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Abstract— Robust semidefinite programs (robust SDPs in
short) with functional variables are revisited in this paper.
We firstly consider the approximate approach suggested by
Jennawasin and Oishi (in Proceedings of the 17th IFAC
World Congress, Seoul, Korea, July 2008), and then provide
a numerically computable condition to verify when the optimal
value of an approximate problem is actually equal to that of
the original robust SDP. The idea is based on capturing some
special structure of a dual feasible solution of the approximate
problem.

I. INTRODUCTION

Many important problems in control can be formulated as
an optimization problem described as follows:

minimize cTx
subject to F(x, φ(θ), θ) � O, ∀θ ∈ Θ,

}
(1)

where the optimization variables are a vector x ∈ Rn

and a function φ. The function φ belongs to the space of
piecewise continuous functions which map from Θ ∈ Rp

to Rnφ . A parameter θ, which represents the uncertainties
in the given system, can take any value in the set Θ. We
assume throughout this paper that the set Θ is a given multi-
dimensional interval in Rp. The function F(x, a, θ) is an
m×m symmetric-matrix-valued function which is affine in
x ∈ Rn and a ∈ Rnφ , and depends polynomially on θ. An
application of this problem is robustness analysis/synthesis
for a parameter-dependent linear systems with parameter-
dependent Lyapunov functions [5], [8]. The problem (1)
is called a robust semidefinite program (robust SDP) with
functional variable because the constraint has to be satisfied
for all possible values of θ ∈ Θ. Note here that the standard
robust SDPs in the literature [1], [2], [7], [21], [9] can be
considered as (1) without the functional variable φ. A robust
SDP in the form (1) is difficult to solve due to its infinite-
dimensional nature caused by the functional variable φ. One
way to deal with this problem is to reduce the problem
into a finite-dimensional one by choosing an appropriate
functional basis; for example, polynomial basis, for φ. Once
the finite-dimensional robust SDP, i.e., robust SDP without
the functional variable is obtained, one can apply various
approximation schemes [22], [9], [3], [20], [16], [17] to
approximate it into a standard SDP in asymptotically exact
fashions. The gap between the resulting finite-dimensional
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robust SDP and the original problem (1) can be arbitrarily
reduced using several existing methods [4], [18], [10].

In many examples (See [18], [10], [6]), however, the
optimal values of the resulting approximate problems seem
to actually equal to that of the original robust SDP (1). When
such the situation occurs, it is said that the approximation is
exact, or there is no gap between the approximate problem
and the original problem. In the context of robust SDPs
without functional variables, Several approaches [20], [15]
have been suggested to verify whether an approximation is
exact. The approach is based on considering a dual feasible
solution of the approximate problem. If the dual solution
satisfies some certain conditions, we can conclude that the
optimal values of the two problems are actually equal, and
hence there is no gap between the two problems. Extensions
to the case of robust SDPs with functional variables have
recently been proposed in [18], [6]. In [18], an approach
for exactness verification has been provided for approximate
problems constructed by the matrix-dilation technique [16].
Ebihara et al. [6] provided rank conditions on the dual
solution to guarantee exactness of approximations to certain
classes of robust SDPs (1) in robustness analysis problems.

In this paper, we revisit the approach of [10] which
constructs approximate problems of (1) using the sum-of-
squares (SOS) technique [19], [13], [12], [22]. The approx-
imation gap is arbitrarily reduced by dividing the region Θ.
Inspired by the work of Scherer [20], we observe a dual
feasible solution of the approximate problem. If the dual
solution contains some specific structure, we can conclude
that the optimal values of the two problems are actually
equal, i.e., the approximation is exact, and further division on
the parameter region is not necessary any more. Moreover,
the worst-case parameter θ which achieves the optimal value
of (1) can be extracted by solving a linear program. Finally,
we will show that the dual variable contains some block-
matrix structure relevant with that of the moment matrices
in [13], [12].

