
Power and Energy Profiling of Scientific Applications on Distributed Systems

Xizhou Feng, Rong Ge, Kirk W. Cameron
Scalable Performance Laboratory

Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208

{fengx, ge, kcameron}@cse.sc.edu

Abstract

Power consumption is a troublesome design
constraint for emergent systems such as IBM’s
BlueGene /L. If current trends continue, future petaflop
systems will require 100 megawatts of power to
maintain high-performance. To address this problem
the power and energy characteristics of high-
performance systems must be characterized. To date,
power-performance profiles for distributed systems
have been limited to interactive commercial
workloads. However, scientific workloads are typically
non-interactive (batched) processes riddled with inter-
process dependences and communication. We present
a framework for direct, automatic profiling of power
consumption for non-interactive, parallel scientific
applications on high-performance distributed systems.
Though our approach is general, we use our
framework to study the power-performance efficiency
of the NAS parallel benchmarks on a 32-node Beowulf
cluster. We provide profiles by component (CPU,
memory, disk, and NIC), by node (for each of 32
nodes), and by system scale (2, 4, 8, 16, and 32 nodes).
Our results indicate power profiles are often regular
corresponding to application characteristics and for
fixed problem size increasing the number of nodes
always increases energy consumption but does not
always improve performance. This finding suggests
smart schedulers could be used to optimize for energy
while maintaining performance.

1. Introduction

Power is becoming an important design constraint
for high end distributed systems such as IBM’s
BlueGene /L, Earth Simulator and forthcoming
petaflop systems. These systems use increasing
numbers of power-hungry commercial components in
clusters of SMPs to achieve high-performance. Such
solutions are or will be highly parallel with tens of

thousands of CPUs, tera- or peta-bytes of main
memory, and tens of peta-bytes of storage [1-3].

However, the power needs of these high-end
distributed systems may become impractical for two
reasons. First, the use of tens of thousands of
commodity components to increase peak performance
will lead to intolerable operating costs due to their
electric power/energy consumption. Earth Simulator
requires 18 megawatts of power to achieve 35.6
Teraflop/s benchmark peak performance [4]; and future
petaflop systems may require 100 megawatts of power
[1], nearly the output of a small power plant (300
megawatts) or the lighting requirements of a small city.
At $100 per megawatt hour (or $.10 per kWh), peak
operation of such a petaflop machine is $10,000 per
hour. Second, it leads to intolerable failure rates.
Considering commodity components fail at an annual
rate of 2-3% [5], a petaflop system of about 12,000
nodes (CPU, DRAM, NIC and disk) will sustain
hardware failures once every twenty-four hours.
Decreasing the operating temperature of these
components (by reducing energy consumption) will
improve failure rates 50% for every 10° C (18° F).

Operational costs and temperatures for such
machines are coupled to application characteristics.
While machines require peak power at times, energy
consumption (i.e. cost in power usage over time) will
vary by application. For example, it costs 535 joules of
energy to execute the SPEC swim benchmark for 10
seconds in contrast to 400 joules of energy to execute a
directory copy (cp) for 10 seconds on a Pentium III
system.

Previous studies of high performance distributed
system power consumption focus on building-wide
power usage [6]. Such studies do not separate
individual systems or components. Other attempts to
estimate power consumption for systems such as the
ASCI Terascale facilities use rule-of-thumb estimates
(e.g. 20% peak power)[6, 7].

There are two compelling reasons for in-depth study
of the power usage of distributed applications. First,

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

there is need for a scientific approach to quantify the
energy cost of typical high-performance systems. Such
cost estimates could be used to accurately estimate
future machine operation costs for common application
types. Second, a component-level study may reveal
opportunities for power and energy savings. For
example, component-level profiles could suggest
schedules for powering down equipment not being used
over time.

In this paper, we present a framework for measuring
and analyzing power consumption on distributed
systems. Though our techniques are general and
portable, as proof of concept we use this framework to
profile the power and energy consumption of NAS
parallel benchmark [8] applications on a 32-node
Beowulf.

