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Abstract— Tracking in sensor networks has shown great po-
tentials in many real world surveillance and emergency system.
Due to the distributive nature and unpredictable topology
structure of the randomly distributed sensor network, a good
tracking algorithm must be able to aggregate large amounts of
data from various unknown sources. In this paper, a distributive
tracking algorithm is developed using a Markov random field
(MRF) model to solve this problem. The Markov random field
(MRF) utilizes probability distribution and conditional indepen-
dency to identify the most relevant data from the less important
data. The algorithm converts the randomly distributed network
into a regularly distributed topology structure using cliques.
This makes tracking in the randomly distributed network
topology simple and more predictable. Simulation demonstrate
that the algorithm performs well for various sensor field setting,
and for various target sizes.

I. INTRODUCTION

Tracking has a wide range of civilian and military ap-

plications. It can be used in traffic control, surveillance,

emergency response systems, search and rescue, supply

chain management, and battle field awareness systems. Using

sensor networks for tracking has become a popular choice

in recent years. The sensor network is a distributive system

which contains large amounts of small and inexpensive

sensor nodes. The large amount of sensors provides enough

redundancy to ensure the system is robust, and the small size

allows the sensors to work under various space-constrained

places, which provides direct line of sight measurements.

However, the individual sensors have limited computation

capabilities, so collaboration between sensors is needed in

order to make inferences in the network. The sensor nodes

also have limited communication capabilities, hence exces-

sive collaboration is also infeasible. The key in distributed

tracking algorithms is the in-network processing, where the

data is aggregated while it is propagated. In this case, each

sensor handles only part of the computation and transmits

only the aggregated result.

There are many types of interested targets in sensor

networks. These interested targets may be humans, animals,

robots, vehicles, or even an area of events, such as spreading

fire. These types of targets can usually be classified into two

types, the small targets, and the large targets. The physical

size of the small targets is relatively small compared to the
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average distances between sensors in the networks. Therefore

they are usually modeled as a point, and their locations

are represented by cartesian coordinates. When the target

moves, the trajectory of the target is usually represented by a

collection of these coordinates. Human, animals, robots, and

most vehicles can be considered as small targets. The area

of events are usually considered as large target. The large

targets are too large to be represented by single coordinates,

and detection of large targets usually involves many sensors.

The large targets are usually identified by the sensors that

can detect them, or they can be identified by the sensors that

are close to the boundary.

The sensor network itself has a distributive topology which

strongly resembles a graph, hence the sensor network can

be modeled as a graphical model. The graphical model

represents sensor nodes as random variables, and the links

between the sensors are modeled as correlations. Making

inferences in the sensor network can be treated as a stochastic

process on a graph. The sensor networks can be further

classified as a special type of graph, the Markov random

field. In a Markov random field, the sensor nodes obey the

Markov property where the nodes are only correlated to their

immediate neighbors, hence the Markov property can be used

to isolate the target location to a small set of sensors rather

than the entire sensor field.

In this paper, a graphical model-based tracking algorithm

is developed, and the sensor network is assumed to be a

Markov random field. The algorithm can track both small

and large target types. It identifies a small chained-form

network along the target trajectory of small targets or the

target boundary of large targets. The chained-form network

is a sub-graph of the whole network, and it contains all the in-

formation needed to precisely locate the target. The randomly

distributed sensor field is first converted into a grid-shaped

structure using triangle cliques, and then a search algorithm

is used to find the sensors that are along the trajectory of the

target. By using a statistical graph approach, each sensor only

represent a probability rather than a decision. Hence sensor

failure and miss detection is handled automatically, since a

few incorrect probabilities will not affect the joint probability

distribution in the long run. With a Markov random field, the

conditional independency allows each sensor to aggregate the

current data without worrying about future data from other

sources.

II. RELATED WORKS

Distributive tracking algorithms of small target in sensor

networks are usually following two paths. The first path is
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the multi-sensor data fusion approach, and the second path

is the graph approach.

