
Detecting syntactic errors
in dependency treebanks

for morphosyntactically rich languages

Katarzyna Krasnowska and Adam Przepiórkowski

Institute of Computer Science, Polish Academy of Sciences,
k.krasnowska@phd.ipipan.waw.pl, adamp@ipipan.waw.pl

Abstract. The paper introduces a new method for detecting and cor-
recting errors in large dependency treebanks with rich morphosyntactic
annotation. The technique uses error correction rules automatically ex-
tracted from the treebank. The procedure of rule extraction is based on
a comparison of similar – but not identical – subgraphs of dependency
structures. The outcome of applying the method to a 3-million-sentence
dependency treebank of Polish is presented and evaluated. The method
achieves satisfactory precision in the task of automatic error correction
and relatively high precision in the task of error detection.

Keywords: dependency treebank, error mining, automatic error detec-
tion, automatic error correction

1 Introduction

Treebanks are an important type of linguistic resource and are currently main-
tained or developed for numerous languages. They play a crucial role in the task
of training probabilistic parsers and, hence, in many natural language processing
applications. This is why it is necessary to ensure their high quality. One of the
ways of eradicating erroneous structures in a treebank is to develop a method
of automated detection of wrongly annotated structures once the resource is
created.

The aim of this paper is to present one such method for detecting errors
in a dependency treebank. There were previous reports on application of some
methods for pointing out wrongly annotated structures in this type of resource [2,
3]. This paper presents an alternative method, inspired by a technique designed
for finding errors in constituency treebanks [5] which was successfully adapted
for use with the Polish constituency treebank [6].

The treebank used for the evaluation of the proposed method is an auto-
matically created corpus comprising of a little more than 3 million trees.1 The
method used for creating the treebank (described in detail in [10]) involved the
use of a large English-Polish word-aligned parallel corpus. The English part of

1 The exact number is 3 162 800.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357535933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

the corpus was parsed automatically using a comprehensive LFG parser for En-
glish.2 Dependency structures for the Polish part were then induced on the basis
of the English parse and the word alignment between parallel sentences.

The paper is organised as follows. Section 2 introduces the proposed method
of error detection, section 3 describes relevant experiments, and section 4 con-
tains evaluation of the obtained results.

2 Method

The proposed method relies on the assumption that constructions which appear
in the treebank relatively rarely are likely to be erroneous. Moreover, similar
constructions encountered more frequently can be expected to be correct coun-
terparts of the erroneous constructions (the notion of similarity will be explained
later on). Although this may not hold in all cases, we are hoping to be able to de-
tect dependency annotation errors with sufficient precision. The idea behind the
technique proposed in this paper is thus to define sub-structures of dependency
trees that the method will compare, as well as what it means for them to be
similar. After extracting relevant structures from the treebank and determining
their frequencies, pairings of similar structures are found, possibly representing
erroneous constructions and their correct counterparts.

The method is based on connected subgraphs of the dependency trees. As
a first step, all such subgraphs of a given size3 are extracted from each tree.
For convenience, we assume that the dependency relations are marked in the
child node, not attached to the edge between parent and child, and that the
(artificial) root note of the tree is not taken into account for the purpose of sub-
graph extraction. The subgraphs retain information about parent-child relations
and are in fact themselves dependency trees, it is therefore relevant to refer to
a subgraph’s root.

Our approach differs from the one proposed by Kato and Matsubara [5],
who extracted subtrees from constituency structures and then truncated them
by cutting off all children of specific nodes. In other words, each node in the
tree substructures they considered had either all its original children removed,
or all its original children retained. In the method proposed here, it is possible
for a subgraph’s node to retain only a subset of its children from the original
dependency tree. In this way the technique presented here achieves greater flex-
ibility, especially given the fact that arguments of verbs can be (and frequently
are) omitted or freely ordered in Polish.