2. Power-Performance Metrics

We use the following four classes of metrics to
quantify the power-performance characteristics of
distributed systems.

Power. Power consumption is related to the heat
dissipation rate or system operating temperature. For a
distributed system, power can be defined at various

levels of granularity: system (systemP), node (nodeP)

and component (componentP).Power consumption varies

with workload.

)()()(
1

wPwPwP network

N

i

ii
nodesystem += ∑

=
(1)

,

1

()
node

M
i i j i

component
j

P P w
=

=∑ (2)

Here, N is the number of nodes, M is number of
components on each node, w is workload running on

the system, iw is the local workload assigned to node i,

)(wPsystem is the power consumed by all nodes and

network equipment under workload w ,)(ii
node wP is

the power consumed by node i under local

workload iw ,)(wPnetwork is the power consumed by

the network; and , ()
component

i j jP w is the power consumed

by component j on node i . For simplicity, we do not

consider power consumed by network nodes in this
work but include it for completeness.

Since an application only uses a subset of the nodes
provided by the system, it is necessary to make
distinctions between power consumed by the system

and the power consumed by the application on a
portion of the system. We define the application power

aP as

)()(
1

anetwork

N

i

i
a

i
nodea wPwPP

a

+=∑
=

 (3)

Here aN is the number of nodes used by the

application and aw is the workload produced by the

application. The application power can be further
divided into idle power and load power. The idle power
is the power consumption under zero workload (i.e.,
system overhead) and the load power is the increased
part of the power consumption when workloads
execute on a node. Usually, idle power is a constant
while load power varies with time and work load.

Energy. While power reflects a requirement at a
discrete point in time, energy corresponds to system
operational cost. Energy for a system is computed by

∫
= 2

1

t

t systemsystem dtPE (4)

Applying this to our expression of application power
given by (3), we get an expression for application
energy:

∫=
D

aa dtPE
0

(5)

Here D is delay which is equivalent to (t2-t1) in
Equation (4) or TTS (Time-to-solution for the
application). Similarly, application energy consumption
can be broken into idle and load portions.

Performance. Performance (i.e. reduced TTS) is the
critical design constraint in high-performance systems.
For fixed workload, speedup=(TTS for 1 node)/(TTS
for n nodes) can be used to quantify performance
comparisons between two alternative configurations.

Power-performance efficiency. Sometimes, the
performance of distributed applications is improved at
the cost of more energy consumption. For example, the
number of nodes used by an application directly affects
both energy consumption and TTS for a fixed problem
size; it is likely that there is some configuration or
“operating point” at which increasing nodes results in
largely increased energy consumption with little or no
performance gain. Therefore, to quantify the power-
performance tradeoff of an application on different
system configurations, we use the energy-delay
product, DE ⋅ and/or energy-delay-square product [9]

22ED P E D= ⋅ to quantify power-performance
efficiency.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

3. Power/Energy Profiling Framework

Profiling power directly in a distributed system at
various granularities is challenging. First, we must
determine a methodology for separating component
power after conversion from AC to DC current in the
power supply for a typical server. Next, we must
address the physical limitations of measuring the large
number of nodes found in typical clusters. Third, we
must consider storing and filtering the enormous data
sets that result from polling. Fourth, we must
synchronize the polling data for parallel programs to
analyze parallel power profiles.

Our framework meets these challenges and provides
the capability to automatically measure power
consumption at component level synchronized with
application phases for energy-performance analysis of
distributed systems and applications. Though we do
make some simplifying assumptions in our
implementation (e.g. the type of multimeter), our tools
are built to be portable and require only a small amount
of retooling for portability.

3.1 The Measurement System

Figure 1 shows the prototype system we created for
power-performance profiling. We measure the power
consumption of the major computing resources (i.e.
CPU, memory, disk, and NIC) on the slave nodes in a
32-node Beowulf. Each slave node has one 933MHz
Intel Pentium III processor, 4 256M SDRAM modules,
one 15.3GB IBM DTLA-307015 DeskStar hard drive,
and one Intel 82559 Ethernet Pro 100 onboard Ethernet
controller.