Contributions of our approach are summarized as follows.
(I) Comparing with [6] which also applies to SOS approxi-
mations, the current approach provides a difference condition
for the exactness verification of the SOS approximations. Our
framework, however, can be applied not only to the robust
SDPs arising from robustness analysis problems but also to
the more general class of robust SDPs of the form (1). In
addition, we show that the block-matrix structure of the dual
variables is still preserved when the SOS approach is applied
to a general robust SDP of the form (1).
(II) Unlike the conventional approaches in [20], [22], [6]
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which increase the degrees of relevant polynomials to reduce
the gap between the approximate problem and the original
problem, the current approach reduces the gap by dividing
the parameter region Θ without increasing the degrees of the
polynomials. This leads to an approximate SDP with several
constraints whose dual variables are uncoupled from one
another. This problem structure allows us to apply a parallel
computation to check the dual variables for the exactness
verification.

II. A REGION-DIVIDING APPROACH TO ROBUST SDPS

A region-dividing approach in [10] to the robust SDP
(1) is summarized in this section. In this approach, we
make the problem finite-dimensional by choosing φ as a
polynomial with fixed degree. In order to improve the quality
of approximation, we divide the parameter set Θ into several
subregions and allow φ to be a piecewise polynomial consis-
tent to the division. Then we have a finite-dimensional robust
SDP with several semi-infinite constraints corresponding to
the division. To deal with the semi-infinite constraints, we
apply the notion of sum-of-squares (SOS) matrices in [12],
[22]. Finally, we obtain an approximate problem which is a
standard SDP. The optimal value of the approximate problem
converges to that of the original problem, as the resolution
of the division becomes higher.

For the functional variable φ(θ), we use a fixed-degree
polynomial

∑
α∈V uαθα for some finite set V ⊂ Zp

+. Here
the symbol θα stands for the product θα1

1 θα2
2 · · · θαp

p with
α =

[
α1 α2 · · · αp

]
∈ Zp

+. We use the coefficients
u = (uα) ∈ Rnu to characterize the polynomial and write
φu(θ) =

∑
α∈V uαθα. Substitution of φu(θ) into F makes

this function dependent on finite-dimensional variables x and
u. In particular, we define the notation

F (x, u, θ) := F(x, φu(θ), θ).

Note that F is affine in x and u while polynomial in θ.
Precisely, F (x, u, θ) is written as:

F (x, u, θ) = F00···0(x, u) + F10···0(x, u)θ1 + · · ·
+Fd1d2···dp(x, u)θd1

1 θd2
2 · · · θdp

p .

The definition of a division ∆ of the parameter set Θ
is given here for the succeeding discussion. We define a
division ∆ = {Θ[j]}J

j=1 of Θ as a set of closed convex
polytopes such that Θ = ∪J

j=1Θ
[j] holds and Θ[j] ∩ Θ[k]

has no interior point whenever j 6= k. Each element Θ[j] of
a division ∆ is called a subregion. We assume that each
Θ[j] is a p-dimensional interval Πp

i=1[θ
[j]
i , θ

[j]

i ]. Here, the
coefficients u is allowed to take a difference value u[j]

depending on the subregion Θ[j], for each j = 1, 2, . . . , J .
Hence, the function φ is a piecewise polynomial.

We then consider the following finite-dimensional prob-
lem:

P0(∆) : minimize cTx
subject to F (x, u[j], θ) � O, ∀θ ∈ Θ[j],

∀j = 1, 2, . . . , J,



where the optimization variables are x ∈ Rn and
u[1], u[2], . . . , u[j] ∈ Rnu . Since only a specific class of func-
tion are considered for φ in this problem, we immediately
have inf P0(∆) ≥ vopt, where inf P0(∆) and vopt denote
the optimal values of P0(∆) and (1) respectively.

