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Iterative image reconstruction algorithms using
wave-front intensity and phase variation
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Iterative algorithms that reconstruct images from far-field x-ray diffraction data are plagued with conver-
gence difficulties. An iterative image reconstruction algorithm is described that ameliorates these conver-
gence difficulties through the use of diffraction data obtained with illumination modulated in both intensity
and phase. © 2005 Optical Society of America
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The extraction of detailed structural information
from x-ray diffraction data forms the basis of crystal-
lography and drives the continuing development of
new materials and pharmaceuticals. Since many bio-
molecules do not form mesoscopic crystals, increasing
efforts have been made to determine structural infor-
mation from nanoscale aperiodic samples using
phase retrieval algorithms, and there have been
recent suggestions that single molecules may be
imaged with diffraction data obtained from free-
electron laser sources.1,2

The iterative Gerchberg–Saxton (GS) scheme3 and
the hybrid input–output elaborations devised by
Fienup4,5 serve as prototypes of the phase retrieval
algorithms used to extract structural information
from diffraction data. Implicit in these algorithms is
the assumption that the incident radiation is of uni-
form intensity and constant phase and that the tar-
get object is represented by a complex transmission
function josxd that is wholly contained within some
known support S. The characteristic function jsxd
that describes the diffraction of a weakly scattering
planar object wholly enclosed within S under speci-
fied experimental conditions is jsxd=jssxdjosxd, where
jssxd is a unit step function within S. The function
jsxd is associated with a wave field Fskd= F̂fjsxdg,
where F̂ denotes the Fourier transform operator; the
reciprocal relation is jsxd= F̂−1fFskdg, where F̂−1 de-
notes the inverse of F̂.

The iterative algorithms that are described as be-
ing projections onto convex sets can be defined within
a common framework by use of an operator formal-
ism. The iterative procedure is initiated with a trial
characteristic function js0dsxd. The estimate of this
function after k iterations, jskdsxd, is obtained with
the recursion

jskdsxd = T̂jsk−1dsxd, for k = 1,2, . . . , s1d

where T̂ is an operator of the form T̂= T̂1T̂2¯ T̂m, with
each operator hT̂n :n=1,mj imposing a constraint on

jsxd. Common to each of these algorithms is the use
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of a subsidiary constraint operator T̂FT that imposes
the Fourier modulus constraint on jsxd through
uFskdu, with the known values of the modulus of Fskd
obtained directly from intensity measurements Iskd.
The iterative sequence is presumed to terminate
when jskdsxd satisfies predetermined acceptance crite-
ria. In practice, the iteration may stagnate without
satisfying the acceptance criteria, since the underly-
ing assumptions regarding the convexity of the sets
generated by one or more of the operators may not be
justified. The rate of convergence of these algorithms
is often slow, unpredictable, and sensitive to details
of the form of jsxd.

Many iterative strategies of this type have been de-
vised in attempts to overcome the convergence diffi-
culties encountered in image reconstruction from far-
field diffraction data by use of plane-wave
illumination; reviews, formal developments, and nu-
merical studies have been presented recently in, for
example, Refs. 6–9.

In contrast with the plane-wave formulation, a rep-
resentative model of a focused beam illuminating an
object consists of a Gaussian intensity profile and a
spherical wave front, defining a characteristic radia-
tion function

jradsxd = exps− mr2d, s2d

where m=mr+ imi and r is the perpendicular distance
from the symmetry axis of the beam. The precise
mathematical form of this function, which depends
on the experimental arrangements is unimportant
for the development of the argument that follows,
provided that the variation in both intensity and
phase is of comparable smoothness with jradsxd and
that it can be characterized accurately over S. Itera-
tive phase retrieval algorithms may readily be
adapted to determine directly the details of the wave
field of a focused beam since the wave field in the fo-
cal plane behaves as if it were a target whose dif-
fracted image is obtained in the detector plane. The
aberration functions required to correct the optics of
the Hubble Space Telescope10 play roles that are

equivalent to the characteristic illumination func-
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tions we employ here and that were obtained with
conventional iterative phase retrieval algorithms.5 It
was also noted in the numerical studies reported in
Ref. 10 that the accuracy obtained from iterative
phase retrieval techniques was significantly im-
proved with out-of-focus images or, equivalently, qua-
dratically phase-modified images. Here we explore a
related approach in the context of noncrystalline
phase retrieval.