The data fusion approaches are usually developed under

the Bayesian framework, where a posterior distribution is

computed by manipulating the Bayes rule and the joint

density distribution of the sensory data. This method usually

has two steps: first, predict the new state using past data, and

second, update the prediction using new data. The Multiple

Hypothesis Tracking (MHT) and Joint Probabilistic Data

Association (JPDA) are the typical algorithms based on the

Bayesian framework [1] and [2]. They exhaustively enumer-

ate possible target actions and the associated probability, and

then decide the best series of actions based on the probability.

These approaches suffer from hypothesis explosion, which

induces high communication and computation cost in the

network. Many new variations of the data fusion approaches

have been developed to simplify the computation in recent

years[3], [4], [5].

One of the most popular variations is the Kalman filtering.

Kalman filters introduced a pre-computable term, the Kalman

gain, to reduce the computation load when new data arrives.

Kalman filters also set a number of new constraints. The

most notable constraints are the Gaussian noise and linear

dynamic system assumptions. Many of the recent works are

focused on relaxing these constraints [6], [7], [8].

In the graph-based approach, the topology of the graph is

used to represent actual locations, and the tracking process

is to categorize the detecting sensors based on their location

information. In [9], for example, the rooms and the hallways

are modeled as nodes in the graph, and the target is assumed

to transit from node to node. Another graph-based tracking

method is shown in [10]. Other graph-based methods study

the overlapping of the sensing region with the aid of the

known network topology [11], [12], [13]. All of these graph

based algorithms depend heavily on knowledge of the net-

work topology. The topology has to be regularly distributed

and the node locations have to be known.

Large targets are usually modeled by their event bound-

aries. Some algorithms are developed for event boundary

detection in the sensor networks. The algorithm proposed in

[14] and [15] used a threshold-based system for each sensor

to make detection decisions. The algorithm developed in [16]

uses the k-nearest neighbor to group the detection sensors

into clusters, and the cluster would represent an area of event.

The outlier sensors are determined to be false alarms. A more

advanced method is offered in [17], where the sensor field

is recursively divided into sub-regions, until each sub-region

contains only null detection sensors, or detection sensors.

The boundary can be easily identified once these sub-regions

are constructed.

These algorithms described above either heavily rely on

probabilistic data association and ignore the topology of the

network, or only exploit the topology and fail to collaborate

sensor data statistically. In contrast, a statistical graphical

model-based algorithm is developed in this paper. This

algorithm not only utilizes the probabilistic framework for

data association, but also studies the network topology to

identify the independency between data in order to reduce

the computation cost of the data association. Studying the

network topology also makes the data routing easier during

the data association. The algorithm also handles large targets

and small targets at the same time, which is important in

some fire and rescue situations. The large targets and small

targets are usually considered separately in previous studies.

III. PROBLEM FORMULATION

A. Graph representation of sensor field

Consider a typical tracking problem in a sensor field.

Assume in this sensor field S with K sensors, each sensor

is capable of detecting the presence of the targets,

mk =

{

1 + n if target present (H1);
n if target absent (H0).

(1)

where mk is a random variable that describes the detection

status of the sensor k, k ∈ {1, 2, . . . ,K}, and n is zero mean

noise. The distribution of the mk is dependent on the noise

distribution,

P (mk|H0) = Pn(mk) (2)

P (mk|H1) = Pn(mk − 1),

where Pn(mk) is the noise distribution.

Given the sensing model of the individual sensor, the

sensor field can be modeled using a graph. In the graph

G = (V,E), V represent the K sensors in the network, and

E represent the measurement correlations between sensors.

Each mk corresponds to a measurement in Vk. According to

the detection model of individual sensors, any two sensors

that are within each other’s detection range are correlated,

and this makes the statistical information in the network

redundant and difficult to analyze, as shown in Fig. 1(a). To

reduce the statistical redundancy, the sensor field is assumed

to be a Markov random field, where edges (correlations)

only exist between immediate neighbors, as shown in Fig.