The problem P0(∆) is still difficult to solve due to
its semi-infinite constraint. Here, we apply the result of
Proposition 1 to overcome this difficulty. In particular, an
approximate problem for P0(∆) with the notion of SOS
matrices:
P (∆) : minimize cTx

subject to F (x, u[j], θ) = S
[j]
0 (θ)

+
p∑

i=1

(θi − θ
[j]
i )(θ

[j]

i − θi)S
[j]
i (θ),

∀j = 1, 2, . . . , J,


where S

[j]
0 , S

[j]
1 , . . . , S

[j]
p are SOS matrices, for all j =

1, 2, . . . , J . In our setting, we use the same monomial
basis, say zi(θ), for the SOS matrices S

[j]
i (θ), for all

j = 1, 2, . . . , J . This leads to the parameterization S
[j]
i =

(zi(θ) ⊗ Im)TQ
[j]
i (zi(θ) ⊗ Im), ∀j = 1, 2, . . . , J , for

some positive semidefinite matrices Q
[j]
i ’s (See Appendix

for details). With this parameterization, it is not difficult
to express the problem P (∆) as an SDP in the decision
variables x, u[j], and Q

[j]
0 , Q

[j]
1 , . . . , Q

[j]
p , for j = 1, 2, . . . , J ,

using the idea discussed in [19], [22].
For each j, the existence of the SOS matrices

S
[j]
0 , S

[j]
1 , . . . , S

[j]
p implies that F (x, u[j], θ) � O, ∀θ ∈ Θ[j].

This is immediately obtained from the definition of SOS ma-
trices and the assumption on Θ[j]. Hence the feasible region
of P (∆) projected into the space of x and u[1], u[2], . . . , u[J]

is included in the feasible region of P0(∆). In particular,
inf P (∆) ≥ inf P0(∆) ≥ vopt.

We now have an approximate problem, which is a standard
SDP, for (1). In order to improve the approximation, we
make subdivision on ∆ and solve again the new approximate
problem P (∆). This procedure is repeatedly performed until
the obtained optimal value inf P (∆) is satisfactory. In fact,
inf P (∆) converges to vopt as the resolution of the division
∆ becomes higher if the monomial bases z0(θ), z1(θ), . . . ,
zp(θ) are chosen as (See [10] for the proof)

z0(θ) =
[
1 θ1 θ2 · · · θd1+1

1 θd2+1
2 · · · θdp+1

p

]T

,

zi(θ) =
[
1 θ1 θ2 · · · θd1

1 θd2
2 · · · θdp

p

]T

, i = 1, . . . , p,

(2)
where d1,. . . , dp are the highest degrees of variables
θ1, . . . , θp, respectively, in the polynomial expression of
F (x, u[j], θ). In many cases, however, the approximate op-
timal value inf P (∆) turns out to be equal to the true
optimal value vopt. In the next section, we discuss how to
verify whether inf P (∆) = vopt. In such case, no further
improvement on the approximation is needed any more.

III. MAIN RESULT

Exactness verification of the approximate problem P (∆)
is discussed in this section.
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We start from a simple idea, which was suggested by [18],
that if an optimal solution (x̂, {û[j]}, {Q̂[j]

i }p
i=0) is obtained,

and there exist some j and θ̂ ∈ Θ[j] such that (x̂, û[j]) is
optimal for the problem

P (θ̂) : minimize cTx

subject to F (x, u[j], θ̂) � O,

}
then inf P (∆) = vopt. To see this, note that inf P (θ̂) ≤
vopt ≤ inf P (∆) = cTx̂ in general, and inf P (θ̂) = cTx̂.
This implies that these three values are equal to each other.
The parameter θ̂ ∈ Θ[j] satisfying the above condition is
understood as the worst-case parameter value.

