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Abstract

The knowledge structure called the 2D Cþ-string, proposed by Huang et al., to represent symbolic pictures allows a

natural way to construct iconic indexes for images. According to the cutting mechanism of the 2D Cþ-string, an object

may be partitioned into several subparts. The number of partitioned subparts is bounded to Oðn2Þ, where n is the

number of objects in the image. Hence, the string length is also bounded to Oðn2Þ. In this paper, we propose a new

spatial knowledge representation called the 2D Z-string. Since there are no cuttings between objects in the 2D Z-string,

the integrity of objects is preserved and the string length is bounded to OðnÞ. Finally, some experiments are conducted

to compare the performance of both approaches.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In image database management systems, one of
the most important methods for discriminating the

images is using the objects and the spatial relations

that exist between the objects. Hence, how images

are stored in a database becomes an important

design issue of image database management sys-

tems.

Over the last decade, many iconic indexing ap-

proaches to represent symbolic images have been
proposed, for example, 2D string (Chang and

Jungert, 1986, 1987), 2D G-string (Jungert, 1988;
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Jungert and Chang, 1989), 2D C-string (Lee and

Hsu, 1990, 1991, 1992), 2D Cþ-string (Huang and

Jean, 1994), unique-ID-based matrix (Chang et al.,
2000), GPN matrix (Chang et al., 2001), virtual

image (Petraglia et al., 2001) and BP matrix

(Chang et al., 2003). Based on those representa-

tions, several algorithms in similarity retrieval and

spatial reasoning have been proposed. Those

proposed algorithms can allow a user to retrieve

the images similar to a query image with a speci-

fied spatial relationship.
Chang and Jungert (1986, 1987) proposed the

concept of the 2D string to represent the spatial

relations between the objects in an image. How-

ever, this representation is under challenge in

solving the problems of spatial reasoning and

planning in many applications. The main reason is
ed.
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that the spatial operators of 2D strings are not

sufficient enough to give a complete description for

a complex picture. Jungert (1988) and Jungert and

Chang (1989) introduced some local operators as

compensation for handling more types of relations

between pictorial objects in query reasoning.
Chang et al. (1988) introduced the generalized 2D

string (2D G-string) with the cutting mechanism.

In the 2D G-string knowledge representation, the

cuttings are performed at all the end points (in-

cluding the begin-bound and end-bound points) of

all the objects in an image. Obviously, the cutting

mechanism may result in a large number of sub-

parts.
To reduce the number of cuttings and generated

subparts, Lee and Hsu (1990, 1991, 1992) pro-

posed the 2D C-string representation based on a

special cutting mechanism. The cutting mechanism

of the 2D C-string is better than that of the 2D G-

string. In the 2D C-string, they introduced seven

spatial operators to describe 13 possible relations

between two objects as shown in Table 1, where
Begin(A) and End(A) are the begin-bound and end-

bound of object A.
Although the cutting mechanism of the 2D C-

string is better, it still generates many subparts of

objects in the case of the complex images. Suppose

that there are n objects in an image. According to

the analysis in (Lee and Hsu, 1990), in the worst

case of the 2D G-string, each object may be parti-
tioned at the begin-bound points and/or end-

bound points of the other objects. Since the total

number of cutting lines is at most 2n, the total

number of segmented subparts of partitioned ob-

jects is bounded to Oðn2Þ. As for the 2D C-string,

the cuttings are performed at the end-bound points

of overlapping objects. The number of cuttings in
Table 1

The definitions of spatial operators in 2D C-string

Notations Conditions

A < B EndðAÞ < BeginðBÞ
A ¼ B BeginðAÞ ¼ BeginðBÞ, EndðAÞ ¼ EndðBÞ
A jB EndðAÞ ¼ BeginðBÞ
A%B BeginðAÞ < BeginðBÞ, EndðAÞ > EndðBÞ
A ½B BeginðAÞ ¼ BeginðBÞ, EndðAÞ > EndðBÞ
A �B BeginðAÞ < BeginðBÞ, EndðAÞ ¼ EndðBÞ
A=B BeginðAÞ < BeginðBÞ < EndðAÞ < EndðBÞ
the 2D C-string is equal to the number of over-

lapping objects. The number of overlapping objects

is bounded to n. So the order of the total number of

partitioned subparts is still bounded to Oðn2Þ.
Since the 2D C-string ignores the information

