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Abstract. With the advancement of minimally invasive techniques for
surgical and diagnostic procedures, there is a growing need for the de-
velopment of methods for improved visualization of internal body struc-
tures. Video mosaicking is one method for doing this. This approach
provides a broader field of view of the scene by stitching together images
in a video sequence. Of particular importance is the need for online pro-
cessing to provide real-time feedback and visualization for image-guided
surgery and diagnosis. We propose a method for online video mosaick-
ing applied to endoscopic imagery, with examples in microscopic retinal
imaging and catadioptric endometrial imaging.

1 Introduction

Endoscopy is an invaluable tool for surgical and diagnostic applications in pul-
monary medicine, urology, orthopedic surgery and gynecology. It permits mini-
mally invasive procedures, involving little or no injury to healthy organs and tis-
sues. Current endoscopic technologies include fiberscopy, videoscopy, laparoscopy
and wireless capsule endoscopy.

A drawback in these methods is the narrow field of view due to the size of
most endoscopic imaging systems. As a result, individual images are often not
very intuitive for evaluation. Automated mosaicking [1, 2] offers the opportu-
nity to create an integrated picture or an environment map of a scene from a
video sequence of endoscopic images. An essential first step in the process is the
estimation of a registration estimate between captured images. One method of
obtaining this estimate is the use of external optical tracking [3]. This however
requires additional tracking equipment and a constant line of sight. A purely
image based registration method is therefore an attractive alternative.

Current image registration methods generally apply to images related by pla-
nar homographies. Some examples are views of a plane from arbitrary camera
positions and views of a general scene taken by a camera free only to pan, tilt
and zoom [1]. Endoscopic images, however, are typically not related by planar
homographies, due to the complexity of internal body scene structure and the
impracticability of restricting camera motion. For example, bronchoscopy in-
volves linear axial motion while imaging a tubular environment. It is therefore
necessary to develop methods that, based on the imaging model and scene ge-
ometry, transform endoscopic images into a representation that is suitable for
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mosaicking. In particular, paracatadioptric imaging is potentially useful for en-
doscopy. A paracatadioptric system typically comprises of a parabolic mirror
which reflects light onto a camera and thus provides a wider field of view which
makes it a useful tool for endoscopy. However, image transformations imposed
by the motion of a paracatadioptric imager are not linear, and further do not
satisfy the requirement (for mosaicking) of forming a group, thus complicating
the problem [4].

Methods for computing a registration estimate fall into two broad categories:
direct methods which compute a transformation that optimizes some measure of
photometric consistency over the entire image [5, 6], and feature based methods
[7] which use a sparse set of corresponding image features to estimate the image-
to-image mapping. Once a registration is computed, the construction of a mosaic
entails resampling the images to a common coordinate system (given by the
registration) so that they can be combined into a single image.

In most implemented systems, the entire mosaicking process is carried out
offline, allowing the registration problem to be solved as a joint global optimiza-
tion. However, this means that the quality of the mosaic and area it covers is
difficult to determine until after the fact. A more intuitive approach is to develop
an initial mosaic “online” as images are acquired. This provides the physician
immediate and direct visual feedback as to the coverage and quality of the re-
sulting mosaic.

In this paper, we describe methods for online image registration and mo-
saicking, and provide experimental results for retinal and endometrial imaging
applications. In the next section, we first describe methods for performing tra-
ditional planar mosaicking and illustrate its application to retinal imaging. We
then describe the modifications necessary to deal with paracatadioptric imaging
of tubular structures and present results from that system.

2 Registration for Endoscopic Mosaicking

In the case of an endoscope viewing a planar or locally planar surface, the appro-
priate registration transformation is a homography [1]. However, in many cases

Fig. 1. Warping Model Hierarchy

the mapping between images of planar
scenes can be described by mappings
with fewer degrees of freedom which,
consequently, can often be more reli-
ably and rapidly estimated. In particu-
lar, affine mappings account for trans-
lation, rotation and scaling effects and
are subgroups of a planar homography
[1]. Although the affine transformation
is, in general, necessary for mosaicking
a large scene, it is often possible to make
due with even simpler models, allowing
for simpler computation and a more sta-
ble result. Our mosaicking system begins



with a simple translational model and moves through a hierarchy of models based
on the scene structure (Fig. 1). The move to a more complex model is triggered
when the registration error for the simpler model exceeds a fixed threshold. In the
cases of locally planar (retinal) and cylindrical (endometrial) imaging which are
presented in this paper, affine motion models generated small enough registration
errors that did not exceed the threshold. Therefore quadratic and perspective
models were not considered. The registration methodology we employ using this
model is a direct technique. We denote the registration transformation as D(p).
In the case of an affine motion model, the transformation is linear which relates
image coordinates as follows:

(u1, u2) = D(p)(x1, x2, 1)T = f(x, p), D(p) =

(

1 + p1 p3 p5

p2 1 + p4 p6

)

(1)

where x = (x1, x2) is the pixel coordinate of a physical point on the first
image, u = (u1, u2) is the projection of the point in the second image, p =
(p1, p2, p3, p4, p5, p6)

T is the unknown parameter vector relating the two images
and f(x, p) is the transformation which is a function of x and p. [8, 5].

