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Abstract 

Power consumption is a troublesome design 
constraint for emergent systems such as IBM’s 
BlueGene /L. If current trends continue, future petaflop 
systems will require 100 megawatts of power to 
maintain high-performance. To address this problem 
the power and energy characteristics of high-
performance systems must be characterized. To date, 
power-performance profiles for distributed systems 
have been limited to interactive commercial 
workloads. However, scientific workloads are typically 
non-interactive (batched) processes riddled with inter-
process dependences and communication. We present 
a framework for direct, automatic profiling of power 
consumption for non-interactive, parallel scientific 
applications on high-performance distributed systems. 
Though our approach is general, we use our 
framework to study the power-performance efficiency 
of the NAS parallel benchmarks on a 32-node Beowulf 
cluster. We provide profiles by component (CPU, 
memory, disk, and NIC), by node (for each of 32 
nodes), and by system scale (2, 4, 8, 16, and 32 nodes). 
Our results indicate power profiles are often regular 
corresponding to application characteristics and for 
fixed problem size increasing the number of nodes 
always increases energy consumption but does not 
always improve performance. This finding suggests 
smart schedulers could be used to optimize for energy 
while maintaining performance. 

1. Introduction 

Power is becoming an important design constraint 
for high end distributed systems such as IBM’s 
BlueGene /L, Earth Simulator and forthcoming 
petaflop systems. These systems use increasing 
numbers of power-hungry commercial components in 
clusters of SMPs to achieve high-performance. Such 
solutions are or will be highly parallel with tens of 

thousands of CPUs, tera- or peta-bytes of main 
memory, and tens of peta-bytes of storage [1-3]. 

However, the power needs of these high-end 
distributed systems may become impractical for two 
reasons. First, the use of tens of thousands of 
commodity components to increase peak performance 
will lead to intolerable operating costs due to their 
electric power/energy consumption. Earth Simulator 
requires 18 megawatts of power  to achieve 35.6 
Teraflop/s benchmark peak performance [4]; and future 
petaflop systems may require 100 megawatts of power 
[1], nearly the output of a small power plant (300 
megawatts) or the lighting requirements of a small city. 
At $100 per megawatt hour (or $.10 per kWh), peak 
operation of such a petaflop machine is $10,000 per 
hour. Second, it leads to intolerable failure rates. 
Considering commodity components fail at an annual 
rate of 2-3% [5], a petaflop system of about 12,000 
nodes (CPU, DRAM, NIC and disk) will sustain 
hardware failures once every twenty-four hours. 
Decreasing the operating temperature of these 
components (by reducing energy consumption) will 
improve failure rates 50% for every 10° C (18° F).  

Operational costs and temperatures for such 
machines are coupled to application characteristics. 
While machines require peak power at times, energy 
consumption (i.e. cost in power usage over time) will 
vary by application. For example, it costs 535 joules of 
energy to execute the SPEC swim benchmark for 10 
seconds in contrast to 400 joules of energy to execute a 
directory copy (cp) for 10 seconds on a Pentium III 
system. 

Previous studies of high performance distributed 
system power consumption focus on building-wide 
power usage [6]. Such studies do not separate 
individual systems or components. Other attempts to 
estimate power consumption for systems such as the 
ASCI Terascale facilities use rule-of-thumb estimates 
(e.g. 20% peak power)[6, 7].  

There are two compelling reasons for in-depth study 
of the power usage of distributed applications. First, 
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there is need for a scientific approach to quantify the 
energy cost of typical high-performance systems. Such 
cost estimates could be used to accurately estimate 
future machine operation costs for common application 
types. Second, a component-level study may reveal 
opportunities for power and energy savings. For 
example, component-level profiles could suggest 
schedules for powering down equipment not being used 
over time. 

In this paper, we present a framework for measuring 
and analyzing power consumption on distributed 
systems. Though our techniques are general and 
portable, as proof of concept we use this framework to 
profile the power and energy consumption of NAS 
parallel benchmark [8] applications on a 32-node 
Beowulf.

