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Abstract  The advent of multi-core/many-core chip technology offers both an extraordinary opportunity 

and a profound challenge. In particular, computer architects and system software designers are faced with 

a unique opportunity to introducing new architecture features as well as adequate compiler technology – 

together they may have profound impact.  

  This paper presents a case study (using the 1D Stencil computation) of compiler-amendable 

performance optimization techniques on a many-core architecture Godson-T. Godson-T architecture has 

several unique features that are chosen for this study: (1) chip-level global addressable memory – in 

particular the scratchpad memories (SPM) local to the processing cores; (2) fine-grain memory based 

synchronization (e.g. full-empty bit for fine-grain synchronization). 

 Leveraging state-of-the-art performance optimization methods for 1-D stencil parallelization (e.g. 

timed tiling and variants), we developed and implement a number many-core based optimization for 

Godson-T.  Our experimental study show good performance improvements in both execution time 

speedups and scalability, validated the value of globally accessed SPM and fine-grain synchronization 

mechanism (full-empty bits) under the Godson-T, and provide some useful guidelines for future compiler 

technology of many-core chip architectures. 
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1  Introduction  

  High-performance processor design is rapidly 

moving towards many-core architectures that 

integrate 10s (or beyond) of cores on a single chip 

[1,2]. Intel recently announced Larrabee, a 

many-core x86 architecture [3]. IBM Cyclops-64 

will support 160 hardware thread units in one chip 

[4,5]. Many-core architecture offers opportunities 

and challenges to architects and system software 

designers. Their cooperation of new architecture 

features design would have profound impact.  

Stencil computations represent a practically 

important class of computations that arise in many 
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scientific/engineering codes. Computational 

domains that involve stencils include those that 

use explicit time-integration methods for 

numerical solution of partial differential equations, 

and multimedia/image-processing applications that 

perform smoothing and other neighbor pixel based 

computations [6]. There has been some prior work 

that has addressed [6,7,8,9,10,11,12,13,14,15]. 

In this paper, we develop and implement a 

number many-core based optimization for 

Godson-T, leveraging state-of-the-art performance 

optimization methods for 1-D stencil 

parallelization (e.g. timed tiling and variants). Our 

experimental study show good performance 

improvements in both execution time speedups 

and scalability, validated the value of globally 

accessed SPM and fine-grain synchronization 

mechanism (full-empty bits) under the Godson-T, 

and provide some useful guidelines for future 

compiler technology of many-core chip 

architectures. 

The paper is organized as follows. Section 2 

overviews Godson-T. Section 3 introduces our 

motivation example and states our problem. 

Section 4 presents our methods. Section 5 shows 

our experimental results, and section 6 and 7 

presents the related work and conclusions 

respectively. 

2  Godson-T Architecture 

Godson-T [16,17,18,19] is a processor 

prototype of many-core chip. Figure 2.1 gives the 

overview of the Godson-T processor architecture. 

It has 64 homogeneous, in-order and dual-issue 

processing cores. The target frequency of each 

core is 1GHz.  

Each processing core has a 32KB local 

memory. It is private L1 cache by default, and can 

be configured as an explicitly-controlled 

Scratchpad Memory (SPM), or a hybrid of cache 

and SPM. SPM can be globally accessed, and the 

bandwidth is 256GB/s. It provides low-latency 

access, that is, 1 cycle for local SPM access, and 2 

cycles/hop for remote SPM access. In addition, 

Godson-T has shared L2 cache. 

 

Fig. 2.1 Overview of Godson-T 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.2.2 State machine for full-empty bit of Godson-T 

 

When configured as SPM, 8 bits of tag a 

cacheline become word-level full-empty bit for 

fine-grain synchronization. The full-empty bit 

tagged on memory cell indicates the presence of 

data on the memory location, e.g. “1” for “full”, 

and “0” for “empty” [20]. There are two types of 

fine-grain synchronization instructions: sync type 

and future type. The former is used for 

producer-consumer style synchronization, whereas 
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the latter is used for future data object protection. 