about the locations, sizes of objects, and distances
between objects, the 2D C-string representation

may result in ambiguity. To resolve the ambiguity

problem, Huang and Jean (1994) proposed the 2D

Cþ-string. In the 2D Cþ-string representation,

each object in a given image has two pairs of

begin-bounds and end-bounds. One is for the

projection onto the x-axis and the other is for the

projection onto the y-axis. From the begin-bounds
and end-bounds of the projections, the sizes of

objects and the distances between objects can be

calculated. It only has to calculate three kinds

of metric information: the size of object A ¼
EndðAÞ � BeginðAÞ, the distance associated with

operator ‘‘<’’ in \A < B" ¼ BeginðBÞ � EndðAÞ,
the distance associated with operator ‘‘%’’ in

\A%B" ¼ BeginðBÞ � BeginðAÞ. By using the 2D
Cþ-string representation, the ambiguity problem

in the 2D C-string can be resolved.

Although the 2D Cþ-string resolves the ambi-

guity problem, it uses the same cutting mechanism

as the 2D C-string. So the number of partitioned

subparts and the length of the string are still

bounded to Oðn2Þ.
Therefore, in this paper we propose a new

spatial knowledge representation for an image

with a zero-cutting mechanism, called the 2D Z-

string. Since there are no cuttings between objects

in the 2D Z-string, the integrity of objects is pre-

served and the string length is bounded to OðnÞ.
Therefore, the 2D Z-string is more compact and

efficient than previous approaches in terms of

storage space and execution time.
The rest of this paper is organized as follows. In

Section 2, we present the new spatial knowledge

representation of the 2D Z-string. The string

generation algorithm of the 2D Z-string is de-

scribed in Section 3. In Section 4, we propose the

image reconstruction algorithm based on the 2D

Z-string representation. In Section 5, some exper-

iments are conducted to compare our approach
with the 2D Cþ-string approach. Finally, con-

cluding remarks are made in Section 6.
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2. 2D Z-string

In the 2D Z-string, the objects in an image are

projected onto the x- (or y-)axis to form a string to

represent the spatial relations between the projec-
tions. The projections onto the x-axis are called x-
projections. The projections onto the y-axis are

called y-projections. In the 2D Z-string represen-

tation, we record the information about the loca-

tions and sizes of objects, and the distances

between objects.

There are 13 possible relations between two x-
(or y-)projections in the 2D Z-string. The corre-
sponding spatial operators of those relations have

been listed in the 2D C-string as shown in Table 1.

To avoid the ambiguity, operator ‘‘/’’ is not used in

the 2D C-string. So, A=B is replaced with A �B jB.
That is, it is required to perform a cutting for the

partly overlapping objects in the 2D C-string.

However, we do use operator ‘‘/’’ in the 2D Z-

string. So no cuttings are required.
Now, we propose the knowledge structure of

2D Z-string to represent spatial relations between

the objects of interest.

Definition 1. The knowledge structure of 2D Z-

string is a 5-tuple (O, A, Rg, Rl, ‘‘( )’’) where

(1) O is the set of objects of interest;
(2) A is the set of attributes to describe the objects

in O;
(3) Rg ¼ {‘‘<’’, ‘‘j’’} is the set of global relation

operators;

(4) Rl ¼ {‘‘¼ ’’, ‘‘[’’, ‘‘]’’, ‘‘%’’, ‘‘/’’} is the set of

local relation operators;

(5) ‘‘( )’’ is a pair of separators which is used to

describe a set of objects as a template ob-
ject.

Then we add some metric measurements to the

knowledge structure of 2D Z-string.

(1) The size of an object: As denotes that the

size (length) of the x- (or y-)projection of object A
is equal to s, where s ¼ EndxðAÞ � BeginxðAÞ (or
s ¼ EndyðAÞ � BeginyðAÞ), BeginxðAÞ and EndxðAÞ
are the x coordinates of the begin-bound and end-

bound of the x-projection of object A, respectively.
For example,

A

3 9

is represented by A6.

(2) The distance associated with operator ‘‘<’’:

A <d B denotes that the distance between the x- (or
y-)projection of object A and that of object B is
equal to d, where d ¼ BeginxðBÞ � EndxðAÞ (or d ¼
BeginyðBÞ � EndyðAÞ).