Experiments on error detection in small, syntactically annotated corpora
of highly inflectional languages, reported in [6], suggest that abstraction from
exact word forms (i.e., taking into consideration only their part of speech and

2 See [1] and http://www2.parc.com/isl/groups/nltt/xle/doc/xle_toc.html.
3 In this work, we only considered subgraphs of sizes 4 and 5 (i.e., based on 4 or 5

words). Smaller subtrees seemed to carry too little information to prove substantially
useful. What is more, allowing more possible subtree sizes would increase the already
long – because of the treebank’s size – time required to run the procedure.



3

morphological tags) can help in obtaining sufficient amount of data for drawing
statistical generalisations. In the case of the study described in this paper, this
coarse granularity of information does not seem essential, given the very high
number of sentences in the treebank. Moreover, some preliminary experiments
conducted with a small (about 8000 trees) dependency treebank described in
[9] showed that ignoring word forms may lead to unacceptable loss of lexical
information.

For instance, when it abstracted away from lexical information, the method
failed in case of sentences containing the common verb mieć (to have), which
has an accusative nominal argument that is not passivisable and is therefore
labelled as a complement (comp), not an object (obj), in the dependency schema
adopted here. On the other hand, for the vast majority of Polish verbs, the
accusative argument is actually a passivisable object. As a result, subgraphs
with an obj dependency relation between a verb and a noun in accusative case
were much more frequent in the treebank than similar subgraphs with a comp
relation, and the method wrongly reported many trees with the verb mieć and
its accusative complement as errors.

To strike a reasonable balance between the need for generalisation and the
necessity to retain some lexical information, graph nodes are represented by
base forms of words, together with their CPOS tags4 and morphological case.
This way, the current method is capable of drawing a parallel between, e.g., two
sentences containg the same verb with the same arguments, but differing in the
verb’s person and gender.

To illustrate the above considerations, Figure 1 shows an example depen-
dency tree and all its connected subgraphs of size 4. CPOS tags combined with
morphological cases will be referred to as CPOS-case tags. For instance, a noun
in dative will be assigned the noun-DAT CPOS-case tag.

Once the subgraphs are extracted, all subgraph pairs are found such that:

– their roots are identical in terms of dependency relation, word base form and
CPOS-case tag;
– the sequences base forms and CPOS-case tags of all nodes (ordered the same

way as corresponding words in the sentence) are identical;
– their internal structures (i.e., subgraph shapes and/or dependency relations)

diverge.

An example of a rule extracted in this way from the treebank is presented in
Figure 2.

For each rule, all trees containing the source of the rule (the first substructure)
are marked as possibly incorrect. Trees created by transforming the subgraph
matching the source into one matching the target are suggested as correct.

4 CPOS tags are coarse-grained POS tags, where fine-grained grammatical classes
(e.g., various types of adjectives) are grouped into more traditional parts of speech.



4

ROOT Marynarz poklepał go po ramieniu .
subst verb subst prep subst interp
Sailor patted him on shoulder

pred

subj obj

comp

punct

comp

marynarz poklepać on po
subst:NOM verb subst:ACC prep:LOC
subj pred obj comp

marynarz poklepać on .
subst:NOM verb subst:ACC interp
subj pred obj punct

marynarz poklepać po .
subst:NOM verb prep:LOC interp
subj pred comp punct

poklepać on po .
verb subst:ACC prep:LOC interp
subj pred comp punct

marynarz poklepać po ramię
subst:NOM verb prep:LOC subst:LOC
subj pred comp comp

poklepać on po ramię
verb subst:DAT prep:LOC subst:LOC
pred obj comp comp

poklepać po ramię .
verb prep:LOC subst:LOC interp
pred comp comp punct

Fig. 1. An example dependency tree for the sentence Marynarz poklepał go po ramieniu.
‘The sailor patted him on the shoulder.’ (taken from the 3-million-sentence dependency
treebank) with all its subgraphs of size 4. Orthographic word forms have been replaced
in the subgraphs by base forms combined with CPOS-case tags.



5

(1)

przyczynić się do .
verb qub prep:GEN punct
pred refl adjunct punct

(2)

przyczynić się do .
verb qub prep:GEN punct
pred refl comp punct

Fig. 2. An example rule: (1) is the source of the rule, (2) is the target. The rule
changes the dependency relation between the (inherently reflexive) verb przyczynić się
‘to contribute’ and a preposisional phrase headed by the preposition do ‘to’ from the
incorrect adjunct to the correct comp.