1(b). Even when two sensors are in range of each other, if

they are separated by other sensors, they are conditionally

independent to each other given the middle sensors. The

conditional independency can be expressed mathematically

as

K
∏

k=1

p(mk|m1,m2, . . . ,mK \mk) =

K
∏

k=1

p(mk|NB(mk)),

(3)

where NB(mk) represent the immediate neighbors of k.

Each connected neighborhood can be called a clique. The

cliques are independent of each other, and hence the joint

probability density distribution can be computed by multipli-

cation. Let M = {m1,m2, . . . ,mK}, the joint distribution

of the sensor field is modeled using the Gibbs distribution,

p(M) =
1

Z
exp

(

∑

c∈C

(ψc(mk))

)

, k ∈ c (4)

where c ∈ C are the cliques in the field, and ψc(mk) repre-

sent the clique potential. Z is a normalization constant. With
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(a) Network topology with
all possible edges shown

(b) Network topology after
assuming Markov property

Fig. 1. graph representation and Markov random field representation of
the same sensor field.

(a) Representation of a
small target in sensor
networks

(b) Representation of a large
target in sensor network

Fig. 2. Similar representation of various sized targets in the sensor network.

this network model, when computing the joint probability

distribution, the probability distribution of each clique can be

pre-computed locally, and hence it is distributive in-network

processing.

B. Definition of the targets

In this paper, the targets in the sensor network can be

classified into two categories, the small targets and the

large targets. The small target can be modeled as a point

mass. A fixed small target is a single cartisian coordinate

(xt, yt). This allows us to do numerical manipulations such

as measure the distance and perform multilateration. Once

the target starts moving, it produces a continuous trajectory

line. The usual way of modeling this trajectory line is to

capture a static snapshot of the coordinate at each time

frame, and the trajectory line can be represented by a vector

of coordinates θ. Assume the sample is taken over T time

period,

θ = {(x1

t , y
1

t ), (x2

t , y
2

t ), . . . , (xT
t , y

T
t )}. (5)

As shown in Fig. 2(a), black squares are the snapshot

coordinate at each time frame, the orange line is the target

trajectory, and the circles are the sensors. The connected red

circles are the sensors that are most relevant to the target

trajectory; they will form a chained-form network which is

used to estimate the location of the target and provide a

routing path for data aggregation. The challenge is to identify

these sensors from a randomly distributed network as shown

in Fig. 1(b).

A large target is an area of event, where a single Cartesian

coordinate cannot be used to represent this type of target,

Fig. 3. Boundary lines in regularly distributed network

hence we cannot obtain a collection of coordinates over time

to represent the large targets. The boundary of a large target

is a continuous line, which exhibits a similar characteristic

as the trajectory of the small target, thus a chained-form

network can be identified as shown in Fig. 2(b) to represent

the current location of the target. The main objective for

tracking both large targets and small targets is to identify

the chained-form network as shown in Fig. 2.

IV. TRACKING IN A GRAPH WITH ISING MODEL

The Ising model is a Markov random field with a grid

topology. With this regular distributed network, it is much

simpler to identify the chained-form network. Fig. 3 shows

a possible target trajectory (boundary) in Ising model, where

the circles are the sensors. The hollow circles represent

the null detection sensors, and the colored circles represent

sensors that are detecting the target. The goal is the identify

the boundary of the colored sensors from the rest of the

network.

In Fig. 3, the boundary sensors are the separators between

the hollow circles and the colored circles. Hence to find the

boundary sensors, the basic strategy is to search through

the sensor field line by line, and identify the change point.

This is simple since hollow sensors and colored sensors are

in different detection statuses H0 and H1 as described in

equation (1). The detailed algorithm can be formulated as

following.