Figure 2.2 illustrates the state machine of 

full-empty bit. 

3  Motivation Example 

3.1 1-D Jacobi 

At each time t, 0 < t < T, a stencil 

computation updates a grid point based on the 

values of the point and some neighboring points to 

produce the value of the point at time t+1 [7]. The 

simplest stencil computation is 1-D Jacobi. It 

updates a point using the average of it and its 

neighbors, and the code is shown in Figure 3.1 

[21]. For simplicity of explanation, the code is 

rewritten to Figure 3.2 [6].  

 

 

3.2 Existing Methods 

1-D Jacobi’s performance would be limited 

by memory bandwidth if naïve implemented [22]. 

To reduce memory traffic, leverage tiling in both 

the spatial and temporal dimensions uses loop 

skewing in order to increase data reuse. Studies by 

McCalpin [11] and others [12, 13] have shown 

time skewing can benefit [8]. Time skewing 

involves loop skewing and tiling [13], and tiles of 

shape are shown in Figure 3.3(a) which was called 

standard tiling [6]. The horizontal axis represents 

the spatial dimension and the vertical is time 

dimension. Figure 3.3(b) shows the execution 

order with pseudo-code. We can see that the tiles 

are started in a pipeline manner. 

On multi-core/many-core architecture, 

standard tiling must tradeoff between achieving 

good data reuse and load balance of parallel 

execution [6]. So overlapped and split tiling are 

presented in [6].  

  

 

 

 

 

 

 

(b) pseudo-code to show the execution order 

 

Fig.3.3 standard tiling of 1-D Jacobi, time skewing  

 

 

 

 

 

 

 

 

 

(b) pseudo-code to show the execution order 

 

Fig.3.4 Overlapped tiling of 1-D Jacobi [6].  

 

Overlapped tiling is shown in Figure 3.4. An 

additional triangular region (Q) is added to the left 

of the tile P. It eliminates the dependence between 

tiles along the horizontal direction, and all the tiles 

belonging to the same time slice can start 

concurrently. The time slices are executed in 

sequential order. 

(a) tile shape 

for (tt = 0; tt < t_tiles ; tt++) { 
 forall (it=0; it < i_tiles, it++) { 
 generate local new_tile using   
tile(tt, it) and tile(tt, it-1); 
 compute new_tile; 

  } 
} 

for (lt =0; lt <i_tiles + t_tiles ; 
lt++) { 
  forall tiles indexed as (it, tt) 
 if (it + tt == lt) 
   compute tile(it, tt) 
} 

Fig.3.1   1-D Jacobi code 

for t = 0 to T-1 

 for i = 1 to N-2 

  B[i] = (A[i-1]+A[i]+A[i+1])/3; 

  for i = 1 to N-2 

   A[i] = B[i]; 

for t = 1 to T-1 

 for i = 1 to N-2 

 A[t, i] =  (A[t-1,i-1]+               

 A[t-1,i]+A[t-1,i+1])/3; 

Fig.3.2 Single statement form of 1-D Jacobi 

(a) tile shape 
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But overlapped tiling has redundant 

computation, Q is calculated twice. To eliminate 

the redundancy, [6] presented split tiling, as shown 

in Figure 3.5. It splits each standard tile into two 

sub-tiles (Ai and Bi). At first step all 

non-dependent sub-tiles Ai are executed 

concurrently, and then the dependent sub-tiles Bi 

[6]. Similar with overlapped tiling, the order of 

time slices is kept sequential. 

 

 

(b) pseudo-code to show the execution order 

 

Fig.3.5 Split tiling of 1-D Jacobi [6] 

3.3 Some Open Questions and Problem 

Statement 

There are three challenges (open questions) 

that need to be addressed for stencil running on 

Godson-T. We take Figure 3.5 to present these 

open questions. For clarification, we explicitly 

write barrier statements implied by forall clause. 

How to keep good scalability with large 

number of cores? Muthu presented bad 

scalability of existing methods in [14]. This is 

critical for many-core architecture.  