ATX extension cables connect the tested node to a
group of 0.1 ohm sensor resistors on a circuit board.
The voltage on each resistor is measured with one
RadioShack 46-range digital multi meter 22-812 that
has been attached to a multi port RS232 serial adapter
plugged into a data collection computer running Linux.
We measure 10 power points using 10 independent
multi meters between the power supply and
components simultaneously.

The meters broadcast live measurements to the data
collection computer for data logging and processing
through their RS232 connections. Each meter sends 4
samples per second to the data collection computer.

.

P RIN T

HE LP

A LPHA

SH IFT

EN TER
R UN

DG ER FI

AJ BK CL

7M 8N 9O

D
G DG DG

DG T 3U

0V .
W

X
Y Z

TAB

% U TILIZ ATION

HU B/MAU NIC

2
BN C
4Mb/s

Figure 1. The prototype system for power-
performance measurements.

Currently, this system measures one slave node at a
time. As mentioned in section 2, the power consumed
by a parallel application requires summation of the
power consumption on all nodes used by the
application. Therefore, we first measure a second node
to confirm that power measurements were nearly
identical across like systems, and then use node
remapping to study the effective power properties of
different nodes in the cluster without requiring
additional equipment. To ensure confidence in our
results, we complete each experiment at least 5 times
based on our observations of variability.

Node remapping works as follows. Suppose we are
running a parallel workload on M nodes, we fix the
measurement equipment to one physical node (e.g.
node #1) and repeatedly run the same workload M
times. Each time we map the tested physical node to a
different virtual node. Since all slave nodes are
identical (as they should be and we experimentally
confirmed), we use the M independent measurements
on one node to emulate one measurement on M nodes.

3.2 Isolating Power by Component

For parallel applications, a distributed system can be
abstracted as a cluster of identical nodes consisting of
CPU, memory, disk, and network interface. The power
consumed by a parallel application is computed by
equations presented in section 2 with direct or derived
power measurement for each component.

In our prototype system, the mother board and disk
on each slave node are connected to a 250 Watt ATX
power supply through one ATX main power connector
and one ATX peripheral power connector respectively.
We experimentally deduce the correspondence between
ATX power connectors and node components.

Since disk is connected to a peripheral power
connection independently, its power consumption can
be directly measured through +12VDC and +5VDC

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

pins on the peripheral power connect. To map the
component on the motherboard with the pins on the
main power connector, we observe the current changes
on all non-COM pins by adding/removing components
and running different micro benchmarks which access
certain subsets of components each time. Finally, we
are able to conclude that CPU is powered through four
+5VDC pins; memory, NIC and others are supplied
through +3.3VDC; the +12VDC feeds the CPU fan;
and other pins are constant and small (or zero) current.

The idle part of memory system power
consumption is measured by extrapolation. Each slave
node in the prototype has four 256MB memory
modules. We measure the power consumptions of the
slave node configured with 1, 2, 3, and 4 memory
modules separately, then estimate the idle power
consumed by the whole memory system

The slave nodes in the prototype are configured
with onboard NIC. It is hard to separate its power
consumption from other components directly. After,
observing that the total system power consumption
changes slightly when we disable the NIC or pull out
the network cable and consulting the documentation of
the NIC (Intel 82559 Ethernet Pro 100), we
approximate it with constant value of 0.41 watt.

The CPU power consumption is obtained by
measuring all +5VDC pins directly.

For further verification, we compared our measured
power consumption for CPU and disk with the
specifications provided by Intel and IBM separately
and they matched well. Also by running memory access
micro benchmarks, we observed that if accessed data
size is located within L1/L2 cache, the memory power
consumption doesn’t change; while once main memory
is accessed, the memory power consumption we
measured increases correspondingly.

3.3 Automatic Power Profiling and Analysis

To automate the entire profiling process we require
enough multimeters to measure directly, in real-time, a
single node. Under this constraint, we fully automate
data profiling, measurement and analysis by creating a
tool suite named PowerPack. PowerPack consists of
utilities, benchmarks and libraries for controlling,
recording and processing power measurements in
distributed systems. PowerPack’s software structure is
shown in Figure 2

Figure 2. Software Structure for PowerPack.