2. Power-Performance Metrics 

We use the following four classes of metrics to 
quantify the power-performance characteristics of 
distributed systems. 

Power. Power consumption is related to the heat 
dissipation rate or system operating temperature. For a 
distributed system, power can be defined at various 

levels of granularity: system ( systemP ), node ( nodeP )

and component ( componentP ).Power consumption varies 

with workload.  
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Here, N is the number of nodes, M is number of 
components on each node, w  is workload running on 

the system, iw is the local workload assigned to node i,

)(wPsystem is the power consumed by all nodes and 

network equipment under workload w , )( ii
node wP is

the power consumed by node i  under local 

workload iw , )(wPnetwork is the power consumed by 

the network;  and , ( )
component

i j jP w is the power consumed 

by component j  on node i . For simplicity, we do not 

consider power consumed by network nodes in this 
work but include it for completeness. 

Since an application only uses a subset of the nodes 
provided by the system, it is necessary to make 
distinctions between power consumed by the system 

and the power consumed by the application on a 
portion of the system. We define the application power 

aP as 
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Here aN  is the number of nodes used by the 

application and aw  is the workload produced by the 

application. The application power can be further 
divided into idle power and load power. The idle power 
is the power consumption under zero workload (i.e., 
system overhead) and the load power is the increased 
part of the power consumption when workloads 
execute on a node. Usually, idle power is a constant 
while load power varies with time and work load. 

Energy. While power reflects a requirement at a 
discrete point in time, energy corresponds to system 
operational cost. Energy for a system is computed by  

∫
= 2

1

t

t systemsystem dtPE (4)

Applying this to our expression of application power 
given by (3), we get an expression for application 
energy:  

∫=
D

aa dtPE
0

(5)

Here D  is delay which is equivalent to (t2-t1) in 
Equation (4) or TTS (Time-to-solution for the 
application). Similarly, application energy consumption 
can be broken into idle and load portions. 

Performance. Performance (i.e. reduced TTS) is the 
critical design constraint in high-performance systems. 
For fixed workload, speedup=(TTS for 1 node)/(TTS 
for n nodes) can be used to quantify performance 
comparisons between two alternative configurations. 

Power-performance efficiency. Sometimes, the 
performance of distributed applications is improved at 
the cost of more energy consumption. For example, the 
number of nodes used by an application directly affects 
both energy consumption and TTS for a fixed problem 
size; it is likely that there is some configuration or 
“operating point” at which  increasing nodes results in 
largely increased energy consumption with little or no 
performance gain. Therefore, to quantify the power-
performance tradeoff of an application on different 
system configurations, we use the energy-delay 
product, DE ⋅  and/or energy-delay-square product [9] 

22ED P E D= ⋅  to quantify power-performance 
efficiency. 
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3. Power/Energy Profiling Framework 

Profiling power directly in a distributed system at 
various granularities is challenging. First, we must 
determine a methodology for separating component 
power after conversion from AC to DC current in the 
power supply for a typical server. Next, we must 
address the physical limitations of measuring the large 
number of nodes found in typical clusters. Third, we 
must consider storing and filtering the enormous data 
sets that result from polling. Fourth, we must 
synchronize the polling data for parallel programs to 
analyze parallel power profiles.  

Our framework meets these challenges and provides 
the capability to automatically measure power 
consumption at component level synchronized with 
application phases for energy-performance analysis of 
distributed systems and applications. Though we do 
make some simplifying assumptions in our 
implementation (e.g. the type of multimeter), our tools 
are built to be portable and require only a small amount 
of retooling for portability. 

3.1 The Measurement System 

Figure 1 shows the prototype system we created for 
power-performance profiling. We measure the power 
consumption of the major computing resources (i.e. 
CPU, memory, disk, and NIC) on the slave nodes in a 
32-node Beowulf. Each slave node has one 933MHz 
Intel Pentium III processor, 4 256M SDRAM modules, 
one 15.3GB IBM DTLA-307015 DeskStar hard drive, 
and one Intel 82559 Ethernet Pro 100 onboard Ethernet 
controller.  