How to reduce the cost of barriers, and 

furthermore eliminate them? As we know, 

barrier is expensive [22]. In existing methods, all 

the up-to-date values need to be written to the 

shared L2 cache at barrier points. Can we reduce 

the cost? 

Furthermore, In Figure 3.5, suppose Ai and 

Bi is executed by Pi sequentially. P2 can execute 

Q just after B2 is finished, and is unnecessary to 

wait for others. Therefore barrier is unnecessary. 

Can we find some method to totally eliminate 

them? 

Would traditional optimizations be 

applicable for many-core, and how to 

determine the optimization parameters? 

Traditional optimizations are widely used in 

current compilers. But the effect and scalability is 

still a problem on many-core.  

  

We state our problem as follows. Given a 

Godson-T like many-core architecture (with two 

features: globally accessed SPM and fine-grain 

memory based synchronization), how to land a 

stencil program such that the open issues (as 

outlined above) will be effectively addressed. 

4  Optimizations on Godson-T 

Our optimizations utilize two hardware 

features: globally accessed SPM and fine-grain 

synchronization. Similar but different mechanisms 

are supported on Cyclops64 [4]. We choose split 

tiling as our startup, since it has no redundancy. 

4.1 Overview of Our Method 

To expose fine-grain synchronization chances, 

we must determine the tile schedule policy. We use 

static binding as our policy. As shown by Figure 

4.1(a), each core executes a highlighted 

parallelogram. We use tile to represent it, and 

sub-tile for triangle (Ai) and trapezium (Bi) areas. 

In Figure 4.1(a), the highlighted tile contains 10 

for (tt = 0; tt < t_tiles ; tt++) { 

  forall (it = 0; it < i_tiles, it++)  
 compute triangle_area A(it); 
  barrier 
  forall (it = 0; it<i_tiles, it++) 
 compute trapezia_area B(it); 
  barrier 
} 

(a) tile shape 
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sub-tiles (A1~A5, B1~B5). The execution order of 

sub-tiles is shown in (b). 

We can see that each core would use 

xtilesize*ttilesize spaces for calculating a tile 

(xtilesize and ttilesize represent space and time tile 

size respectively), which should not exceed the 

size of SPM. As the problem size grows, we use 

DTA [18] to overlap data transferring and 

computing, but it’s beyond the scope of this paper. 

We manually applied three major 

optimizations starting from naïve split tiling: (1) 

traditional optimizations for single thread; (2) 

using SPM to reduce barrier cost; (3) using 

fine-grain synchronization to eliminate barriers. 

 

 

 

 

Fig.4.1 Our method: split tiling without barriers 

4.2 Traditional Optimizations 

Using multiplication replacing division. 

Division has longer latency than multiplication, so 

we replace it by multiplication. 

Loop unrolling + register allocation + 

instruction schedule + bottom loading. The 

unroll factor is decided by the number of registers. 

Register allocation and instruction scheduling are 

done after loop unrolling. Bottom loading is an 

effective technique for overlapping loop control 

and loading of operands for the next iteration of 

the loop [23].  

Computation transformation and 

optimization (loop unrolling + common 

sub-expression elimination (CSE) + Using 

MADD + register allocation + software 

pipelining + instruction schedule). It seems we 

cannot use multiply-and-add (MADD), but it 

would turn around after some transformations. The 

original statement can be rewritten into  

A[t,i]=A[t-1,i-1]*1/3+(A[t-,i]+A[t-1,i+1])*1/3 or 

A[t,i]=(A[t-1,i-1]+A[t-1,i])*1/3+A[t-1,i+1]*1/3.  

Thus MADD instructions can be used. 

Furthermore, after loop unrolling, the calculation 

of A[t, i] and A[t, i+1] would have a common 

sub-expression (A[t-1,i]+A[t-1,i+1])*1/3, and can 

be eliminated by CSE.  

4.3 Using SPM 

As mentioned in section 2, Godson-T can be 

configured to use SPM instead of cache. In this 

configuration, SPMs are mapped to a consecutive 

global address space. Therefore, all SPMs can be 

easily accessed by either local or remote cores.  