For online video mosaicking, motion between images is generally small, and
the dominant motion is typically translation. As a result, it is common to com-
pute an initial estimate of 2D translation by performing a brute-force search to
maximize normalized cross-correlation between images. After this, a local con-
tinuous optimization method can be applied to compute the registration upto
sub-pixel accuracy. Assuming brightness constancy, the goal of the registration
algorithm is to minimize the sum of squared error between two images, I0 and
the image I1 warped back onto the coordinate frame of I0 ,with respect to the
warping parameters p. For a general motion model with transformation function
f(x, p), this quantity is:

∑

x

[I(f(x, p + ∆p)) − I0(x)]2 (2)

This expression is linearized by a first order Taylor expansion on I(f(x, p+∆p)):

∑

x

[I(f(x, p)) + ∇I
δf

δp
− I0(x)]2 (3)

where ∇I is the image gradient vector and δf
δp is the Jacobian of the transfor-

mation in (1). A linear closed-form solution can be obtained for the registration
parameters p [6, 5]. In the interest of reducing computation time, a portion of
the available image pixels can be chosen for optimization. In particular, since
low magnitude image gradients have negligible effects on the solution, they can
be eliminated to form an equivalent, smaller Jacobian matrix [8]. Once regis-
tration is computed to a subpixel level, the final step is to stitch warped images.
The registration transformation between each pair of images j and k is defined as
D(p)j,k. Define Ki as the transformation of an image to the mosaic. For each new
image, the transformation Ki+1 = Ki.D(p)−1

i,i+1. The new image is then weighted



Fig. 2. An image mosaicking result for a retinal image sequence. The figure above
shows an input image on the left and the resulting mosaic on the right; The 3 figures
below show the mosaic in progressive stages. Note the change of field of view as more
images are included

and projected onto the current mosaic with this estimated transformation. The
method has been tested on simulated retinal sequences, and on endoscopic reti-
nal images acquired with a GRIN lens endoscope (Insight Imaging, Inc.). Fig. 2
shows an example of the former as it is being constructed, in real-time, using
the methods described above. This mosaicker was implemented in C and runs
at 30 frames/sec.

3 Warping Models for Catadioptric Imaging

Recently, we have begun to investigate mosaicking for paracatadioptric sensors
moving in tubular structures. As noted previously, catadioptric images cannot
be registered by transformations that form a group. However, for motion that
is largely axial through a tubular structure which provides a scene of roughly
constant depth (as is the case in several types of diagnostic endoscopy), para-
catadioptric images can be transformed into cylindrical representations. The
transformations between these cylindrical images satisfy the condition of group
membership. Therefore these representations can be registered to form a “tubu-
lar” mosaic. Fig. 5 shows a phantom setup we have developed for illustrating
such an imaging system. A catadoptric imager is mounted on a linear stage and
is positioned inside an empty clear cylindrical tube. Different textures are affixed
to the clear tube and are imaged by moving the camera steadily in a straight line
using the stage. This simulates the motion of an omnidirectional imager through
different types of tissue.



Fig. 3. Image Coordinates
Fig. 4. Paracatadioptric Mo-
saicking

A raw image from this sensor appears as an annulus with image coordi-
nates (ic, jc) as its center (Fig. 3). Points (i, j) from the raw image can be
described in polar coordinates (r, θ) by: ri,j = ((i − ic)

2
− (j − jc)

2))1/2 and

θi,j = tan−1

(

ic−i
jc−j

)

. For the imaging geometry used in our system, the polar

representation can now be related to the cylindrical surface with coordinates
(xi,j , yi,j) as follows:

xi,j = ri,jθi,j , yi,j =

(

−(ri,j − c)

a

)1/b

(4)

where a, b, and c are power law coefficients characterizing the imaging geometry.
Once the images are in cylindrical coordinates, axial motion becomes trans-

lation in y, and rotation about the imager axis becomes translational motion in
x (now viewed as wrapping at the edges of the image). In order to apply the
framework of the previous section, the paracatadioptric mosaicking algorithm re-
quires the extra step of changing from radial to cylindrical coordinates (Fig. 4).
Let T (i, j) 7→ (x, y) denote this change of coordinates and let JT denote the
Jacobian matrix of this transformation. It follows then that

∇x,yI = JT∇i,jI (5)

relates image gradients in the raw ((i, j) coordinates) image to those in the
cylindrical ((x, y) coordinates) image. The latter can now be used in (3) to solve
for the cylindrical motion between images using the raw image as it is acquired.