In PowerPack, the PowerMeter control thread reads
data samples coming from a group of meter readers
which are controlled by globally shared variables. The
control thread modifies the shared variables according
to messages received from applications running on the
cluster. Applications trigger message operations
through a set of application level library calls to
synchronize the live profiling process with the
application source code. These application level library
calls can be inserted into the source code of the
profiled applications. The common used subset of
power profile library API is as follows:
pmeter_init (char *ip_address, int *port);

pmeter_log (char *log_file, int *option);

pmeter_start_session (char * lable);

pmeter_pause ();

pmeter_finalize ();

psyslog_start_session (char *label, int

*interval);

psyslog_pause ();

The power profile log and the system status log are
processed with the PowerAnalyzer, a software module
that implements functions such as converting DC
current to power, interpolating between sampling
points, decomposing pins power to component power,
computing power and energy consumed by applications
and system, and performing related statistical
calculations.

4. Experimental Results

4.1 Single Node Power Profiles
To better understand the power consumption of

distributed applications and systems, we first profile
the power consumption of a single slave node. Figure 3
provides power distribution breakdown for system idle
(3a) and system under load (3b) for the 171.swim
benchmark included in SPEC CPU2000 [10].

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

CPU
14%

Memory
10%

Disk
11%

NIC
1%

Other Chipset
8%

Fans
23%

Pow er Supply
33%

Power consumption distribution for system idle
System Power: 39 Watt

(a)

CPU
35%

Memory
16%

Disk
7%

NIC
1%

Other Chipset
5%

Fans
15%

Pow er Supply
21%

Power consumption distribution for
memory performance bound (171.swim)

System Power: 59 Watt

(b)
Figure 3. Power Distribution for system idle
and 171.swim

From this figure, we make the following
observations:
1) Whether system is idle or busy, the power supply

and cooling fans always consume ~20 Watts of
power; about 1/2 system power when idle and 1/3
system power when busy. This means optimal
design for power supply and cooling fans could
lead to considerable power savings. This is
interesting but beyond the scope of this work, so in
our graphs we typically ignore this power.

2) During idle time, CPU, memory, disk and other
chipsets consume about 17 Watts of power in total.
Though this number is only 44% of their combined
power consumption when system runs with full
load in this example, there is room for further
power reduction.

3) When system is under load, CPU power dominates
(e.g. for 171.swim, it is 35% of system power; for
164.gzip, it is 48%).

Additionally, the power consumed by each
component varies under different workload. Figure 4
illustrates the power consumptions of four typical
workloads. Each of them is bounded by the
performance of a single component. For the prototype
in this paper, the CPU power consumption ranges from

6 Watts to 28 Watts; the memory system power
consumption ranges from 3.6 Watts to 9.4 Watts; the
disk power consumptions ranges from 4.2 Watts to
10.8 Watts. This figure indicates that components used
in the prototype provide limited power modes of
operation. However, there is room for more aggressive
power reduction techniques since component power
usage varies with application.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

idle 171.swim 164.gzip cp scp

CPU Memory Disk NIC

Power Consumption Distribution for Different Workloads

CPU-bound memory-bound

disk-bound

network-bound

Note : only power consumed
by CPU, memory, disk and
NIC are considered here

Figure 4. Power Profile for Several Workloads

4.2 Distributed Power Profiles

As a case study and proof of concept, we profile the
power-energy consumption of the NAS parallel
benchmarks (Version 2.4.1) on the 32-node Beowulf
cluster using the framework presented in section 3. The
NAS parallel benchmarks [8] consist of 5 kernels and 3
pseudo-applications that mimic the computation and
data movement characteristics of large scale CFD
applications. We measured CPU, memory, NIC and
disk power consumption over time for different
applications in the benchmarks at different operating
points. We ignore power consumed by the power
supply and the cooling system because they are
constant and machine dependent as mentioned.