For example,

A

5 8

B

is represented by A <3 B.
(3) The distance associated with operator ‘‘%’’:

A%d B denotes that the distance between the x- (or
y-)projection of object A and that of object B is

equal to d, where d ¼ BeginxðBÞ � BeginxðAÞ (or

d ¼ BeginyðBÞ � BeginyðAÞ).
For example

A

B6

3

is represented by A%3B.
(4) The distance associated with operator ‘‘/’’:

A=d B denotes that the distance between the x- (or
y-)projection of object A and that of object B is
equal to d, where d ¼ EndxðAÞ � BeginxðBÞ (or

d ¼ EndyðAÞ � BeginyðBÞ).
For example

A
12

B5

is represented by A=7B.
(5) The other operators: no metric measure-

ments.

Now, let us consider the example as shown in

Fig. 1. The image shown in Fig. 1(a) contains six

objects: A, B, C, D, E, and F . To generate the 2D



       A

       B

    C

D

F

E

(a)  
C+ u-string: A7]B6]D4=E4=F4|B5=D5=E5=F5]C2|C4[D2=E2=F2  

2D Z u-string: (A7/6(B11/9((D11=E11=F11)/4C6))) 
(b)  

2D

Fig. 1. 2D Cþ-string and 2D Z-string: (a) the cuttings per-

formed along the x-axis direction in the 2D Cþ-string and (b)

the corresponding 2D Cþ and 2D Z u-strings.
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Cþ u-string, two cuttings are performed. One is at
the end-bound of object A. The other is at the end-
bound of object B. Hence, objects B and C are

partitioned into two subparts. Objects D, E, and F
are partitioned into three subparts. The corre-

sponding 2D Cþ and 2D Z u-strings are shown in

Fig. 1(b). The 2D Cþ u-string is obviously longer

than the 2D Z u-string.
Fig. 2. The 2D Z-string representation for the partly overlap-

ping objects: (a) the objects are approximated by the MBRs and

(b) the corresponding 2D Z-string.
Next, let us consider another example as shown

in Fig. 2. In this example, the image contains six

partly overlapping objects. All the objects are ap-

proximated by the MBRs as shown in Fig. 2(a).

The corresponding 2D Z-string of the image is

shown in Fig. 2(b).
Therefore, we have shown that the knowledge

structure of 2D Z-string can easily represent the

spatial relations between objects. Since there are

no cuttings between the objects in an image, the

2D Z-strings are much shorter while still preserv-

ing the spatial relations between the objects. The

knowledge structure of 2D Z-string provides us an

easy way to represent the spatial relations between
the objects in image database management sys-

tems.
3. String generation algorithm

This section describes the string generation al-
gorithm based on the zero-cutting mechanism for
the 2D Z-string. The string generation algorithm is

extended from the concept of the string generation
algorithm proposed by Huang and Jean (1994).

The major differences include: (1) in the 2D Z-

string, there are no cuttings between objects; (2)

the length of the 2D Z-string generated by the

string generation algorithm is bounded to OðnÞ,
where n is the number of objects in the image.

First of all, we introduce a new type of objects:

template object. A template object covers the ob-

jects enclosed between separators ‘‘(’’ and ‘‘)’’ and

is viewed as a new object. The begin-bound of the

template object is the smallest begin-bound in

all the covered objects. Similarly, the end-bound of

the template object is the largest end-bound in all

the covered objects.
The input to the string generation algorithm is a

list of objects, where each object is expressed by its

x- (or y-)projection OiðBi;EiÞ, Bi is the begin-bound

and Ei is the end-bound of the x- (or y-)projection
of object Oi. To generate the u- (or v-)string, we

first find all the dominating objects, which are

defined by Lee and Hsu (1991). The projections of

the objects with the same end-bound are grouped
into a list. In the list, the object with the smallest

begin-bound is called the dominating object.
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By scanning from left to right along the x- (or
y-)axis, we shall find all the dominating objects.

For each dominating object, if there exist objects

that partly overlap with the dominating object,

choose among them the object with the smallest

end-bound. Let the chosen object be P . If there
exist no objects partly overlapping with the dom-

inating object, find the objects covered by the

dominating object (including the dominating ob-

ject itself). Otherwise, find the objects covered by

the interval from the begin-bound of the domi-

nating object to the end-bound of object P . The
covered objects are merged into a template object.