Optimality of (x̂, û[j]) can be verified by the existence of a
dual feasible solution satisfying the complementary slackness
condition [1]. More precisely, (x̂, û[j]) is optimal for P (θ̂)
if and only if there exists a matrix Ŵ ∈ Rm×m such that

Ŵ � O, (3)
〈Ŵ , F (en

i , 0, θ̂)− F (0, 0, θ̂)〉 = ci, i = 1, 2, . . . , n,(4)

〈Ŵ , F (0, enu
i , θ̂)− F (0, 0, θ̂)〉 = 0, i = 1, 2, . . . , nu,(5)

〈Ŵ , F (x̂, û[j], θ̂)〉 = 0, (6)

where 〈A,B〉 := Trace(AB) for symmetric matrices A and
B, and en

i be the ith column of the n × n-identity matrix.
Since direct computation of Ŵ and θ̂ satisfying (3)-(6) is
difficult, we next provide a computable sufficient condition
to guarantee the existence of such Ŵ and θ̂. The sufficient
condition can be derived by examining some special structure
of the dual solution of P (∆).

Recall that the constraints of P (∆) are represented as

F (x, u[j], θ) = (z0(θ)⊗ Im)TQ
[j]
0 (z0(θ)⊗ Im)

+
p∑

i=1

(θi − θ
[j]
i )(θ

[j]

i − θi)

(zi(θ)⊗ Im)TQ
[j]
i (zi(θ)⊗ Im),

∀j = 1, 2, . . . , J,

(7)

with the monomial bases z0, z1, . . . , zp chosen from (2)
and Q

[j]
0 � O, Q

[j]
1 � O, . . . , Q

[j]
p � O. We see from

(7) that, for each j, the matrix Q
[j]
0 depends affinely on

Q
[j]
1 , . . . , Q

[j]
p and matrix coefficients of F (x, u[j], θ). If we

set Q
[j]
1 , . . . , Q

[j]
p , u[j], x as free variables, then P (∆) can be

represented as the following SDP:

P (∆) : minimize cTx

subject to Q
[j]
0 =

∑nq

r=1 q
[j]
r Br +

∑nk

s=1 k
[j]
s Cs

+E(x, u[j]) � O,

Q
[j]
i � O, i = 1, . . . , p,

∀j = 1, 2, . . . , J,


where q[j] = (q[j]

1 , q
[j]
2 , . . . , q

[j]
nq ) is a vector containing all the

elements of Q
[j]
1 , . . . , Q

[j]
p , k[j] = (k[j]

1 , . . . , k
[j]
nk) is a vector

containing the remaining free variables, and B1, . . . , Bnq
,

C1, . . . , Cnk
are constant matrices. The matrix E(x, u[j])

contains matrix coefficients of F (x, u[j], θ), and satisfies
(z0(θ) ⊗ Im)TE(x, u[j])(z0(θ) ⊗ Im) = F (x, u[j], θ). Note

here that E(x, u[j]) depends affinely on x and u[j]. Moreover,
such decomposition for F (x, u[j], θ) is possible as shown in
[16].

The following theorem states that if a dual feasible so-
lution of P (∆) contains some special structure then the
approximate problem P (∆) is exact, i.e., inf P (∆) = vopt.

Theorem 1: Let (x̂, {û[j]}, {Q̂[j]
i }p

i=1, {k̂[j]}) be an opti-
mal solution of P (∆) for a division ∆. Consider a subregion
Θ[j], and dual feasible solutions Ŷ

[j]
0 associated with the

constraint
∑nq

r=1 q
[j]
r Br +

∑nk

s=1 k
[j]
s Cs + E(x, u[j]) � O,

and Ŷ
[j]
i associated with Q̂

[j]
i � O, for i = 1, . . . , p.