It is not difficult for the programmers to use 

SPM. The program needs minor modification, just 

declaring a pointer or array on SPM, and it can be 

used as ordinary memory. Programmers can move 

original data from off-chip memory to SPM, 

calculate, and then store the data to off-chip 

memory. Godson-T runtime system provides a 

clear interface for programmers.  

Using SPM won’t eliminate the barriers, but 

it reduces the cost of barriers. At the barrier point, 

the up-to-date data needn’t to be written to the 

shared cache any more. 

(a) tile shape with our method 

forall (it = 0; it < i_tiles; it++)  
  for (tt = 0; tt < t_tiles; tt++) { 
    if (A(tt-1, it) has been passed out)) 
      compute A(tt, it); 
    if (dependencies of B (tt, it) satisfied) 
  compute B(tt, it) 
} 

(b) execution order of tiles and sub-tiles 
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4.4 Using Fine-Grain Synchronization 

Godson-T supports full-empty bit based on 

SPM. So this optimization must be applied after 

the optimization of using SPM is done. Fine-grain 

synchronization has been researched on many 

architectures: HEP [24], Tera [25], MDP [26], 

Alewife [27], M-Machine [28], Cray MTA-2 [29], 

and the start-of-the-art many-core Cyclops-64 [4]. 

Data Distribution. We take Figure 4.2 for 

presenting our data distribution. Each core 

allocates a buffer on its SPM with size of 

ttilesize*xtilesize to hold the points of a time slice. 

In Figure 4.2, Bi represents the black points and Ai 

the white points, i is the core id. Their storage has 

no isolation, which means Ai’s n-th line exactly 

follows Bi’s. At the beginning of each time slice, 

all the data are located at buffer[ttilesize-1]. The 

generated data are stored into 

buffer[0]~buffer[ttilesize-1] in sequential order 

with t increasing from 0 to ttilesize-1. The buffer 

would be used repeatedly for each time slice, for 

good data reuse. 

 

Fig.4.2 data distribution of 1-D Jacobi on Godson-T 

 

Data Communication. Figure 4.3 shows the 

communication pattern. For each line, the two 

points of the right-side would be used by another 

core. Some would be used only once, while some 

twice. 

It seems that we can use one-writer-multiple- 

reader synchronization as our implementation. But 

actually it doesn’t work. Because the buffer is used 

repeatedly for each time slice, the next time slice 

must determine when a location can be rewritten. 

The new data cannot be written until the original 

value has been taken away. So this problem should 

be modeled as single-producer-multi-consumer.  

Godson-T’s full-empty bit only implements a 

single-producer-single-consumer model. Weirong 

presented synchronization state buffer in [4], using 

counter for multi-consumers. Our architecture 

designers are considering about this problem. 

Without hardware support of 

multi-consumers, we can use a naïve method for 

stencil computation. At first step, using 

synchronized load operations to read the data from 

remote SPM into a temporary variable. And 

second step, using ordinary load instructions at 

each consuming point. Only 2*ttilesize points need 

to be synchronized loaded and stored, which is a 

tiny portion of the computation set.  

Things would turn more complex if the 

consumers belong to different tiles executed by 

different cores and the execution order is 

non-deterministic. That’s beyond the scope of this 

paper. 

 

Fig.4.3 Communication pattern of 1-D Jacobi  

5  Experimental Results 

5.1 Experimental Framework 

Our experiments are implemented on 



Landing Stencil Code on Godson-T 

 

Godson-T, which was introduced in Section 2. The 

program is compiled using the GCC compiler with 

–O3 option, and the kernel loop is written with 

assembly language. For the sake of comparison, 

we also implemented overlapped tiling. 

Since the floating point registers of Godson-T 

is 32 bits, all the experiments are single floating 

point computations. We take FLOPS (floating 

point operations per second) as our performance 

evaluation. For 1-D Jacobi, in each iteration of t, 

the total computation is 3NT. 3NT/exec-time is the 

performance we can get. 