Repeat the above process for each dominating
object.

Finally, we can merge together those tem-

plate objects and the remaining objects. This is the

main idea of the string generation algorithm. How

to merge objects into a template object is described

later in the template object generation algorithm.

The string generation algorithm is described in

detail as follows.

Algorithm. String generation

Input: O1ðB1;E1Þ;O2ðB2;E2Þ;O3ðB3;E3Þ; . . . ;OnðBn;
EnÞ
Output: a 2D Z u-string (or v-string)

1. Sort in non-decreasing order all the begin-

bound points and end-bound points Bi, Ei,
i ¼ 1; 2; . . . ; n.

2. Group the same value points into a same-value-

list. Form a same-value-list sequence.

3. Loop from step 4 to step 8 for each same-value-

list according to the non-decreasing order.

4. If there is no end-bound in the list, process the

next same-value-list.

5. Find the dominating object from the objects in
the same end-bound list so that the correspond-

ing begin-bound of the dominating object is the

smallest of them. Compute the size of the dom-

inating object.

6. If there exist no objects partly overlapping with

the dominating object, find the objects covered

by the dominating object (including the domi-

nating object itself). Call the template object
generation algorithm with the covered objects

as the input parameter.
7. If there exist objects partly overlapping with the

dominating object, choose among them the ob-

ject with the smallest end-bound. Let the chosen

object be P . Perform the following three

phrases.
(a) Find the objects covered by object P (in-

cluding object P itself). Then call the tem-
plate object generation algorithm with the

covered objects as the input parameter.

Let the returned template object be T1.
(b) Find the objects covered by the dominating

object but not by object P (including the

dominating object itself). Then call the tem-
plate object generation algorithm with the

covered objects as the input parameter.

Let the returned template object be T2.
(c) Merge T1 and T2 into a new template object

by separators ‘‘(’’ and ‘‘)’’ with operator ‘‘/’’.

The distance associated with operator ‘‘/’’ is

equal to the end-bound of object T2 minus

the begin-bound of the object T1. The
begin-bound of the template object is equal

to the begin-bound of object T2. The end-

bound of the template object is equal to

the end-bound of object T1.
8. Collect the begin-bounds and end-bounds of

the objects into the same-value lists.

9. Call the template object generation algorithm
with all the remaining objects as the input pa-
rameter. Output the representation of the final

object. This is the u- (or v-)string.

Next, we define some terminology used in the

template object generation algorithm. A former

object of object O is an object with smaller begin-

bound than that of object O or an object with

equal begin-bound and bigger end-bound than
that of object O. The nearest former object is the

former object with the biggest begin-bound. If the

number of such objects is more than one, choose

one with the smallest end-bound as the nearest

former object.

Given a list of objects, there exists an object, Q,
that is not any objects� former objects. The begin-

bound of object Q should be the largest among
those of the objects in the list. If the number of

objects with the largest begin-bound is more than

one, object Q should be the object with the



B C

A 

Fig. 3. Nearest former objects.

3020 A.J.T. Lee, H.-P. Chiu / Pattern Recognition Letters 24 (2003) 3015–3026
smallest end-bound. If the number of such objects

is more than one, it means that they have the same

begin-bound and end-bound and they can be

merged together by operator ‘‘¼ ’’ into a template

object. Let Q be the newly merged template object.

Hence, for a list of objects, there exists a unique

object, Q, that is not any objects� former objects.

Let us consider the example as shown in Fig. 3.
Object A is the nearest former object of object

B. Object B is the nearest former object of object C.
Object C is the object that is not any objects� for-
mer objects since the begin-bound of the x-pro-
jection of object C is the largest among objects A,
B, and C.

Actually, we can use the relationship of the

nearest former object to decide the order of
merging objects into a template object. In the ex-

ample shown in Fig. 3, objects B and C are first

merged into a template object ðB < CÞ since object
C is not any objects� former objects and object

B is its nearest former object. Then, objects ðB <
CÞ and A are merged into a template object

ðA ½ ðB < CÞÞ since object ðB < CÞ is not any ob-

jects� former objects and object A is its nearest
former object, where the metric measurements are

omitted. How to merge objects into a template

object is described in detail in the template object
generation algorithm.