If Ŷ
[j]
0 , Ŷ

[j]
1 , . . . , Ŷ

[j]
p satisfy the complementary slackness

condition with (x̂, û[j], Q̂
[j]
0 , Q̂

[j]
1 , . . . , Q̂

[j]
p ), and there exist

a point θ̂ ∈ Θ[j], a matrix Ŵ � O, and positive numbers
a0, a1, . . . , ap such that

Ŷ
[j]
i = ai(zi(θ̂)⊗ Im)Ŵ (zi(θ̂)⊗ Im)T, i = 0, 1, . . . , p,

Then Ŵ and θ̂ satisfy (3)–(6).
Proof: Suppose the dual feasible solutions
Ŷ

[j]
0 , Ŷ

[j]
1 , . . . , Ŷ

[j]
p satisfy the dual feasibility conditions

Ŷ
[j]
i � O, i = 0, 1, . . . , p, (8)

〈Ŷ [j]
0 , E(en

i , 0)− E(0, 0)〉 = ci, i = 1, 2, . . . , n, (9)

〈Ŷ [j]
0 , E(0, enu

i )− E(0, 0)〉 = 0, i = 1, 2, . . . , nu, (10)

〈Ŷ [j]
0 ,

nq∑
r=1

qrBr +
nk∑
s=1

ksCs〉+
p∑

i=1

〈Ŷ [j]
i , Qi〉 = 0,

for any Q1, . . . , Qp, k, (11)

and the complementary slackness conditions

〈Ŷ [j]
0 , Q̂

[j]
0 〉 = 0, (12)

〈Ŷ [j]
i , Q̂

[j]
i 〉 = 0, i = 1, . . . , p. (13)

Substituting Ŷ
[j]
0 = a0(z0(θ̂)⊗ Im)Ŵ (z0(θ̂)⊗ Im)T into (9)

yields (4), due to the fact that (z0(θ̂)⊗Im)TE(x, u)(z0(θ̂)⊗
Im) = F (x, u, θ̂). We also obtain (5) from (10) by a simi-
lar reason. Finally, the complementary slackness conditions
(12)-(13) imply that

〈Ŵ , (z0(θ̂)⊗ Im)TQ̂
[j]
0 (z0(θ̂)⊗ Im)〉 = 0,

and

〈Ŵ , (θ̂i − θ
[j]
i )(θ

[j]

i − θ̂i)(zi(θ̂)⊗ Im)TQ̂
[j]
i (zi(θ̂)⊗ Im)〉,

= 0, i = 1, . . . , p.

Summing the above equations yields (6).

For a given Y � O, there exist W � O and a ≥ 0
such that Y = a(z(θ̂) ⊗ Im)W (z(θ̂) ⊗ Im)T if and only if
H(θ̂)TY = 0, where H(θ) is an orthogonal complement of
(z(θ)⊗Im), i.e., H(θ)T(z(θ)⊗Im) = 0. Here, the upper-left
m×m submatrix of Y is equal to aW . Note that H(θ̂) can
be chosen to be affine in θ̂ [16]. Once we obtain the dual
solutions Ŷi whose the upper-left m × m submatrices are
all in the same structure, the parameter θ̂ can be computed
by solving a linear programming problem. Note here that the
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condition H(θ̂)TY = 0 is consistent with those for exactness
verification in the literature [20], [21], [16], [18].

It can be seen that the constraints (8)–(13) for the dual
variables Ŷ

[j]
0 , Ŷ

[j]
1 , . . . , Ŷ

[j]
p are uncoupled, with respect to

each subregion Θ[j], from one another. Therefore, this allows
us to simply apply a parallel computation, for example
[11], for simultaneously solving Ŷ

[j]
0 , Ŷ

[j]
1 , . . . , Ŷ

[j]
p in every

subregion. Reduction of the overall computational time can
be expected from such parallel computation, even in the case
of a large number of subregions.
Remark: If the above condition fails to verify the exactness
of the approximate optimal value, we can compute a lower
bound on the actual optimal value vopt by randomly sampling
in Θ, and solve an SDP with constraints corresponding to
the sampled points. If the lower bound and the upper bound
inf P (∆) are close to each other, then a good approximate
optimal value can be obtained from inf P (∆).