3 Experiments

2 variants of the method described above were run on the 3-million-sentence
dependency treebank:

variant I: exactly as presented in the previous section;
variant II: for some parts of speech, their base forms were ignored, i.e., only

CPOS-case tags were taken into account; additionally the dependency rela-
tions in the subtrees’ roots were ignored.

The modifications to the method were introduced in variant II so as to in-
crease the generality of extracted rules and, as a result, be able to identify more
trees as possibly erroneous (see Section 4).

The first modification is motivated by the intuition that for some parts of
speech the base form is less important from the point of view of the method.
For instance, it is relevant to make a distintion between different verbs because
of their different argument structure. On the other hand, it seems that as far as
nouns, pronouns, adjectives, numerals and adverbs are concerned, their base form
can be omitted without much loss of information, especially, as they typically
do not have idiosyncratic combinatorial (or argument structure) properties.

The second introduced modification consists in ignoring dependency relations
in the roots of subtrees. Those dependency relations tie the subgraph’s root node
to its parent from the complete dependency tree. As this parent is not present
in the subgraph, this particular dependency relation is much less relevant than
the “internal” ones (i.e., those between the subgraph’s nodes). What is more,
abstracting from the root’s dependency relations enables rule extraction in the
case where, for example, two similar noun phrases appear as the subject of
a sentence and a conjunct in a coordinated structure, respectively.



6

Table 1 gives the numbers of trees pointed out as wrongly annotated by each
variant.

Table 1. The number of trees reported as erroneous by the two methods (some trees
were reported more than once).

method variant I II

number of error reports 18 885 852 323

number of distinct trees 10 237 265 460

distinct trees percentage 54.2% 31.1%

4 Evaluation

It is difficult to estimate the recall of the implemented method, as the number
of erroneous parses in the treebank is not known. It is probably for this reason
that some works on error detection do not report recall at all (e.g., [4], [5]). Nev-
ertheless, it is perhaps worthwile to mention two issues concerning recall of error
detection. Previous experiments with automatic error detection in a Polish con-
stituency treebank reported in [6] suggest that high recall might be more difficult
to achieve than high precision. What is more, the procedure of obtaining the 3-
million-sentence dependency treebank used in the experiments involves several
steps (sentence alignment, dependency parsing of English sentences, tree projec-
tion), all of which are likely to contribute for errors. It is therefore unrealistic
to assume that only a small fraction of dependency structures are wrongly an-
notated (for instance, the percentage of erroneous trees in a Polish constituency
treebank, annotated semi-automatically, is estimated to be around 18%, see [8]).

What can be directly estimated is the precision of the method. After apply-
ing the method to the treebank, we carefully examined two samples of 100 error
reports for each method variant (i.e., four samples were taken into account). Not
all error reports could have been included in the samples since preliminary at-
tempts at examining them using theMaltEval tool for visualisation5 showed that
some of the structures in the treebank were discontinuous. Since MaltEval does
not handle discontinuous trees, they were excluded from further examination.

The error reports to include in the samples were chosen as follows. First, an
ordered list of rules was created (the orderings were different for each sample
type, as explained further on). Second, for each rule, the first tree it indicated
as wrong was taken to form a list consisting of one error report per rule. The
samples were formed by truncating (i.e., taking only its n first elements for
some n) the lists so that they contained 100 distinct trees. Table 2 gives the size

5 With the trees after rule application as gold standard, see [7] and http://w3.msi.
vxu.se/~nivre/research/MaltEval.html.



7

of sample for each method (sample sizes are greater than 100 since some trees
appeared more than once on the list).

Table 2. Sample sizes for both variants of the method and both rule ordering strategies.
For each sample, the number of trees appearing more than once is also given.

sample sample size trees reported more than once

IO 107 7

IR 103 2

IIO 118 14

IIR 101 1

Two types of sample were created, depending on the rule ordering strategy,
as mentioned before. The following ordering strategies were applied:

O — the rules were sorted in the decreasing order of the sum of occurrences of
their source and target in the treebank.