Algorithm. Template object generation

Input: a list of objects

Output: a template object

1. Repeat steps 2–5 until there is only one object in

the list.

2. For the objects having the same begin-bound

and end-bound, they are chained by operator

‘‘¼ ’’ in alphabetical order and form a template

object. If there is only one object in the list, exit

the repeat-loop.
3. For each object, find its nearest former object.

4. Let Q be the object that is not any objects� for-
mer objects and N be the nearest former object

of object Q. Use the following phases to merge

objects Q and N .
(a) If BeginðNÞ ¼ BeginðQÞ and EndðNÞ >

EndðQÞ, use operator ‘‘[’’ to merge objects

N and Q. Go to step 5.

(b) If EndðNÞ ¼ EndðQÞ and BeginðNÞ <
BeginðQÞ, use operator ‘‘]’’ to merge objects

N and Q. Go to step 5.

(c) If EndðNÞ > BeginðQÞ and BeginðNÞ <
BeginðQÞ, use operator ‘‘/’’ to merge objects
N and Q. The distance associated with oper-

ator ‘‘/’’ is equal to End(N ))Begin(Q). Go

to step 5.

(d) If EndðNÞ < BeginðQÞ, use operator ‘‘<’’ to
merge objects N and Q. The distance asso-

ciated with operator ‘‘<’’ is equal to Be-

gin(Q))End(N ). Go to step 5.

(e) If EndðNÞ ¼ BeginðQÞ, use operator ‘‘j’’ to
merge objects N and Q. Go to step 5.

(f) If EndðNÞ > EndðQÞ, use operator ‘‘%’’ to

merge objects N and Q. The distance asso-

ciated with operator ‘‘%’’ is equal to Be-

gin(Q))Begin(N ).

5. If either one of objects Q and N is not a tem-

plate object, compute the size of the object.

Then objects Q and N are merged into a new
template object by separators ‘‘(’’ and ‘‘)’’ with

the appropriate operator found in step 4.

To see how the string generation algorithm
works, let us consider the example as shown in Fig.

4. The locations of the objects in the image can be

represented with the begin-bounds and end-

bounds of their x-projections and form an object
list as follows.

Að0; 4Þ; Bð1; 2Þ; Cð2;4Þ; Dð5;9Þ; Eð6; 8Þ; F ð8; 10Þ;
Gð9; 10Þ:

Then we demonstrate how we apply the string
generation algorithm to the above object list in
order to obtain a 2D Z u-string.

By scanning the input object list from left to

right, we shall find that the first dominating object

is B. Since there is only one object covered by B (B



A 

D 

F

C E
B

G

Fig. 4. The example of string generation.
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itself) in step 6 of the string generation algorithm,

process the next same-value list. The second

dominating object is A since objects A and C have

the same end-bound and the begin-bound of object

A is smaller. In step 6 of the string generation al-
gorithm, there exist no objects partly overlapping

with object A. The objects covered by object A are

objects A, B, and C. Call the template object gen-
eration algorithm with objects A, B, and C as the

input parameter.

In the first repeat-loop of the template object
generation algorithm, steps 2, 3, 4(e), and 5 are

executed since object C is not any objects� former

objects and object B is its nearest former object. It

generates a template object ðB1 jC2Þ. In the second

repeat-loop of the template object generation al-
gorithm, steps 2, 3, 4(b), and 5 are executed since

object ðB1 jC2Þ is not any objects� former objects

and object A is its nearest former object. It gen-

erates a template object ðA4 � ðB1 jC2ÞÞ.
The third dominating object is E. Since there is

only one object covered by E (E itself) in step 6 of

the string generation algorithm, process the next

same-value list. The fourth dominating object is D.
In step 7 of the string generation algorithm, the

object partly overlapping with object D is object F .
In step 7(a), the objects covered by object F are

objects F and G. Call the template object generation
algorithm with objects F and G as the input pa-

rameter. In the first repeat-loop of the template
object generation algorithm, steps 2, 3, 4(b), and 5

are executed since object G is not any objects� for-
mer objects and object F is its nearest former ob-
ject. It generates a template object ðF2 �G1Þ. In step