Nodal power profiles over time. Figure 5 shows
the power profile of NPB FT benchmark (class B)
during the first 200 seconds of a run on 4 nodes. The
profile starts with a warm up phase and an initialization
phase followed by N iterations (for class A, N=6; for
class B, N=20). The power profiles are identical for all
iterations in which spikes and valleys occur with
regular patterns coinciding with the characteristics of
different computation stages. The CPU power
consumption varies from 25 watts in the computation
stage to 6 watts in communication stage. The memory
power consumption has the same trend with CPU
power consumption, varying from 9 watts in
computation stage to 4 watts in communication-stage.
The power consumed by the CPU and the memory

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

during computation phase is interrelated in that when
memory power goes up, CPU power goes down and the
inverse is also true. It is also observed that the disk
keeps constant power consumption because there is
little disk access in the FT benchmark. The power
consumed by the NIC is a constant (0.4 watt) as
discussed earlier. For simplification, we ignore the disk
and NIC power consumptions in discussions and
figures where they do not change. An in-depth view of
the power profile during one iteration is presented in
Figure 6.

Figure 5. The first 200 second nodal power
profile of FT benchmark (class B) running on 4
nodes.

Figure 6. In-depth view of the power profile of
FT benchmark (class B, NP=4) during one
single iteration. Profile is extracted from Fig 5.

Power profiles for different problem size. Figure 7
shows the power profile of NPB FT benchmark (class
A) during the first 50 seconds of a run on 4 nodes.
From Figure 5 and Figure 7, we observe FT has similar
patterns for different problem size. However, iterations
are shorter in duration for the smaller (class A)
problem set.

P
o

w
e

r

(
w

a
t
t
)

Figure 7. The first 50 second nodal power
profile of FT benchmark (class A) running
on 4 nodes.

Power profiles for different work node. For the FT
benchmark, workload is distributed evenly across all
working nodes. We use our node remapping technique
to provide power profiles for all nodes in the cluster (in
this case just 4 nodes). For FT, there are no significant
differences. However, Figure 8 shows a counter
example snapshot for a 10 second interval of SP
synchronized across nodes. For the SP benchmark,
Class A problem sizes running on 4 nodes results in
varied power profiles for each node.

P
o

w
e

r

(
w

a
t
t
)

Figure 8. Power consumption on different
nodes for SP benchmark (class A, NP=4).
Power profiles during 20-30 seconds on each
node are shown in this figure. This figure
indicates that different node has slight
difference in power consumption.

Power profiles for different system scales. The
power profile of parallel applications also varies with
the number of nodes used in the execution if we fix
problem size (i.e. strong scaling). We have profiled the
power consumption for all the NPB benchmarks on all
execution nodes with different number of processors
(up to 32) and several classes of problem sizes. Due to

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

space limitations we only present the profile for
problem FT, EP and MG (class A) with different
number of execution nodes. Figure 9a-c provides an
overview of the profile variations on different system
scales for benchmark FT, EP, and MG. These figures
show segments of synchronized power profiles for
different number of nodes; all the power profiles
correspond to the same computing phase in the
application on the same node.

Power Profile of FT Benchmark (class A) with Different Number of Nodes

0

5

10

15

20

25

30

Time (second)

P
o

w
er

 (
w

at
t)

Figure 9a. Power profiles of FT for different
number of nodes. Segments of power profile
of FT benchmark class Measurements run on
1, 2, 4, 8 and 16 nodes are extracted and
shown in this figure.

Power Profile of EP (class A) with Differentnumber of Nodes

0

5

10

15

20

25

Time (second)

P
o

w
er

 (
W

at
t)

Figure 9b Power profile of EP on different
numbers of nodes for first 10 seconds.

Power Profile of MG (Class A) with Different Number of Nodes

0

5

10

15

20

25

Time (second)

P
o

w
er

 (
w

at
t)

Figure 9c Power profile of MG on different
numbers of nodes for X iterations

These snapshots illustrate profile results for
distributed benchmarks using various numbers of nodes
under Class A workload. Due to space limitations in a

single graph, here we focus on power amplitude only,
so each time interval is simply a fixed length snapshot
(though the x-axis does not appear to scale). For FT
and MG, the profiles are similar for different system
scale except the average power decreases with the
number of execution nodes; for EP, the power profile is
identical for all execution nodes.