R — the rules were sorted randomly.

The first ordering, O, is a heuristic for promoting rules which were expected to
be more efficient: if there is more material in the treebank to serve as “evidence”
for the rule, it might be that not only the rule is more probable to be sound, but
also that it detects a common error. The second ordering is expected to allow for
better approximation of the method’s overall precision. One can think of more
possible orderings, e.g., the proportion of rule’s source and target occurrences in
the treebank (similarly to the approach adopted in [5]).

As a result, four samples were created. The samples will be referred to as IO
(i.e., method variant I, rule ordering O), IR, IIO, IIR

Each error report from a sample was examined and assigned one of the fol-
lowing categories:

correct for genuine errors with an appropriate correction suggestion,
partial for genuine errors with a wrong correction suggestion,
wrong for correct structures pointed out as erroneous.

In the case of trees which were included in the sample more than once, only
one error report, assigned the best category,6 was taken into account. This is
because for each tree, we are interested in whether the method succeeded in
detecting an annotation error. In Table 3, the numbers of error reports assigned
each category are given.

The precision of each method variant was estimated as the number of re-
ports which pointed out genuine errors divided by the total number of reports

6 In the sense that correct is better than partial, and partial is better than wrong.



8

Table 3. The number of trees for which the error report was assigned each category,
given for each evaluated sample.

sample correct partial wrong

IO 53 30 17

IR 42 30 28

IIO 57 19 24

IIR 52 21 27

considered, i.e., 100. Two measures of precision were used. The first one, P0, is
the number of reports classified as correct divided by 100. The second one, P1,
was less strict in that it also admitted partial error reports. In other words, P0

is the fraction of correctly identified errors with a good correction suggestion,
while P1 is the fraction of correctly identified errors regardless of whether their
correction suggestion was appropriate. Estimations for P0 and for P1, depending
on method variant and rule sorting strategy, are given in Table 4.

Table 4. Precision estimates for each sample.

sample P0 P1

IO 53% 83%

IR 42% 72%

IIO 57% 76%

IIR 52% 73%

It is clear that the method is much more efficient when it comes to the simple
detection of errors, but the precision of error correction is also satisfactory. This
makes the proposed method a good candidate for use in semi-automatic error
correction, where the correction suggestions are presented to a human annotator
who can accept, modify or reject the correction suggested by the system. Variant
II of the method outperforms variant I in terms of P0. As far as P1 is concerned,
variant II also achieved higher results with exception of the case where O strategy
was adopted. Higher precision estimates obtained using the O rule ordering than
when the R ordering was applied show that it can be worthwile to somehow
arrange the error reports (perhaps using a more sophisticated strategy) in the
case where for some reason not all of them can be examined (e.g., due to the
large treebank size).

Given the estimation for precision, it is possible to calculate the estimated
number of annotation errors that the method managed to find – it can be ap-
proximated by the estimated precision multiplied by the total number of distinct



9

trees pointed out as possibly erroneous. As in the case of precision, two estima-
tions can be given depending on whether P0 or P1 is taken into account. As
stated before, we are not able to compare them to the actual number of er-
roneous structures in the treebank, but suspect that many errors are still left
undetected given the estimates ranging from 2.1% to 6.4%. Table 5 presents the
estimated numbers of correctly identified errors for both method variants.

Table 5. The approximate number of all errors found by the method based on precision
estimations P0 and P1. The percentages below numbers are the proportions of the
approximate number of found errors to the whole treebank size.

sample
approx. number of errors

using P0 using P1

IO
82975 129943

2.6% 4.1%

IR
65754 112721

2.1% 3.6%

IIO
151312 201749

4.8% 6.4%

IIR
138039 193785

4.4% 6.1%

Figures 3 and 4 present two examples of detected errors together with the
correct version of the tree suggested by the method as a replacement. For clar-
ity, only the fragment of the tree affected by the rule is shown. In the case of
the sentence in Figure 3, the phrases Commission and about this intention were
wrongly annotated as two adjuncts, whereas the correct dependency relations
between them and their head inform are obj (object) and comp (complement),
respectively, as in the structure proposed by the method. In the second case,
presented in Figure 4, the phrase applying sanctions was assigned a wrong de-
pendency relation and the phrase from institutions had a wrong head (applying
instead of request) and a wrong dependency relation. Both errors are corrected
in the alternative structure proposed by the method.