5.2 Summary of Main Results 

Our main experimental results can be 

summarized as follows.  

Observation 1 (see also Section 5.3.1 for 

details): Our program optimization methods can 

be applied effectively to the stencil computation in 

the 1-D Jacobi code tested. Performance 

improvements on our experimental platform are 

observed in both execution time speedups and 

scalability. 

Observation 2 (see also Section 5.3.2 for 

details): Our experimental results show the 

important value of optimization of using new 

hardware features. In particular, the globally 

accessed SPM and the fine-grain synchronization 

mechanism (full-empty bits) under the Godson-T 

many-core chip technology is studied and 

evaluated. The former reduces barrier cost, and the 

latter eliminates barriers totally. 

Observation 3 (see also Section 5.3.3 for 

details): Our experimental results provide some 

useful guidelines for future compiler technology 

of many-core chip architectures. Our findings are 

three fold. 

First, it appears that the major optimization 

methods reported in our work (such as efficiently 

usage of globally accessed SPM and fine-grain 

synchronization exploration) should be considered 

to be incorporated in future many-core 

compiler/tools to explore the performance 

advantages.   

Second, some traditional compiler 

optimizations still play important roles on 

many-core platform – such as loop unrolling, 

register allocation, instruction scheduling, and 

software pipelining – their judiciary application 

are important to the overall performance. 

Third, parameters for compiler optimizations 

can be statically determined, including the time 

tile size and space tile size. Space tile size can be 

chosen according to the size of SPM while time 

tile size can be chosen from a set of small integers. 

5.3 Detailed Results and Analysis 

5.3.1 Overall Performance 

 

 

Fig.5.1  Performance and scalability of overall 

performance 

 

Figure 5.1 shows the overall performance we 

can get when we vary the number of cores from 2 

Program size: N = 128K, T = 256.  

TTILESIZE = 4 

Number of cores: varies from 2 to 64.  
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to 64. It shows that the performance can be almost 

doubled as the number of cores is doubled, and we 

get almost linear performance as the number of 

cores increases (the horizontal axis uses 

logarithmic scale, so it’s a curve). 

5.3.1 SPM and Fine-grain Synchronization’s 

Effects 
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Fig.5.2  Performance of our major opts. (using SPM and 

fine-grain synchronization) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.3  Scalability of our major optimizations (using 

SPM and fine-grain synchronization) 

 

First, we fix the number of cores to 64, 

Figure 5.2 shows the performance. Before using 

SPM and fine-grain synchronization, we can get 

the performance of 24.13GFLOPS (with 

traditional optimization done, and its contribution 

would be evaluated in section 5.3.3). Using SPM 

reduces the barrier cost, and the performance 

improves to 72.12GFLOPS. Finally, barrier is 

eliminated by fine-grain synchronization, and we 

get the performance of 82.98GFLOPS. The best 

performance using overlapped tiling is also shown 

in Figure 5.2 for comparison. 

Second, we evaluate the scalability of our 

major optimizations. Figure 5.3 shows the effects 

of our optimizations as number of cores varies 

from 2 to 64. Each line represents the performance 

scalability when adding a new optimization. We 

can see that each newly-added optimization 

provides good scalability. 

 

5.3.1 Guidelines for Compiler 

Section 5.3.2 shows the value of our major 

optimizations, including efficiently usage of 

globally accessed SPM and fine-grain 

synchronization exploration. These optimizations 

should be considered in future many-core 

compilers for performance. 

Figure 5.4 shows the performance 

improvement with traditional optimizations 

applied. The performance is improved to 

24.13GFLOPS from 3.77GFLOPS. And Figure 5.5 

shows the traditional optimizations’ scalability. 

Time tile size is an important parameter 

during our optimization. In previous methods, 

larger time tile size would bring better data reuse 

and benefit. But in our method, SPM is used 

repeatedly as a rotating buffer, and barrier is 

eliminated. So it’s unnecessary to choose a large 

time tile size any more.  