4.3. Distributed Energy-performance Efficiency

The energy consumption E of a parallel application
is computed by

DPttPdtPE
N

i

S

j
jji

N

i

D

i ⋅=∆== ∑∑∑∫
= == 1 11

0
)((6).

Here N is the number of nodes used to run the
application; S is the number of total power samples;

)(ji tP is the system power of node i at time jt ; P is

the average total system power consumption of all
execution nodes; D is delay or TTS (time-to-solution)

of a given application, and jt∆ is the interval between

two samples satisfying . Dt
S

j
j =∆∑

=1

.

For parallel systems and applications, we would like
to use E to reflect energy efficiency, and use D to
reflect the performance efficiency. To compare the
energy-performance behavior of different parallel
applications such as NPB benchmarks, we introduce
two metrics: a) speedup, the ratio of delays for single
node and total node execution times, defined as

nDD == nodeof#1nodeof# ; and b) normalized system

energy, the ratio of energy for single node and total
node energy consumption, defined as

1nodeof#nodeof# == EE n . Plotting these two metrics,

for NPB benchmarks, we can put NPB codes into 3
energy-performance categories.

Type I: energy remains constant or approximately
constant while performance increases linearly. EP, SP,
LU and BT belong to this type (see Figure 10a).

Type II: both energy and performance increase
linearly but performance increases faster. MG and CG
belong to this type (see Figure 10b).

Type III: both energy and performance increase
linearly but energy consumption increases faster. FT
and IS belong to this type. For small problem size, IS
benchmark gains little in performance speedup using
more nodes but consumes much more energy (see
Figure 10c).

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Performance and Energy Consumption for EP (class A) code

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Nodes

N
o

rm
al

iz
ed

 V
al

u
e

Performance Speedup Normalized System Energy

(a)
Performance and Energy Consumption for MG (class A) code

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Nodes

N
o

rm
al

iz
ed

 V
al

u
e

Performance Speedup Normalized System Energy

(b)
Performance and Energy Consumption for FT (class A) code

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Nodes

N
o

rm
ai

lz
ed

 V
al

u
e

Performance Speedup Normalized System Energy

(c)
Figure 10. Energy-performance efficiency of
selected NPB benchmarks.

Since average total system power increases linearly
(or approximately linearly) with the number of nodes,
we can express energy efficiency as a function of the
number of nodes and the performance efficiency:

n

11 1 1 1 1

n n n n

n

P D P DE n
DE P D P D
D

⋅= = ⋅ ≈
⋅ (7)

In this equation, the index refers to the number of
nodes used by the application. The equation shows that
energy efficiency of parallel applications on distributed
systems is strongly tied to its parallel speedup (the
denominator of Equation 7). In other words, as parallel

programs increase in efficiency with the number of
nodes (i.e. improved speedup) they make more efficient
use of the additional energy.

5 Discussions

5.1 Relationships between Power Consumption
Pattern and Application Characteristics

From the power profiles of NPB benchmarks, we
observed that the power profiles of these parallel codes
are regular and coincide with their computation and
communication characteristics, though patterns may
vary by nodes, application, component and workload.
The interaction or interdependency among CPU,
memory, disk and NIC under certain amount of
workload determine the power consumption pattern
such as:

1) CPU power consumption decreases as memory
power consumption goes up;

2) Both CPU power and memory power decrease
with message communication among different
nodes;

3) For most parallel codes (except EP), the average
power consumption goes down as the number of
nodes increases;

4) Communication distance and message size affects
the power profile pattern (for example, LU has
short and shallow power consumption in contrast
with FT).

The above observations can be explained by
empirical analysis of system resource request
distributions over time for different application
characteristics and energy consumption for each
.resource request (details are omitted due to space
limitations).