ATX extension cables connect the tested node to a 
group of 0.1 ohm sensor resistors on a circuit board. 
The voltage on each resistor is measured with one 
RadioShack 46-range digital multi meter 22-812 that 
has been attached to a multi port RS232 serial adapter 
plugged into a data collection computer running Linux. 
We measure 10 power points using 10 independent 
multi meters between the power supply and 
components simultaneously. 

The meters broadcast live measurements to the data 
collection computer for data logging and processing 
through their RS232 connections. Each meter sends 4 
samples per second to the data collection computer. 
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Figure 1.  The prototype system for power-
performance measurements. 

Currently, this system measures one slave node at a 
time. As mentioned in section 2, the power consumed 
by a parallel application requires summation of the 
power consumption on all nodes used by the 
application. Therefore, we first measure a second node 
to confirm that power measurements were nearly 
identical across like systems, and then use node 
remapping to study the effective power properties of 
different nodes in the cluster without requiring 
additional equipment. To ensure confidence in our 
results, we complete each experiment at least 5 times 
based on our observations of variability. 

Node remapping works as follows. Suppose we are 
running a parallel workload on M nodes, we fix the 
measurement equipment to one physical node (e.g. 
node #1) and repeatedly run the same workload M
times. Each time we map the tested physical node to a 
different virtual node. Since all slave nodes are 
identical (as they should be and we experimentally 
confirmed), we use the M independent measurements 
on one node to emulate one measurement on M nodes. 

3.2 Isolating Power by Component 

For parallel applications, a distributed system can be 
abstracted as a cluster of identical nodes consisting of 
CPU, memory, disk, and network interface. The power 
consumed by a parallel application is computed by 
equations presented in section 2 with direct or derived 
power measurement for each component. 

In our prototype system, the mother board and disk 
on each slave node are connected to a 250 Watt ATX 
power supply through one ATX main power connector 
and one ATX peripheral power connector respectively. 
We experimentally deduce the correspondence between 
ATX power connectors and node components.  

Since disk is connected to a peripheral power 
connection independently, its power consumption can 
be directly measured through +12VDC and +5VDC 
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pins on the peripheral power connect. To map the 
component on the motherboard with the pins on the 
main power connector, we observe the current changes 
on all non-COM pins by adding/removing components 
and running different micro benchmarks which access 
certain subsets of components each time. Finally, we 
are able to conclude that CPU is powered through four 
+5VDC pins; memory, NIC and others are supplied 
through +3.3VDC; the +12VDC feeds the CPU fan; 
and other pins are constant and small (or zero) current. 

The idle part of memory system power 
consumption is measured by extrapolation. Each slave 
node in the prototype has four 256MB memory 
modules. We measure the power consumptions of the 
slave node configured with 1, 2, 3, and 4 memory 
modules separately, then estimate the idle power 
consumed by the whole memory system 

The slave nodes in the prototype are configured 
with onboard NIC. It is hard to separate its power 
consumption from other components directly. After, 
observing that the total system power consumption 
changes slightly when we disable the NIC or pull out 
the network cable and consulting the documentation of 
the NIC (Intel 82559 Ethernet Pro 100), we 
approximate it with constant value of 0.41 watt. 

The CPU power consumption is obtained by 
measuring all +5VDC pins directly. 

For further verification, we compared our measured 
power consumption for CPU and disk with the 
specifications provided by Intel and IBM separately 
and they matched well. Also by running memory access 
micro benchmarks, we observed that if accessed data 
size is located within L1/L2 cache, the memory power 
consumption doesn’t change; while once main memory 
is accessed, the memory power consumption we 
measured increases correspondingly. 

3.3 Automatic Power Profiling and Analysis  

To automate the entire profiling process we require 
enough multimeters to measure directly, in real-time, a 
single node. Under this constraint, we fully automate 
data profiling, measurement and analysis by creating a 
tool suite named PowerPack. PowerPack consists of 
utilities, benchmarks and libraries for controlling, 
recording and processing power measurements in 
distributed systems. PowerPack’s software structure is 
shown in Figure 2  

Figure 2.  Software Structure for PowerPack.  