We close this section with the discussion on the structure
of the dual variables Ŷ

[j]
0 , Ŷ

[j]
1 , . . . , Ŷ

[j]
p . In particular, we

will show that the matrices Ŷ
[j]
0 , Ŷ

[j]
1 , . . . , Ŷ

[j]
p which have

the moment-matrix structure [13], [12] satisfy the dual con-
straint (11).

Before going ahead, the following definition will be useful
for the succeeding discussion.

Definition 1: Let A be a matrix of dimension lm×lm and
A is partitioned into block matrices of dimension m×m as
follows,

A =


A11 A12 · · · A1l

A21 A22 · · · A2l

...
...

. . .
...

Al1 Al2 · · · All

 .

Define Tracem(A) to be the m × m matrix obtained from
A as follows,

Tracem(A) , A11 + A22 + · · ·+ All.

For illustrating the idea, let us consider a robust SDP
of the form (1) with the parameter −β1 ≤ θ1 ≤ β1, and
−β2 ≤ θ2 ≤ β2, where β1 and β2 are given positive
numbers. Suppose that the corresponding SOS-approximate
problem is constructed with the following SOS constraint
using the coarsest division ∆ = [−β1, β1]× [−β2, β2]:

F (x, u, θ) = (z0(θ)⊗ Im)TQ0(z0(θ)⊗ Im)
+(β2

1 − θ2
1)(z1(θ)⊗ Im)TQ1(z1(θ)⊗ Im)

+(β2
2 − θ2

2)(z2(θ)⊗ Im)TQ2(z2(θ)⊗ Im).
(14)

Suppose that F (x, u, θ) is a polynomial matrix of degree 2
in θ1, and θ2, the monomail bases z0, z1 and z2 are given,
for example, by

z0(θ) = [1 θ1 θ2 θ2
1 θ1θ2 θ2

2],
z1(θ) = z2(θ) = [1 θ1 θ2].

Using Definition 1 and the decomposition (z0(θ) ⊗
Im)TE(x, u)(z0(θ)⊗ Im) = F (x, u, θ), the SOS constraint

(14) can be rewritten as

Tracem(E(x, u)(z0(θ)⊗ Im)(z0(θ)⊗ Im)T) =
Tracem(Q0(z0(θ)⊗ Im)(z0(θ)⊗ Im)T)
+Tracem(Q1(β2

1 − θ2
1)(z1(θ)⊗ Im)(z1(θ)⊗ Im)T)

+Tracem(Q2(β2
2 − θ2

2)(z2(θ)⊗ Im)(z2(θ)⊗ Im)T).
(15)

It is not difficult to see that equality in (15) is still valid if
the matrices (z0(θ)⊗ Im)(z0(θ)⊗ Im)T , (β2

1 − θ2
1)(z1(θ)⊗

Im)(z1(θ)⊗Im)T, and (β2
2 −θ2

2)(z2(θ)⊗Im)(z2(θ)⊗Im)T

are replaced by

Y0 =


Y00 Y10 Y01 Y20 Y11 Y02

Y10 Y20 Y11 Y30 Y21 Y12

Y01 Y11 Y02 Y21 Y12 Y03

Y20 Y30 Y21 Y40 Y31 Y22

Y11 Y21 Y12 Y31 Y22 Y13

Y02 Y12 Y03 Y22 Y13 Y04

 ,

Y1 = β2
1

Y00 Y10 Y01

Y10 Y20 Y11

Y01 Y11 Y02

−

Y20 Y30 Y21

Y30 Y40 Y31

Y21 Y31 Y22

 ,

Y2 = β2
2

Y00 Y10 Y01

Y10 Y20 Y11

Y01 Y11 Y02

−

Y02 Y12 Y03

Y12 Y22 Y13

Y03 Y13 Y04

 ,

(16)

respectively. In particular, the matrices Y0, Y1, and Y2 above
satisfy the equation

Tracem(E(x, u)Y0) = Tracem(Q0Y0) + Tracem(Q1Y1)
+Tracem(Q2Y2).