7(b), the objects covered by object D but not by

object F are objects D and E. Call the template
object generation algorithm with objects D and E as

the input parameter. In the first repeat-loop of the

template object generation algorithm, steps 2, 3, 4(f),
and 5 are executed since object E is not any objects�
former objects and object D is its nearest former

object. It generates a template object ðD4 %1E2Þ. In
step 7(c), both template objects ðD4%1E2Þ and

ðF2 �G1Þ are merged into a new template object

ððD4%1E2Þ=1 ðF2 �G1ÞÞ.
At this point, because all objects are merged

into template objects, step 9 of the string genera-
tion algorithm is executed. In this case, we call

the template object generation algorithm with all

the remaining objects (objects ðA4 � ðB1 jC2ÞÞ and

ððD4%1E2Þ=1 ðF2 �G1ÞÞ) as the input parameter. In

the first repeat-loop of the template object gener-
ation algorithm, steps 2, 3, 4(d), and 5 are executed.

It generates a template object ððA4 � ðB1 jC2ÞÞ <1

ððD4%1E2Þ=1 ðF2 �G1ÞÞÞ.
Finally, all the objects are merged together as a

template object. So, the corresponding u-string of

the image shown in Fig. 4 can be represented as

ððA4 � ðB1 jC2ÞÞ <1 ððD4%1E2Þ=1 ðF2 �G1ÞÞÞ.

Lemma 1. For an input list containing n objects, the
length of a 2D Z u- (or v-)string generated by the
string generation algorithm is bounded to OðnÞ.

Proof. Let us first ignore the metric measurements.

If the input list contains just one object, that is

n ¼ 1, the generated 2D Z u- (or v-)string just

contains the object itself. So, the length of the

string is bounded to Oð1Þ.
If the input list contains more than one object,

let Ln be the length of the generated 2D Z u- (or
v-)string. Let Q be an object that is not any objects�
former objects and N be Q �s nearest former object.

Objects Q and N can be merged into a template

object by one of the following operators: ‘‘[’’, ‘‘]’’,

‘‘/’’, ‘‘<’’, ‘‘j’’, and ‘‘%’’. The length of the template

object is equal to the summation of the lengths of

symbols: ‘‘(’’, Q, ‘‘op’’, N , and ‘‘)’’, where ‘‘op’’ is

one of the following operators: ‘‘[’’, ‘‘]’’, ‘‘/’’, ‘‘<’’,
‘‘j’’, and ‘‘%’’. So, the length of the template object

is a constant c. Since objects Q and N are merged
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into one template object, there are n� 1 objects to

be processed. So we have

Ln ¼ Ln�1 þ c

¼ Ln�2 þ c � 2

..

.

¼ L1 þ c � ðn� 1Þ
¼ Oð1Þ þ c � ðn� 1Þ
¼ c � n� cþOð1Þ

So, the length of the generated 2D Z u- (or

v-)string is bounded to OðnÞ.
Since there are no cuttings between objects,

there are n objects and n� 1 operators in the

generated 2D Z u- (or v-)string. For each object in

the string, it contains a metric measurement. For

each operator in the string, it contains at most one

metric measurement. Hence, the number of metric

measurements is bounded to OðnÞ. Therefore, the
length of the generated 2D Z u- (or v-)string is
bounded to OðnÞ. �

Theorem 1. For an input list containing n objects,
the length of a 2D Z-string generated by the string
generation algorithm is bounded to OðnÞ.

Proof. By Lemma 1, we know that the u-string

generated by the string generation algorithm is
bounded to OðnÞ. We also know that the v-string

generated by the string generation algorithm is

bounded to OðnÞ. Therefore, for an input list

containing n objects, the length of a 2D Z-string

generated by the string generation algorithm is

bounded to OðnÞ. �
4. Image reconstruction algorithm

This section presents the image reconstruction
algorithm which converts a 2D Z-string into a

symbolic picture for visualization and browsing of

image databases. The image reconstruction algo-
rithm processes a 2D Z u-string (or v-string) to

construct the locations, sizes, and distances for the
objects in a symbolic picture.