In PowerPack, the PowerMeter control thread reads 
data samples coming from a group of meter readers 
which are controlled by globally shared variables. The 
control thread modifies the shared variables according 
to messages received from applications running on the 
cluster. Applications trigger message operations 
through a set of application level library calls to 
synchronize the live profiling process with the 
application source code. These application level library 
calls can be inserted into the source code of the 
profiled applications. The common used subset of 
power profile library API is as follows: 
pmeter_init (char *ip_address, int *port);

pmeter_log (char *log_file, int *option);

pmeter_start_session ( char * lable );

pmeter_pause ( );

pmeter_finalize ( );

psyslog_start_session (char *label, int 

*interval);

psyslog_pause ( );

The power profile log and the system status log are 
processed with the PowerAnalyzer, a software module 
that implements functions such as converting DC 
current to power, interpolating between sampling 
points, decomposing pins power to component power, 
computing power and energy consumed by applications 
and system, and performing related statistical 
calculations. 

4. Experimental Results 

4.1 Single Node Power Profiles 
To better understand the power consumption of 

distributed applications and systems, we first profile 
the power consumption of a single slave node. Figure 3 
provides power distribution breakdown for system idle 
(3a) and system under load (3b) for the 171.swim 
benchmark included in SPEC CPU2000 [10].  
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Figure 3.  Power Distribution for system idle 
and 171.swim 

From this figure, we make the following 
observations: 
1) Whether system is idle or busy, the power supply 

and cooling fans always consume ~20 Watts of 
power; about 1/2 system power when idle and 1/3 
system power when busy. This means optimal 
design for power supply and cooling fans could 
lead to considerable power savings. This is 
interesting but beyond the scope of this work, so in 
our graphs we typically ignore this power. 

2) During idle time, CPU, memory, disk and other 
chipsets consume about 17 Watts of power in total. 
Though this number is only 44% of their combined 
power consumption when system runs with full 
load in this example, there is room for further 
power reduction. 

3) When system is under load, CPU power dominates 
(e.g. for 171.swim, it is 35% of system power; for 
164.gzip, it is 48%). 

Additionally, the power consumed by each 
component varies under different workload. Figure 4 
illustrates the power consumptions of four typical 
workloads. Each of them is bounded by the 
performance of a single component. For the prototype 
in this paper, the CPU power consumption ranges from 

6 Watts to 28 Watts; the memory system power 
consumption ranges from 3.6 Watts to 9.4 Watts; the 
disk power consumptions ranges from 4.2 Watts to 
10.8 Watts. This figure indicates that components used 
in the prototype provide limited power modes of 
operation. However, there is room for more aggressive 
power reduction techniques since component power 
usage varies with application.  
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Figure 4.  Power Profile for Several Workloads 

4.2 Distributed Power Profiles  

As a case study and proof of concept, we profile the 
power-energy consumption of the NAS parallel 
benchmarks (Version 2.4.1) on the 32-node Beowulf 
cluster using the framework presented in section 3. The 
NAS parallel benchmarks [8] consist of 5 kernels and 3 
pseudo-applications that mimic the computation and 
data movement characteristics of large scale CFD 
applications. We measured CPU, memory, NIC and 
disk power consumption over time for different 
applications in the benchmarks at different operating 
points. We ignore power consumed by the power 
supply and the cooling system because they are 
constant and machine dependent as mentioned. 

Nodal power profiles over time. Figure 5 shows 
the power profile of NPB FT benchmark (class B) 
during the first 200 seconds of a run on 4 nodes. The 
profile starts with a warm up phase and an initialization 
phase followed by N iterations (for class A, N=6; for 
class B, N=20). The power profiles are identical for all 
iterations in which spikes and valleys occur with 
regular patterns coinciding with the characteristics of 
different computation stages. The CPU power 
consumption varies from 25 watts in the computation 
stage to 6 watts in communication stage. The memory 
power consumption has the same trend with CPU 
power consumption, varying from 9 watts in 
computation stage to 4 watts in communication-stage. 
The power consumed by the CPU and the memory 
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during computation phase is interrelated in that when 
memory power goes up, CPU power goes down and the 
inverse is also true. It is also observed that the disk 
keeps constant power consumption because there is 
little disk access in the FT benchmark. The power 
consumed by the NIC is a constant (0.4 watt) as 
discussed earlier. For simplification, we ignore the disk 
and NIC power consumptions in discussions and 
figures where they do not change. An in-depth view of 
the power profile during one iteration is presented in 
Figure 6.  