4 Results

A preliminary validation of the method was conducted using the large scale
paracatadioptric camera system described in Section 3. The purpose of this
validation was to measure the accuracy of the reconstructed mosaic.

The first required step was calibration, in order to determine power fit co-
efficients a, b and c from (6). To solve for these, a uniform grid affixed to the
imager was imaged and corners on the grid were automatically extracted (Fig.
5). Given this constant depth scene, the first grid circle could be chosen as the
origin of the radial coordinate system allowing a solution for c. The distance be-
tween the first and second grid circle was taken as unit distance thus solving for



Fig. 5. Left:Large scale paracatadioptric simulator. Textures are affixed around the
plastic bottle. The camera and mirror move in and out of the bottle during imaging.
Everything else is stationary. Right:Calibration Grid

a. Finally, taking the log of both sides yielded: b log(y) = log
(

r−c
a

)

. This linear
relationship easily solved for b using additional grid points. Once b was com-
puted, a and c could be recomputed by standard linear regression. The values
computed were as follows: a = 0.047, b = 1.51, c = 131.3. Tracking and mosaick-
ing of uterine texture samples could then be implemented. Two types of data
were collected. The first set of data was captured by imaging printed textures
of normal and myomatous uterii affixed to the clear tube. For the second type
of dataset, these printed textures were marked with pen mark fiducials placed
at equal 1cm distances on a straight line. Image capture was then performed
in the same manner as for the first type of dataset. The second set served as a
validation tool. The uniformity of the reconstruction of the marks on the valida-
tion mosaics was used to determine the accuracy of the mosaicking algorithm.
Fig 6(a) (top left) shows the original texture of a myomatous uterus which was
pasted onto the tube. Fig 6(b) (top right) shows a reconstructed mosaic of the
marked myoma texture. The distance between reconstructed marks ranged from
44 to 51 pixels (the image size is 551 X 661) and the variance of the distance
between consecutive markers was 2.83 pixels. Given the ground truth distance
of 1cm between markers, this gives a registration accuracy of 0.59mm. The ruler
on the right side of the markers in Fig 6(b) provides a mark for every one half
of the mean distance between reconstructed marks. Figs 6 (bottom two) show
the mosaics generated from the dataset of the same texture without markers.

4.1 Experiments with Ex-Vivo Data

The above method was then applied to ex-vivo uterus images. Data was cap-
tured using a 4mm diameter hysteroscope with a paracatadioptric imager. The
hysteroscope was moved at uniform 1mm intervals between consecutive images.
Sample 1 is a set of 70 images of an endometrium with a myoma. Sample 2 is a set
of 83 images of a normal endometrium. The resulting mosaics and motion plots
are shown in Fig. 7. The computed motion in the y direction which corresponds
to the dominant translational motion varies between 7 and 10 pixels between
image pairs in the two samples. This is in accordance with the constant, purely
translational motion of the imager. The computed motion in the x direction is
very small as expected.



Fig. 6. Top Left: Original Myoma Texture Top Right: Mosaic of Myoma Texture with
markers (ground truth) Bottom Left: Mosaic of Myoma Texture: Sample 1 Bottom
Right: Mosaic of Myoma Texture: Sample 2

5 Discussion

We have presented a novel approach for online image tracking and mosaicking
for the improved visualization of locally linear surfaces and closed tubular envi-
ronments in the cases of microscopic and omnidirectional contact imaging. The
ability to perform real-time processing is particularly important in the case of
endoscopic mosaicking in order to provide real-time visualization. In general,
image mosaicking is subject to some level of drift as there is no way to com-
pletely eliminate small incremental motion estimation errors. In order to reduce
these registration errors a global block adjustment alignment can be applied
to the whole sequence of images in offline processing, resulting in an optimally
registered mosaic [2].

Future work will focus on extending the method to interpret lateral motion of
the catadioptric imager, incorporation of tissue deformation and further ex-vivo
experiments.
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Fig. 7. Left and right columns show mosaics (first row), motion in x direction (second
row) and motion in y direction (third row) of two different ex vivo samples.
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