Since Trace(Tracem(A)) = Trace(A), the above equation
implies

〈Y0, Q0 − E(x, u)〉+
2∑

i=1

〈Yi, Qi〉 = 0,

which is nothing but the dual constraint (11) on the variables
Y0, Y1, and Y2, because of the relation Q0 =

∑nq

r=1 qrBr +∑nk

s=1 ksCs + E(x, u).
It is notable that Y0, Y1, and Y2 in (16) are con-

structed from (z0(θ)⊗Im)(z0(θ)⊗Im)T, (β2
1 −θ2

1)(z1(θ)⊗
Im)(z1(θ)⊗Im)T, and (β2

2 −θ2
2)(z2(θ)⊗Im)(z2(θ)⊗Im)T

by replacing the block θα1
1 θα2

2 Im with the new variable
Yα1α2 ∈ Rm×m. Such construction is consistent with the
construction of moment matrices in [13], [12]. It is notable
that the moment-matrix structure of Y0, Y1, and Y2 does not
depend on F (x, u, θ) but depends only on the choice of z0,
z1 and z2. This idea can be extended more generally; that
is we can use the moment-matrix construction to extract the
particular structure of the dual variables Ŷ

[j]
0 , Ŷ

[j]
1 , . . . , Ŷ

[j]
p

associated with the constraints of P (∆) for any p and for
any choices of the monomial bases z0(θ), z1(θ), . . . , zp(θ).

IV. EXAMPLES

Two numerical examples are provided in this section to
illustrate the idea. The software YALMIP [14] with SeDuMi
[23] as an SDP solver is used for the computation.

4098



Example 1: Consider the following uncertain system bor-
rowed from [5]

ẋ(t) = A(θ)x(t) + Bw(t)
y(t) = Cx(t),

where A(θ) = A0 + θA1. Constant matrices A0, A1, B, and
C are given as

A0 =

 0.1 2.5 5
4.9 −3 0.5
−5.5 −5 −10.7

 , A1 =

−4.2 −3 −12
−4.8 0 0

9 12 14.4

 ,

B =

1
0
0

 , C =
[
0 0 1

]
.

The parameter set is given by Θ = [0, 1]. The maximum L2-
induced norm over Θ is computed by solving the following
robust SDP:
minimize γ
subject to
X(θ) � O,−X(θ)A(θ)−A(θ)TX(θ) −X(θ)B(θ) CT(θ)

−B(θ)TX(θ) γI O
C(θ) O γI

 � O,

∀θ ∈ Θ

where the decision variables are a real scalar γ and a
symmetric-matrix-valued function X(θ). We first compute an
upper bound on the maximum induced norm using X(θ) =
X0 + X1θ + X2θ

2 and the coarsest division ∆ = {Θ}. The
computed upper bound is inf P (∆) = 6.2010. By examining
the dual optimal solution of P (∆), the worst-case parameter
θ̂ = 0.9732 is computed. The L2-induced norm of the system
with respect to this parameter is 6.2010, which is actually
equal to the computed upper bound. The exactness of P (∆)
is numerically verified, and hence further increase of the
degree of X(θ) or division on Θ is not needed any more.

Example 2: We next apply our approach with a system
with vector uncertain parameter. Consider the following
system borrowed from [21]

ẋ(t) = Ax(t) + B(θ)w(t)
y(t) = C(θ)x(t),

with

A =
[
−2 1
0 −2

]
,

B(θ) =

[
−3θ2

(2a2+a)θ2
1θ2+2aθ2

1+2aθ2+θ2
1−2

2−2a2θ2
2−θ2

1+a2θ2
1θ2

2

1

]
,

C(θ) =
[
−1 0

]
.