5.2 Scheduling Resources for Energy-Performance
Tradeoff

We mentioned as application’s energy efficiency is
dependent on its parallel efficiency. For certain
applications such as FT and MG, we can achieve
speedup by running on more processors with increased
energy consumption. The tradeoff between energy and
performance can is reflected in three strategies:
performance, energy, or energy-performance. Optimal
“operating points” or the optimal configuration in
number of nodes (NP) can be chosen given a specific
strategy for a parallel application. The optimal
performance strategy chooses NP which results in
minimum delay (or TTS); optimal energy strategy

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

chooses NP which consumes the least energy; and
energy-performance strategy chooses NP based on a
hybrid metric that considers both energy and
performance. As in micro architecture or mobile
computing, Energy-Delay Product (EDP) or Energy-
Delay-Square Product (ED2P) can be used to compare
the energy efficiency of different techniques. We apply
these concepts (described in Section 2) to parallel
system scheduling.

Figure 11 presents the relationships between these
four metrics and the number of nodes for NPB MG
benchmark (class A). Here we discuss how a scheduler
using EDP or ED2P would effectively choose node
configurations. To minimize energy, the system should
schedule only one node to run the application which
corresponds in this case to the worst performance; to
minimize delay, the system should schedule 32 nodes
to run the application which gives about 6 times
speedup but consumes more than 4 times as much
energy as 1 node. For power-performance efficiency,
EDP will schedule 8 nodes which results 2.7 times
speedup and consumes 1.7 times energy of 1 node;
ED2P will schedule 16 nodes which results 4.1 times
speedup but consumes only 2.4 times the energy of 1
node. For fairness, the average delay and energy
consumption obtained from multiple runs are used in
this comparison.

Therefore, for existing dedicated distributed parallel
systems, considerable amounts of energy could be
saved with acceptable performance loss by
incorporating power-efficiency metrics in system
resource allocation and schedulers. Of course, there are
more details to consider including how to provide the
scheduler with application-specific information. This is
beyond the scope of this work.

Energy-Performance Tradeoff for Parallel Applications

0.01

0.1

1

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

N
o

rm
al

iz
ed

 V
al

u
e

Normalized Delay Normalized Energy EDP ED2P

Figure 11. Energy-performance tradeoff for
NPB MG benchmark (class A). Logarithm scale
is used for y-axis.

6. Related Work

While there have been numerous efforts to measure
and analyze power of computer systems and
applications, most have focused on the single processor
domain or distributed interactive web service.

The first category of related work involves software
and hardware tools for application and system
profiling. Basically, there are three approaches:
simulation-based, direct measurements, and profile-
based approaches. Brooks et al. introduced Wattch, a
SimpleScalar-based architectural simulator to estimate
CPU power dissipation at the architecture level [11].
Flinn et al. developed the PowerScope tool which maps
energy consumption to program structure at procedural
level [12]. Joseph et al. developed Castle tools to use
performance counters to model on-chip component
power [13]. Bellosa introduced an approach to identify
correlations between processors events and energy
consumption [14] and used it for thermal management
of a distributed system. Further, Isci et al. proposed a
runtime power monitoring method based on hardware
counters [15]. These tools have been used primarily for
energy reductions in sequential applications on single
processor systems.

The second category of related work is research on
power and energy consumption of applications in
distributed systems. Weissel et al. studied energy
estimations in data center using information from event
monitors [16]. Binachini et al. surveyed works on
power and energy conservation on server systems[17] .

Our work is orthogonal to these contributions in that
we aim to develop power profiling tools for parallel
scientific applications and distributed systems at
component level, map the power/energy consumption
to application segments, and exploit parallel
performance inefficiencies characteristic of non-
interactive distributed applications to conserve energy
without impacting performance. As we observed in our
experiments, energy efficiency is highly dependent on
an application’s parallel efficiency, and parallel
efficiency for distributed systems decreases as the
number of nodes grows. We believe that profiling and
characterization of the power/energy consumption
patterns of scientific applications on distributed parallel
systems will aid understanding of the energy-
performance behavior of distributed scientific
applications. We hope to develop novel techniques for
power reduction and energy saving based on these
findings.