The characteristic function that defines the map-
ping between the object plane and the diffraction in-
tensity data is jsxd=josxdjssxdjradsxd. A new partition
of the available information may be made by defining
the multiplicative curvature operators

T̂m = A exps− mrr
2dexps− imir

2d, s3d

T̂m
−1 = A−1 expsmrr

2dexpsimir
2d, s4d

where T̂m applies a Gaussian intensity profile of
maximum amplitude A and spherical curvature, and
T̂m performs the inverse operation.

We can use this information about the illumination
to assist in the extraction of the only information that
is of immediate interest, which is josxd. We achieve
this by defining a new Fourier modulus constraint
operator T̂FT,m of the form

T̂FT,m = T̂m
−1T̂FTT̂m, s5d

which replaces T̂FT wherever it appears in the GS al-
gorithm; similarly jo

sndsxd replaces jsndsxd in Eq. (1).
This operator imposes the Fourier modulus con-

straint with data obtained with known incident in-
tensity and phase variation but applies any other
constraints to the current estimate of the unmodified
characteristic object function jo

sndsxd. The influence of
applied intensity and curvature variation on the de-
termination of josxd may be understood by consider-
ing parameterized autocorrelation function

gmsrd = exps− m*r2d E exps− 2mrx
2d

3exps− 2m*r · xdjosxdjosx + rddx, s6d

which reduces to g0srd, the autocorrelation function
of josxd, in the limits mr→0+ (constant intensity) and
mi→0 (constant phase).

For illumination that has constant phase perpen-
dicular to the propagation direction and a Gaussian
intensity distribution, mr.0 and mi=0, any variation
in intensity may be wholly absorbed into a redefini-
tion of josxd, so that the assumption that josxd is real
requires that gm=mr

srd is also real, and no new infor-
mation can be obtained. Nevertheless, we have incor-
porated this feature into the algorithm because
variation of intensity over the dimension of josxd is a
likely consequence of the presence of significant
phase curvature.

In the case of uniform intensity and nonvanishing
phase variation, mr=0 and miÞ0, the autocorrelation

function is
gm=imi
srd = expsimir

2d E expsi2mir · xdjosxdjosx + rddx.

s7d

The multiplicative factor expsimir2d conveys no new
information about josxd since this function simply
isolates the known variation of incident phase across
the object. The complex weighting term exps2imir ·xd
in the integrand, however, conveys a great deal of
discriminatory information about the object that may
be used to assist in image reconstruction. In the case
of real josrd a real function g0srd is transformed into a
complex function gmsrd, where the real and imaginary
parts encode independent information about the rela-
tive orientation of vectors r and x in Eq. (6) through
scalar product r ·x.

In the tests that follow we used the images in Fig.
1 to examine the rate of convergence of the modified
algorithm. To set a length scale for m, these images
are defined to occupy a two-dimensional space −1/2
øxø1/2 and −1/2øyø1/2. Since we established
that mr.0 yields no information that is useful in im-
age reconstruction and that it is most likely to de-
grade the rate of image reconstruction, we set this
beam intensity parameter at mr=4 in all the tests,
which multiplies the test image by unity at (0,0) and
by a factor of 1.4310−1 at s±1/2, ±1/2d.