Figure 5.  The first 200 second nodal power 
profile of FT benchmark (class B) running on 4 
nodes. 

Figure 6.  In-depth view of the power profile of 
FT benchmark (class B, NP=4) during one 
single iteration. Profile is extracted from Fig 5.

Power profiles for different problem size. Figure 7 
shows the power profile of NPB FT benchmark (class 
A) during the first 50 seconds of a run on 4 nodes. 
From Figure 5 and Figure 7, we observe FT has similar 
patterns for different problem size. However, iterations 
are shorter in duration for the smaller (class A) 
problem set.  

P
o

w
e

r
 
(
w

a
t
t
)

Figure 7.  The first 50 second nodal power 
profile of FT benchmark (class A) running 
on 4 nodes. 

Power profiles for different work node. For the FT 
benchmark, workload is distributed evenly across all 
working nodes. We use our node remapping technique 
to provide power profiles for all nodes in the cluster (in 
this case just 4 nodes). For FT, there are no significant 
differences. However, Figure 8 shows a counter 
example snapshot for a 10 second interval of SP 
synchronized across nodes. For the SP benchmark, 
Class A problem sizes running on 4 nodes results in 
varied power profiles for each node.  
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Figure 8. Power consumption on different 
nodes for SP benchmark (class A, NP=4). 
Power profiles during 20-30 seconds on each 
node are shown in this figure. This figure 
indicates that different node has slight 
difference in power consumption. 

Power profiles for different system scales. The 
power profile of parallel applications also varies with 
the number of nodes used in the execution if we fix 
problem size (i.e. strong scaling). We have profiled the 
power consumption for all the NPB benchmarks on all 
execution nodes with different number of processors 
(up to 32) and several classes of problem sizes. Due to 
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space limitations we only present the profile for 
problem FT, EP and MG (class A) with different 
number of execution nodes. Figure 9a-c provides an 
overview of the profile variations on different system 
scales for benchmark FT, EP, and MG. These figures 
show segments of synchronized power profiles for 
different number of nodes; all the power profiles 
correspond to the same computing phase in the 
application on the same node. 

Power Profile of FT Benchmark (class A) with Different Number of Nodes
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Figure 9a. Power profiles of FT for different 
number of nodes. Segments of power profile 
of FT benchmark class Measurements run on 
1, 2, 4, 8 and 16 nodes are extracted and 
shown in this figure.
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Figure 9b Power profile of EP on different 
numbers of nodes for first 10 seconds. 

Power Profile of MG (Class A) with Different Number of Nodes
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Figure 9c Power profile of MG on different 
numbers of nodes for X iterations 

These snapshots illustrate profile results for 
distributed benchmarks using various numbers of nodes 
under Class A workload. Due to space limitations in a 

single graph, here we focus on power amplitude only, 
so each time interval is simply a fixed length snapshot 
(though the x-axis does not appear to scale). For FT 
and MG, the profiles are similar for different system 
scale except the average power decreases with the 
number of execution nodes; for EP, the power profile is 
identical for all execution nodes.  

4.3. Distributed Energy-performance Efficiency 

The energy consumption E of a parallel application 
is computed by  

DPttPdtPE
N

i

S

j
jji

N

i

D

i ⋅=∆== ∑∑∑∫
= == 1 11

0
)( (6).

Here N is the number of nodes used to run the 
application; S is the number of total power samples; 

)( ji tP is the system power of node i at time jt ; P is

the average total system power consumption of all 
execution nodes; D is  delay or TTS (time-to-solution) 

of a given application, and jt∆ is the interval between 

two samples satisfying . Dt
S

j
j =∆∑

=1

.