In the image reconstruction algorithm, we in-

troduce the notations about a string object S and
an image object O used in our algorithm. Suppose

that a given string (u- or v- string) consists of n
elements, each of which may be a string object or

operator. Each string object has the metric mea-

surement (size) associated with it. Operators ‘‘<’’,

‘‘%’’, and ‘‘/’’ also have the metric measurement
(distance) associated with them. For each element,

W , of string objects, W :sym represents the string

symbol and W :size represents the size associated

with it. For each element, W , of operators ‘‘%’’,

‘‘<’’, or ‘‘/’’, W :sym represents the operator symbol

and W :size represents the distance associated with

it. For the other operators, ‘‘¼ ’’, ‘‘j’’, ‘‘[’’, and ‘‘]’’,

the size fields associated with them are set to zero.
Similarly, an image object O contains three fields:

O:sym, O:size, and O:location. O:sym, O:size, and
O:location represent the symbol, size, and the lo-

cation of object O, respectively.
Assume that there are n elements in a given

2D Z u-string (or v-string) and m string objects in

the n elements. The image reconstruction algorithm
converts a given 2D Z u-string (or v-string) into a
sequence of m image objects. After both sequences

of image objects are derived from the given u- and

v-strings, we have finished the image reconstruc-

tion. The image reconstruction algorithm is de-

scribed in detail as follows.

Algorithm. Image reconstruction

Input: a 2D Z u-string (or v-string) with n ele-
ments: string ¼ ðW1;W2; . . . ;WnÞ
Output: a list of image objects: ObjectList ¼ ðO1;
O2; . . . ;OmÞ

1. Loc¼ 0; ObjectList¼ null; Stack¼ null; i ¼ 1;

j ¼ 0; /* Initialization */

2. MoreOperators¼False;

3. while (more elements in the 2D Z u- (or v-)
string) /* process 2D Z u- or v-strings */

4. while (MoreOperators)

5. i ¼ iþ 1; /* next operator */

6. MoreOperators¼False;

7. case Wi .sym

8. ‘‘%’’: Loc ¼ Locþ Wi:size; i ¼ iþ 1;

9. ‘‘<’’: Loc¼Loc+PreviousObjectSize +

Wi :size; i ¼ iþ 1;
10. ‘‘/’’: Loc¼LocþPreviousObjectSize�

Wi :size; i¼ iþ1;
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11. ‘‘j’’: Loc¼Loc+PreviousObjectSize;

i ¼ iþ 1;

12. ‘‘]’’: If Wiþ1:sym 6¼ ‘‘(’’ then Template-

Size¼Wiþ1.size;

13. else TemplateSize¼GetTemplate-
Size (iþ 1, string);

14. end-if

15. Loc¼Loc+PreviousObjectSize

)TemplateSize;

16. i ¼ iþ 1;

17. ‘‘¼ ’’ or ‘‘[’’: i ¼ iþ 1;

18. ‘‘)’’: Pop a template object W from

Stack;
19. Loc¼W .beginBound;

20. PreviousObjectSize¼W .size;

21. MoreOperators¼True;

22. end-case

23. end-while

24. while (Wi .sym¼ ‘‘(’’)

25. Create the associated template object W ;

26. W .beginBound¼Loc;
27. W .size¼GetTemplateSize (i, string);
28. Push the template object W into Stack;

29. i ¼ iþ 1;

30. end-while

31. if Wi is a string object then

32. j ¼ jþ 1;

33. Create a new object Oj so that

34. Oj.sym¼Wi .sym;
35. Oj.size¼Wi .size;

36. Oj.beginBound¼Loc;

37. Append object Oj to ObjectList.

38. end-if

39. PreviousObjectSize¼Wi .size;

40. MoreOperators¼True;

41. end-while

42. Output the ObjectList.

The function GetTemplateSize calculates the

size of the template object at the next level. The

size of the template object is equal to the sum-

mation of:

1. the size of the first element after ‘‘(’’,

2. the size of the element after operator ‘‘j’’,
3. the size of the element after operator ‘‘<’’,

4. the distance associated with operator ‘‘<’’,

5. the size of the element after operator ‘‘/’’,
6. the negative distance associated with operator

‘‘/’’.

Notice that it is not necessary to calculate the

sizes of template objects at third or lower levels.
5. Performance analysis

To compare our string generation and image
reconstruction algorithms with those of the 2D Cþ-

string, we perform a series of experiments, which is

made on the synthesized images. There are two

cost factors dominating the performance of the

string generation and image reconstruction algo-
rithms: the number of images and the number of

objects in an image. We freely set the values of the
two cost factors in the synthesized images. All the

algorithms are implemented on an IBM compat-

ible personal computer of Pentium III-800 with

Windows 2000.