Figure 5.6 shows the performance with time 

tile size as 2, 4 and 8. We can see that time tile size 

can be fixed as a small value set, e.g. 2 and 4. 

Increasing time tile size doesn’t benefit. 

Meanwhile, it causes the space tile size decreasing, 

since ttilesize*xtilesize cannot exceed the size of 

Program size: N = 128K, T = 1024.  
Number of cores: 64; TTILESIZE = 4  
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SPM. So the performance declines as time tile size 

increases. 
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Fig.5.4 Traditional optimizations’ contributions 
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Fig.5.5 Traditional optimizations’ scalability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.6 Performance with time tile size 

6  Related Works 

Many-core architectures have been 

considered by both academia and industry. Besides 

Larrabee and Cyclops-64 mentioned earlier, 

[30][31][32][33][34] also presented many-core 

researches, including IBM Cell, Merrimac and 

nVidia GeForce. Godson-T is a many-core chip 

with new features. There are many researches on it, 

including performance optimization [17,18,19] 

and architecture design [16]. 

 On many-core architecture, performance 

tuning for specific application is a research focus, 

including matrix-multiplication [5], irregular 

computation [19], LU decomposition [35], FFT 

[36]. There experiences give us important 

guidelines during our performance tuning, e.g. 

using SPM, loop tiling, register tiling, instruction 

scheduling, etc. We adjust these optimizations 

aiming at the new target (Godson-T) and 

application (stencil), with new hardware and 

application features into consideration.  

Stencil is important for many 

scientific/engineering applications, as mentioned 

earlier. Stencil optimization has been researched 

on single-core processors [7, 11, 12, 21] for many 

years to achieve good data locality. And it is also a 

research focus on multi/many-cores in recent years 

[6, 8, 9, 10, 13, 14, 22], in order to increase data 

locality, obtain good parallelism, balance 

workload and reduce memory traffic. We extend 

the critical issues with globally accessed SPM and 

fine-grain synchronization exploration.  

Related works most relevant to this paper 

have been discussed in earlier section (Section 

3.2), and here we will not repeat. 

7 Conclusion & Future work 

Our results demonstrate that 

globally-accessed SPM and fine-grain memory 
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Performance has no difference when time 

tile size is 2 and 4. But it has obvious 

slowdown when 8, because of the 

decreasing of space tile size. 

Opt 1: loop unrolling + register allocation + 

instruction schedule + bottom loading 

Opt 2: computation transformation + loop 

unrolling + madd instruction + register 

allocation + instruction scheduling + software 

pipelining + CSE 

Program size: N = 128K, T = 1024.  
Number of cores: 64. TTILESIZE = 4 

Program size: N=128K, T= 256.  

Number of cores: 64. TTILESIZE = 4. 

opt1/opt2 same with Fig 5.4 
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based synchronization make great contributions to 

stencil code running on Godson-T. We design and 

implement a number of many-core based 

optimizations for stencil code. Our experimental 

study show good performance improvements in 

both execution time speedups and scalability, 

validated the value of globally accessed SPM and 

fine-grain synchronization mechanism (full-empty 

bits) under the Godson-T.  

Our work also provides some useful 

guidelines for future compiler technology of 

many-core architecture. First, our optimization 

methods can be incorporated in future many-core 

compiler/tools to explore the performance 

advantages. Second, Traditional optimizations still 

play important roles on many-core. Third, the 

parameters for compiler optimizations can be 

statically determined. 

For 1-D Jacobi, the surface-to-volume ratio is 

small, and cost of load/store of the boundary 

points does not play a critical role for the overall 

performance. But for multiple-dimensional 

problem, as the surface-to-volume ratio increases, 

we should pay more attention to the data layout on 

SPM, e.g. if each core reads boundary data from 

its preceding core as we did for 1-D Jacobi, cores 

with index (x,0) have to pay longer latency than 

others due to the longer distance to its preceding 

core(x-1, 7), so that these cores become the slower 

points of the chip. We will consider this problem 

in the future. 
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