For parallel systems and applications, we would like 
to use E to reflect energy efficiency, and use D to 
reflect the performance efficiency. To compare the 
energy-performance behavior of different parallel 
applications such as NPB benchmarks, we introduce 
two metrics: a) speedup, the ratio of delays for single 
node and total node execution times, defined as 

nDD == nodeof#1nodeof# ; and b) normalized system 

energy, the ratio of energy for single node and total 
node energy consumption, defined as 

1nodeof#nodeof# == EE n . Plotting these two metrics, 

for NPB benchmarks, we can put NPB codes into 3 
energy-performance categories.  

Type I: energy remains constant or approximately 
constant while performance increases linearly. EP, SP, 
LU and BT belong to this type (see Figure 10a). 

Type II: both energy and performance increase 
linearly but performance increases faster. MG and CG 
belong to this type (see Figure 10b). 

Type III: both energy and performance increase 
linearly but energy consumption increases faster. FT 
and IS belong to this type. For small problem size, IS 
benchmark gains little in performance speedup using 
more nodes but consumes much more energy (see 
Figure 10c). 
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Performance and Energy Consumption for EP (class A) code
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Performance and Energy Consumption for MG (class A) code
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(b)
Performance and Energy Consumption for FT (class A) code
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(c) 
Figure 10.  Energy-performance efficiency of 
selected NPB benchmarks.

Since average total system power increases linearly 
(or approximately linearly) with the number of nodes, 
we can express energy efficiency as a function of the 
number of nodes and the performance efficiency:  

n

11 1 1 1 1

n n n n

n

P D P DE n
DE P D P D
D

⋅= = ⋅ ≈
⋅ (7)

In this equation, the index refers to the number of 
nodes used by the application. The equation shows that 
energy efficiency of parallel applications on distributed 
systems is strongly tied to its parallel speedup (the 
denominator of Equation 7). In other words, as parallel 

programs increase in efficiency with the number of 
nodes (i.e. improved speedup) they make more efficient 
use of the additional energy.  

5 Discussions 

5.1 Relationships between Power Consumption 
Pattern and Application Characteristics 

From the power profiles of NPB benchmarks, we 
observed that the power profiles of these parallel codes 
are regular and coincide with their computation and 
communication characteristics, though patterns may 
vary by nodes, application, component and workload. 
The interaction or interdependency among CPU, 
memory, disk and NIC under certain amount of 
workload determine the power consumption pattern 
such as:  

1) CPU power consumption decreases as memory 
power consumption goes up; 

2) Both CPU power and memory power decrease 
with message communication among different 
nodes; 

3) For most parallel codes (except EP), the average 
power consumption goes down as the number of 
nodes increases; 

4) Communication distance and message size affects 
the power profile pattern (for example, LU has 
short and shallow power consumption in contrast 
with FT). 

The above observations can be explained by 
empirical analysis of system resource request 
distributions over time for different application 
characteristics and energy consumption for each 
.resource request (details are omitted due to space 
limitations). 

5.2 Scheduling Resources for Energy-Performance 
Tradeoff 

We mentioned as application’s energy efficiency is 
dependent on its parallel efficiency. For certain 
applications such as FT and MG, we can achieve 
speedup by running on more processors with increased 
energy consumption. The tradeoff between energy and 
performance can is reflected in three strategies: 
performance, energy, or energy-performance. Optimal 
“operating points” or the optimal configuration in 
number of nodes (NP) can be chosen given a specific 
strategy for a parallel application. The optimal 
performance strategy chooses NP which results in 
minimum delay (or TTS); optimal energy strategy 
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chooses NP which consumes the least energy; and 
energy-performance strategy chooses NP based on a 
hybrid metric that considers both energy and 
performance. As in micro architecture or mobile 
computing, Energy-Delay Product (EDP) or Energy-
Delay-Square Product (ED2P) can be used to compare 
the energy efficiency of different techniques. We apply 
these concepts (described in Section 2) to parallel 
system scheduling.  