5 Conclusions

A method for detecting and correcting annotation errors in a dependency tree-
bank for a highly inflectional language was proposed, implemented and eval-
uated. The evaluation showed that the method achieves reasonable estimated
precision for error correction (52%) and good estimated precision when the task
is limited to error detection (73%).



10

(1)
powiadamiają Komisję o tym zamiarze

inform Commission about this intention

adjunct

adjunct comp

adjunct

(2) powiadamiają Komisję o tym zamiarze

obj

comp comp

adjunct

Fig. 3. An example of error detected by the method: (1) wrong dependency structure
from the treebank (2) proposed correction.

(1)
zażądać od organów nałożenia sankcji
request from institutions applying sanctions

adjunct

comp

adjunct

obj

(2) zażądać od organów nałożenia sankcji

comp

compcomp obj

Fig. 4. Another example of error detected by the method: (1) wrong dependency struc-
ture from the treebank (2) proposed correction.

Acknowledgements

The work described in this paper is partially supported by the DG INFSO of
the European Commission through the ICT Policy Support Programme, Grant
agreement no.: 271022, as well as by the POIG.01.01.02-14-013/09 project co-
financed by the European Union under the European Regional Development
Fund.

References

1. Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Chris-
tian Rohrer. The parallel grammar project. In Proceedings of the COLING 2002
Workshop on Grammar Engineering and Evaluation, pages 1–7, Taipei, 2002.

2. Markus Dickinson. Correcting dependency annotation errors. In Proceedings of
the 12th Conference of the European Chapter of the Association for Computational
Linguistics (EACL-09), Athens, Greece, 2009.



11

3. Markus Dickinson. Detecting errors in automatically-parsed dependency relations.
In The 48th Annual Meeting of the Association for Computational Linguistics
(ACL-10), Uppsala, Sweden, 2010.

4. Markus Dickinson and W. Detmar Meurers. Detecting inconsistencies in treebanks.
In Joakim Nivre and Erhard Hinrichs, editors, Proceedings of the Second Workshop
on Treebanks and Linguistic Theories (TLT 2003), pages 45–56, Växjö, Norway,
2003.

5. Yoshihide Kato and Shigeki Matsubara. Correcting errors in a treebank based
on synchronous tree substitution grammar. In Proceedings of the ACL 2010 Con-
ference Short Papers, ACLShort ’10, pages 74–79, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

6. Katarzyna Krasnowska, Witold Kieraś, Marcin Woliński, and Adam
Przepiórkowski. Using tree transducers for detecting errors in a treebank of
Polish. In Petr Sojka, Aleš Horák, Ivan Kopeček, and Karel Pala, editors, Text,
Speech and Dialogue: 15th International Conference, TSD 2012, Brno, Czech
Republic, volume 7499 of Lecture Notes in Artificial Intelligence, pages 119–126.
Springer-Verlag, Heidelberg, 2012.

7. Jens Nilsson and Joakim Nivre. MaltEval: An evaluation and visualization tool
for dependency parsing. In In Proceedings of the Sixth International Language
Resources and Evaluation. LREC, 2008.

8. Marcin Woliński, Katarzyna Głowińska, and Marek Świdziński. A preliminary ver-
sion of Składnica—a treebank of Polish. In Zygmunt Vetulani, editor, Proceedings
of the 5th Language & Technology Conference, pages 299–303, Poznań, 2011.

9. Alina Wróblewska. Polish dependency bank. Linguistic Issues in Language Tech-
nology, 7(1), 2012.

10. Alina Wróblewska and Adam Przepiórkowski. Induction of dependency structures
based on weighted projection. In Proceedings of the 4th International Conference
on Computational Collective Intelligence Technologies and Applications (ICCCI
2012), Part I, volume 7653 of Lecture Notes in Artificial Intelligence, pages 364–
374, Berlin, 2012. Springer-Verlag.