First, we compare our string generation and
image reconstruction algorithms with those of 2D

Cþ-string by using synthesized images. The exe-

cution cost of every experiment is measured by the
average elapsed time of image processing. We

generate the image index for 1000 images. For

each image, we assign 25 objects. Based on these

synthesized images, we perform four experiments.

The experimental results are shown as follows.

Fig. 5 illustrates the execution time versus the

number of images for the string generation and
image reconstruction algorithms. Each image in
these two experiments contains 25 objects. The

execution time grows linearly as the number of

images increases. The 2D Cþ-string approach

spends about 50–80% more time than the 2D Z-

string approach to generate a string or to recon-

struct an image.

Fig. 6 illustrates the execution time versus the

number of objects in an image for the string gen-
eration and image reconstruction algorithms. In

these two experiments, we run 1000 images for

each case. The execution time is averaged over the

execution time for each image. The execution time

grows linearly as the number of objects in an im-

age increases for the 2D Z-string approach. The

2D Cþ-string approach spends about 50–100%
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more time than the 2D Z-string approach to gen-

erate a string or to reconstruct an image.

Fig. 7 illustrates the string length vs. the num-

ber of objects in an image for the string generation
algorithm. In this experiment, we run 1000 images

for each case. The string length is averaged over
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the string length for each image. The spatial op-

erators and the parentheses occupy one byte of

storage. The object symbols and metric measure-

ments occupy four bytes of storage. The string

length grows linearly as the number of objects in

an image increases for the 2D Z-string approach.
However, the string length grows sharply as the

number of objects in an image increases for the 2D

Cþ-string approach.

To compare the efficiency of similarity retrieval

for both approaches, we perform a query in which

we retrieve the similar images with the equal spa-

tial relations in the x and y dimensions. In this

experiment, we run 100 queries, each of which
contains 10 objects. The execution time is averaged

over the execution time for each query. Fig. 8(a)
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presents the execution time vs. the number of im-

ages. The execution time grows linearly as the

number of images increases. Fig. 8(b) illustrates

the execution time vs. the average number of ob-

jects in an image. The execution time grows as the

average number of objects in an image increases.
Generally speaking, the 2D Cþ-string approach

spends about 50–100% more time than the 2D

Z-string approach in performing similarity re-

trieval.

In summary, the 2D Cþ-string approach

spends about 50–100% more time than the 2D Z-

string approach to generate a string, to recon-

struct an image, or to perform similarity retrieval
since the string lengths generated by the 2D Z-

string and 2D Cþ-string approaches are bounded

by OðnÞ and Oðn2Þ, respectively. The longer the

generated string is, the more execution time is re-

quired.
6. Concluding remarks

The approach of 2D strings opens a new area

for iconic picture indexing and retrieval. There are

many follow-up indexing methods based on the
concept of 2D string including 2D G-string pro-

posed by Chang et al. (1988), 2D C-string proposed

by Lee and Hsu (1990, 1991, 1992), 2D Cþ-string

proposed by Huang and Jean (1994), and 2D RS-

string proposed by Huang and Jean (1996).

However, all previously proposed methods are not

economical and efficient in terms of storage space

and execution time due to their cutting mech-
anisms. The order of the total number of parti-

tioned subparts is Oðn2Þ in the worst case, where

\n is the number of objects in the image.

To overcome this problem, we propose a new

spatial knowledge representation 2D Z-string.

Since there are no cuttings between objects in the

knowledge structure of 2D Z-string, the integrity

of objects is preserved and the string length is
bounded to OðnÞ. The shorter the generated string

is, the less execution time is required for string

generation and image reconstruction.

Since the 2D Z-string is extended from the 2D

C-string and 2D Cþ-string, the spatial inference

and similarity retrieval algorithms proposed in the
2D C-string or 2D Cþ-string can be applied di-

rectly to the 2D Z-string to retrieve the similar

images from a database. The 2D Z-string repre-

sentation can capture the precise and compact

spatial relations between objects. Our new

knowledge structure can be easily applied to an
intelligent image database system to reason

about spatial relations between the objects in an

image.
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