7. Summary and Future Work

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

In comparison with previous work, our work has
made the following contributions: 1) we have
developed a framework of power and energy profiling
for non-interactive parallel scientific applications on
distributed system; 2) we have created PowerPack, a
portable, open source software for automated power
and energy profiling; 3) we have analyzed the NAS
parallel benchmark suite and studied it’s power-
performance behavior.

The current prototype is limited by the sampling
frequency of the hardware and its scalability to measure
a very large parallel system. With more advanced
equipment with higher sampling rates and faster
communications between measurement and data
collection systems, the first limitation could be
overcome. However, further techniques sare needed to
scale the resulting profile data sets.

Acknowledgement

The authors would like to thank the National
Science Foundation and the Department of Energy for
sponsoring this work under grants NSF CCF-#0347683
and DOE DE-FG02-04ER25608 respectively. We also
would like to thank Duncan Buell for access to Daniel.

References

[1] D. H. Bailey, "Performance of Future High-end
Computers," 2003.
[2] H. D. Simon, "The Future of Scientific Computing,"
2000.
[3] G. Bell and J. Gray, "High Performance Computing:
Crays, Clusters, and Centers. What Next?," Microsoft
Corporation, San Francisco, CA MSR-TR-2001-76,
September 2001.
[4] D. J. Kerbyson, A. Hoisie, et al., "A comparison between
the Earth Simulator and AlphaServer Systems Using
Predictive Application Performance Models," presented at
IPDPS 2003, Nice, France, 2003.
[5] D. A. Patterson and J. L. Hennessy, Computer
Architecture: A quantitative approach, 3rd ed. San Fancisco,
CA: Morgan Kaufmann Publishers, 2003.
[6] LBNL, "Data Center Energy Benchmarking Case Study:
Data Center Facility 5," Prepared by Rumsey Engineers for
Lawrence Berkeley National Laboratory Environmental
Energy Technologies Division, Oakland, CA April 2003.
[7] A. M. Bailey, "Accelerated Strategic Computing
Initiative (ASCI): Driving the need for the Terascale
Simulation Facility (TSF)," presented at Energy 2002
Workshop and Exposition, Palm Springs, CA, 2002.
[8] D. Bailey, T. Harris, et al., "The NAS Parallel
Benchmarks 2.0," NASA Ames Research Center Technical
Report #NAS-95-020 December 1995.
[9] M. Martonosi, D. Brooks, et al., "Modeling and
Analyzing CPU Power and Performance: Metrics, Methods,

and Abstractions," presented at Tutorials Program -
SIGMETRICS 2001 / Performance 2001, Cambridge,
Massachusetts, 2001.
[10] http://www.spec.org, "The SPEC benchmark suite,"
Standard Performance Evaluation Corporation, 2002.
[11] D. Brooks, V. Tiwari, et al., "Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,"
presented at 27th International Symposium on Computer
Architecture, Vancouver, BC, 2000.
[12] J. Flinn and M. Satyanarayanan, "PowerScope: A Tool
for Profiling the Energy Usage of Mobile Applications,"
presented at the Second IEEE Workshop on Mobile
Computer Systems and Applications, 1999.
[13] R. Joseph, D. Brooks, et al., "Live, runtime power
measurements as a foundation for evaluating
power/performance tradeoffs," presented at Workshop on
Complexity-effective Design, Goteborg, Sweden, 2001.
[14] F. Bellosa, "The Case for Event-Driven Energy
Accounting," Deaprtment of Computer Science, University
of Erlangen TR-I4-01-07, 2001.
[15] C. Isci and M. Martonosi, "Runtime Power Monitoring
in High-End Processors: Methodology and Empirical Data,"
presented at 36th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-36), San Diego,
California, 2003.
[16] A. Weissel and F. Bellosa, "Process Cruise Control-
Event-Driven Clock Scaling for Dynamic Power
Management," presented at Proceedings of the International
Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES 2002), Grenoble, France, 2002.
[17] P. Bohrer, E. N. Elnozahy, et al., "The Case For Power
Management in Web Servers," in Power Aware Computing,
R. Graybill and R. Melhem, Eds. IBM Research, Austin TX
78758, USA.: Klewer Academic, 2002.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