To demonstrate the efficiency of this new scheme
without specific reference to physical dimensions, we
characterize the phase curvature by the Fresnel
number of the 1283128 pixel support, NF

ssd, rather
than mi. For our present purposes we define NF

ssd to be
equal to half the number of phase oscillations across
S. In terms of the scaling we adopted, the numerical
values of the two quantities are related for this sys-
tem by mi=32pNF

ssd.
The mean-square error in the image reconstruc-

tion, dskd, of an N3N pixel image at GS iteration k is
defined to be

d =
1

N2Ho
i=1

N

o
j=1

N

fjosxijd − jo
skdsxijdg2J1/2

. s8d

Fig. 1. Test images used in numerical studies. Both im-
ages are 1283128 pixel gray-scale objects, which in prac-
tice are zero padded to 2563256 pixels to satisfy the over-
sampling requirement. The left-hand image was generated
by assigning each pixel a random number, n on the interval
0,n,1, and is denoted jrandomsxd. The right-hand image
consists of a number of identical, irregularly shaped cells,
the interiors of which are also generated by random pixel
assignment. The cells are arranged on a regular but incom-
pletely filled grid. This image is denoted j sxd.
quasi-periodic
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The results in Table 1 record the number of itera-
tions of the phase-modified GS algorithm that are re-
quired to achieve a reconstruction of the test images
with d=1.0310−6, for which the reconstructions are
indistinguishable to the eye from the original images.
A striking feature of the results reported in Table 1 is
that the introduction of phase curvature is sufficient
to transform the classic GS scheme from one that
frequently stagnates into one that usually converges
rapidly. Apart from the modification of the Fourier
modulus constraint operator within the GS algorithm
to be of the form of Eq. (5), no further change is
required.

In cases in which convergence of the modified algo-
rithm is rapid, the phase curvature overlay on the ob-
ject, typically involving NF

ssd
.5, becomes the domi-

nant feature, imposing variable-range oscillatory
structures on the object that are included exactly
within the reconstruction algorithm through the use
of Eq. (5). This additional information is sufficient to
give the apparently random structures within each
image a unique identity, fixing both the relationship
between pixels and the absolute position of pixels
with respect to the underlying phase and intensity
perturbations. This procedure rapidly filters from the
large number of symmetry-equivalent structures a
single function josxd that is consistent both with the
data Iskd and the known phase and intensity varia-
tion characterized by m.

Assuming the validity of Gaussian optics,11 repre-
sentative estimates can be made of critical param-
eters that describe illumination of a sample by a fo-
cused synchrotron beam. For a Gaussian beam of
waist width w0 and wavelength l we define x=z /zR,
where z is the distance from the focal plane in the
axial direction of the beam and zR=pw0

2 /l is the Ray-
leigh length. The width of the beam in the plane per-
pendicular to the beam axis at z is wszd=w0f1
+ sz /zRd2g1/2, and phase variation Dw is given by Dw
=2x. It is reasonable to assume that w0=10 nm will
be achievable at a wavelength l=0.1 nm within a few
years, with w0=50 nm available at present. A Fresnel
number NF=5 corresponds to Dw=10p rad and fixes
the object diffraction plane at z.49 mm. Within
these parameters, zR.3.1 mm and the effective
width of the illumination is ws5pzRd.150 nm. These
parameters define a focused Gaussian beam that will
illuminate a sample within a spatial support of ap-
proximately 150 nm diameter. This provides suffi-

Table 1. Dependence of Number of Iterations m Requ
Square Error of 1.0Ã10−6 pe

NF
ssd 0 1 2 3 4

mrandom
a,b — 1227 798 422 271

mquasi-periodic
b,c — 477 270 255 157

aReconstruction ofjrandom.
bThe conventional GS scheme, corresponding to uniform phas
reconstruction.
cReconstruction ofjquasi-periodic.
cient phase curvature over the dimension of the
sample for the significant benefits of the phase re-
trieval algorithm described in this Letter to become
readily apparent, and it represents an achievable ex-
perimental configuration.

This study suggests strongly that for characteristic
functions that are not intrinsically more complicated
than the ones considered here, accurate, rapid, and
unambiguous reconstruction of two-dimensional
nanoscale objects may be possible using intense, fo-
cused beams of radiation and a single diffraction data
set. Although the success of this approach depends on
the availability of diffraction data that are not over-
whelmed by noise and on the ability to characterize
accurately both the intensity and the phase variation
of the incident radiation over the sample, several
technological opportunities immediately present
themselves as warranting further careful investiga-
tion of this approach. These include the development
of nanocrystallography in which two-dimensional
films replace three-dimensional crystal samples that
are difficult or impossible to obtain in many impor-
tant instances.
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