The parameter set is Θ = [−0.7, 0.8]2, and a takes a value
between 0 and 1. We again compute an upper bound the
maximum L2-induced norm of the system by solving a robust
SDP. Rational dependence on the parameter can be made to
polynomial dependence by multiplication of an appropriate
polynomial.

We first solve the robust SDP, for each a, using X(θ) =
X00 + X10θ1 + X20θ

2
1 + X01θ2 and the coarsest division

∆ = {Θ}. Our approach can guarantee the exactness of the
computed upper bound for a = [0, 0.4) and a = (0.7, 1].
For a = [0.4, 0.7], we obtain a lower bound by gridding
the region and computing the maximum norm over the grid
points. The numerical result show that the upper bound and
the lower bound are closed to each other.

The problem is then solved again using the same X(θ)
and the division ∆ = {Θ[1],Θ[2]} with Θ[1] = [−0.7, 0.05]×
[−0.7, 0.8] and Θ[2] = [−0.05, 0.8]× [−0.7, 0.8]. The upper
bound for each a in this case is the same as that of the
coarsest division. However, the exactness of the lower bound
is verified for a = [0, 0.4) and a = (0.5, 1]. This reveals that
subdivision on Θ also increases the chance of the exactness
verification.

V. CONCLUSION

We provided a computational approach to verify the ex-
actness of SOS approximations to the robust SDPs with
the functional variable. A dual feasible solution of the
approximate problem is considered in the current approach.
The certain constraints on the dual solution guarantee there
is no gap between the approximate problem and the original
problem. The worst-case parameter can also be extracted
by solving a linear program. Finally, the moment-matrix
structure of the dual variables was also discussed. Since
the constraint Ŷi = ai(zi(θ̂) ⊗ Im)Ŵ (zi(θ̂) ⊗ Im)T in
Theorem 1 implies some rank constraint on the dual variable
Ŷi, it is interesting to find some connections between the
resulting rank constraint and the rank constraint suggested
by [6], when applying the current approach to the robustness
analysis problems.
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APPENDIX

Sum-of-squares polynomial matrices

Let R[θ]m×n denote the set of m×n polynomial matrices
in θ ∈ Rp and S[θ]n denote the set of n × n symmetric
polynomial matrices. We use the notion of sum-of-squares
(SOS) polynomial matrices as follows.

Definition 2: [12], [22] A polynomial matrix S ∈ S[θ]m is
said to be a sum of squares (SOS) if there exists a polynomial
matrix T ∈ R[θ]q×m such that

S(θ) = T (θ)TT (θ).
This is a generalization of the SOS representation for

scalars [13], [19]. We use Σ[θ]m to represent the set of m×m
SOS polynomial matrices. It is clear that any polynomial
matrix S ∈ Σ[θ]m is globally positive semidefinite, but the
converse is not true in general.

A computational procedure for verifying whether S(θ)
is an SOS proceeds as follows. Choose pairwise different
monomials u1(θ), . . . , unu(θ) and search for the coefficient
matrix Y in the representation

T (θ) = Y (u(θ)⊗ Im)

with Y = (Y1, . . . , Ynu) and u(θ) = (u1(θ), . . . , unu(θ))T.
Based on [22], the matrix S(θ) is said to be an SOS with
respect to u(θ) if there exists some Y satisfying S(θ) =
(u(θ) ⊗ Im)T(Y TY )(u(θ) ⊗ Im). Substituting Z = Y TY
yields the following result.

Proposition 1: [12], [22] A polynomial matrix S ∈ S[θ]m

is an SOS with respect to the monomial basis u(θ) if and
only if there exists a symmetric matrix Z � O with

S(θ) = (u(θ)⊗ Im)TZ(u(θ)⊗ Im). (17)
The condition (17) can be interpreted as an affine con-

straint in Z. This implies that the problem to find Z � O
with (17) can be formulated as an SDP. In other words,
we can check whether S ∈ Σ[θ]m with respect to some
monomial basis by solving an SDP.
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