain.

[19] Guangming Tan, Dongrui Fan, Junchao Zhang,

Andrew Russo, Guang R. Gao: Experience on

optimizing irregular computation for memory

hierarchy in manycore architecture. PPOPP

2008: 279-280, Salt Lake City, Utah, USA.

[20] R. Alverson, D. Callahan, et.al. The Tera

compute system, SIGARCH Comput. Archit.

News, 18(3b):1-6, 1990.

[21] Michael E. Wolf and Monica S. Lam, A Data

Locality Optimizing Algorithm, ACM

SIGPLAN Conf. Progr. Lang. Design and

Implementation (1991), Toronto, Ontario,

Canada.

[22] Chau-Wen Tseng: Compiler Optimizations for

Eliminating Barrier Synchronization. PPOPP

1995: 144-155, Santa Barbara, California,

USA.

[23] Juha Haataja, Ville Savolainen, Cray T3E

User’s Guide, (Center for Scientific

Computing, Finland, 1997).

[24] B. Smith. The architecture of HEP. In J. S.

Kowalik, editor, Parallel MIMD Computation:

HEP Supercomputer and Its Applications,

Scientific Computation Series, pages 41–55.

MIT Press, Cambridge, MA, 1985.

[25] R. Alverson, D. Callahan, D. Cummings, B.

Koblenz, A. Porterfield, and B. Smith. The

Tera computer system. SIGARCH Comput.

Archit. News, 18(3b):1–6, 1990.

[26] W. J. Dally and et. al. The message-driven

processor. IEEE Micro., 12(2):23–39, 1992,

Portland, Oregon, USA.

[27] D. Kranz, B. H. Lim, and A. Agarwal.

Low-cost support for fine-grain

synchronization in multiprocessors. Technical

Report MIT/LCS/TM-470, 1992.

[28] S. W. Keckler, W. J. Dally, D. Maskit, N. P.

Carter, A. Chang, and W. S. Lee. Exploiting

fine-grain thread level parallelism on the MIT

multi-ALU processor. In the Procs. of 25th

Intl. Symp. on Computer Architecture, 1998,

Barcelona, Spain.

Landing Stencil Code on Godson-T

[29] Cray MTA-2 System.

[30] John Montrym, Henry Moreton. The GeForce

6800. IEEE Micro, Volume 25 Issue 2, March

2005.

[31] P. Hofstee. Power Efficient Architecture and

the Cell Processor. Invited Paper and Keynote

Speech. HPCA-11, February 2005, San

Francisco, CA, USA.

[32] Asanovic, K., Bodik, R., Catanzaro, B.C.,

Gebis, J.J., Husbands, P., Keutzer, K.,

Patterson, D.A., Plishker,W.L., Shalf,

J.,Williams, S.W.,Yelick, K.A.: The

Landscape of Parallel Computing Research: A

View from Berkeley

[33] Vangal, S., Howard, J., Ruhl, G., Dighe,

S.,Wilson, H., Tschanz, J., Finan, D., Iyer, P.,

Singh, A., Jacob, T., Jain, S., Venkataraman,

S., Hoskote, Y., Borkar, N.: An 80-Tile

1.28TFLOPS Network-on-Chip in 65nm

CMOS. In: Proceedings of IEEE International

Solid-State Circuits Conference, February

11-15 (2007), San Francisco, CA, USA.

[34] Dally,W.J., Labonte, F., Das, A., Hanrahan, P.,

Ahn, J.H., Gummaraju, J., Erez, M., Jayasena,

N., Buck, I., Knight, T.J., Kapasi, U.J.:

Merrimac: Supercomputing with Streams. In:

Proceedings of the Supercomputer Conference,

November 15-21 (2003), Phoenix, Arizona,

USA.

[35] Ioannis E. Venetis and Guang R. Gao,

Mapping the LU Decomposition on a Many

Core Architecture: Challenges and Solutions,

ACM International Conference on Computing

Frontiers (CF2009), Ischia, Italy. May 18-20,

2009, Ischia, Italy.

[36] Liping Xue, Long Chen, Ziang Hu, and

Guang R Gao, CAPSL Technical Memo 81:

Performance Tuning of the Fast Fourier

Transform on a Multicore Architecture

Huimin Cui is a PhD candidate in

the Key Laboratory of Computer

System and Architecture, Institute

of Computing Technology, CAS.

Her research interests are in the compiler, runtime

system and binary translation areas. She received

her bachelor and Master degrees in computer

science from Tsinghua University at 2001 and

2004 respectively.

Lei Wang was born in 1976. She

received her B.E. degree from

Beijing Institute of Technology in

1999 and M.S. degree from Beijing

Institute of Technology in 2002.

She is currently an assistant professor of the Key

Landing Stencil Code on Godson-T

Laboratory of Computer System and Architecture,

Institute of Computing Technology, Chinese

Academy of Sciences. Her research interests

include compiler and runtime system.

Dongrui Fan graduated from the

Department of Mathematical

Science at Beijing Jiaotong

University with a bachelor

degree at 2000, and he achieved Ph.D. degree

from Institute of Computing Technology (ICT),

Chinese Academy of Sciences (CAS) at 2005.

Now, he is an associate professor in ICT, IEEE

member and CCF member. He worked together

with the members of AMS(Advanced

Micro-System) research group and designed the

new processing models--Godson-X and Godson-T.

Currently, His research interest focuses on

many-core system, including the design of

microarchitecture, parallel processing, and runtime

system.

Xiaobing Feng was born in 1969.

He received his B.E. degree from

Tianjin University in 1992, M.S.

degree from Peking University in 1996 and Ph. D.

degree from the Institute of Computing

Technology, Chinese Academe of Sciences. He is

currently a professor of the Key Laboratory of

Computer System and Architecture, Institute of

Computing Technology, Chinese Academy of

Sciences. His research interests include program

analysis, compiler and tools.