Figure 11 presents the relationships between these 
four metrics and the number of nodes for NPB MG 
benchmark (class A). Here we discuss how a scheduler 
using EDP or ED2P would effectively choose node 
configurations. To minimize energy, the system should 
schedule only one node to run the application which 
corresponds in this case to the worst performance; to 
minimize delay, the system should schedule 32 nodes 
to run the application which gives about 6 times 
speedup but consumes more than 4 times as much 
energy as 1 node. For power-performance efficiency, 
EDP will schedule 8 nodes which results 2.7 times 
speedup and consumes 1.7 times energy of 1 node; 
ED2P will schedule 16 nodes which results 4.1 times 
speedup but consumes only 2.4 times the energy of 1 
node. For fairness, the average delay and energy 
consumption obtained from multiple runs are used in 
this comparison. 

Therefore, for existing dedicated distributed parallel 
systems, considerable amounts of energy could be 
saved with acceptable performance loss by 
incorporating power-efficiency metrics in system 
resource allocation and schedulers. Of course, there are 
more details to consider including how to provide the 
scheduler with application-specific information. This is 
beyond the scope of this work. 

Energy-Performance Tradeoff for Parallel Applications
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Figure 11. Energy-performance tradeoff for 
NPB MG benchmark (class A). Logarithm scale 
is used for y-axis. 

6. Related Work 

While there have been numerous efforts to measure 
and analyze power of computer systems and 
applications, most have focused on the single processor 
domain or distributed interactive web service. 

The first category of related work involves software 
and hardware tools for application and system 
profiling. Basically, there are three approaches: 
simulation-based, direct measurements, and profile-
based approaches. Brooks et al. introduced Wattch, a 
SimpleScalar-based architectural simulator  to estimate 
CPU power dissipation at the architecture level [11]. 
Flinn et al. developed the PowerScope tool which maps 
energy consumption to program structure at procedural 
level [12]. Joseph et al. developed Castle tools to use 
performance counters to model on-chip component 
power [13]. Bellosa introduced an approach to identify 
correlations between processors events and energy 
consumption [14] and used it for thermal management 
of a distributed system. Further, Isci et al. proposed a 
runtime power monitoring method based on hardware 
counters [15]. These tools have been used primarily for 
energy reductions in sequential applications on single 
processor systems.  

The second category of related work is research on 
power and energy consumption of applications in 
distributed systems. Weissel et al. studied energy 
estimations in data center using information from event 
monitors [16]. Binachini et al. surveyed works on 
power and energy conservation on server systems[17] . 

Our work is orthogonal to these contributions in that 
we aim to develop power profiling tools for parallel 
scientific applications and distributed systems at 
component level, map the power/energy consumption 
to application segments, and exploit parallel 
performance inefficiencies characteristic of non-
interactive distributed applications to conserve energy 
without impacting performance. As we observed in our 
experiments, energy efficiency is highly dependent on 
an application’s parallel efficiency, and parallel 
efficiency for distributed systems decreases as the 
number of nodes grows. We believe that profiling and 
characterization of the power/energy consumption 
patterns of scientific applications on distributed parallel 
systems will aid understanding of the energy-
performance behavior of distributed scientific 
applications. We hope to develop novel techniques for 
power reduction and energy saving based on these 
findings. 

7. Summary and Future Work 
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In comparison with previous work, our work has 
made the following contributions: 1) we have 
developed a framework of power and energy profiling 
for non-interactive parallel scientific applications on 
distributed system; 2) we have created PowerPack, a 
portable, open source software for automated power 
and energy profiling; 3) we have analyzed the NAS 
parallel benchmark suite and studied it’s power-
performance behavior. 

The current prototype is limited by the sampling 
frequency of the hardware and its scalability to measure 
a very large parallel system. With more advanced 
equipment with higher sampling rates and faster 
communications between measurement and data 
collection systems, the first limitation could be 
overcome. However, further techniques sare needed to 
scale the resulting profile data sets. 
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