Assume a line of l sensors with sensor measurements m,

ml
1

= (m1,m2, . . . ,ml). (6)

Let δ be the change point between two detection statuses,

and further assume that H0 comes before H1 in the line of

sensors,

mδ
1

in state H0 (7)

ml
δ in state H1

According to the Markov property, the probability of having

δ as change point can be expanded as

P (δ ∈ boundary|ml
1
, H0, H1) = CP (mδ

1
|H0)P (ml

δ|H1),
(8)

where C is a normalization constant.
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With equation (8), we can search through the all possible

δ to find the most probable boundary location

δ = arg max
δ
P (δ ∈ boundary|ml

1
, H0, H1). (9)

Equation (8) is only valid if the segment mδ
1

is in state to

H0, and segment ml
δ is in state H1. This is because the term

P (mδ
1
|H0) paires mδ

1
with state H0. In real applications this

is not always the case. Sensors mδ
1

may be in either state H0

or H1, hence P (mδ
1
) should be used in place of P (mδ

1
|H0),

and it can be computed using the prior,

P (mδ
1
) =

∫

P (mδ
1
|H)P (H)dH (10)

where P (H) is the joint prior of H0 and H1.

The assumption for Ising model is essential. Without the

grid shape, the search will encounter unexpected branches

and the correlation will vary from sensor pairs to sensor

pairs. This will cause additional difficulty in performing

the search. However, in typical sensor network deployment,

networks are usually not grids. To make this algorithm

applicable to all kinds of sensor networks, an equivalent

topology structure for the sensor network must be derived

which must satisfy the grid assumption. In this paper, a clique

based topology representation is used to convert the irregular

topology of the sensor network to a grid-like structure, then

the algorithm is applied to this grid-like structure.

V. TRACKING IN RANDOMLY DISTRIBUTED

SENSOR NETWORK

Typical sensor networks are randomly distributed, and the

Ising model assumption cannot be achieved. However, by

exploit the property of cliques and conditional independence,

the randomly distributed network can be converted into a

grid-like structure, which is very similar to the Ising model.

Therefore, the method used for the Ising model can be

extended to a randomly distributed network.

A. Grid-like topology construction

In an Ising model, each node has exactly four connected

neighbors (except borders and corners), and the distance

(correlation) between each neighbor is exactly the same. In

order to construct a topology structure similar to the Ising

model, we have to satisfy these two conditions: 1) have

a fixed number of connected neighbors, 2) have the same

distance (correlation) between connected neighbors.

These two conditions can be easily satisfied by adopting

triangular cliques. A clique is a cluster of sensors which

are fully connected within the cluster. When three node

triangle cliques are used, each clique would have exactly

three adjacent triangles. The adjacent cliques are correlated

by the two shared nodes. Hence, the clique structure can be

used to simulate the behavior of a grid structure. Fig. 4 shows

how a randomly distributed sensor topology can be converted

into a grid-like structure. The network is first triangulated,

each triangle is a natural clique, then a single “super node”

is used to represent a whole clique in the grid-like structure.
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(a) Random deployed sen-
sor field
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(b) Grid-like structured
clique topology

Fig. 4. Converting the randomly distributed sensor network into a grid-like
clique structure
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(a) Triangulated sensor field
with coverage holes
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(b) Virtual triangles con-
structed to get across void
areas

Fig. 5. Converting the randomly distributed sensor network into a grid-like
clique structure

B. Void area in grid-like topology

The most popular triangulation algorithm is the Delaunay

triangulation. However, Delaunay triangulation cannot be

applied to the sensor network directly. This is because the

algorithm does not have a bound on edge length; it may

result in long edges that far exceeding the actual sensing

and communication range of the sensors. At the same time,

Delaunay triangulation is very difficult to achieve in a

distributive fashion, hence it is not suitable for distributive

sensor network. Therefore, a sub-graph of the Delaunay

triangulation such as Relative Neighborhood Graph (RNG),

or Gaberial Graph (GG) can be obtained. However, in RNG

or GG, polygons may exist, where three-sensor cliques

cannot be constructed as shown in Fig. 5(a). Area 4 in the

figure is a void that cannot be modeled as a triangle clique.

Double-sensor cliques are introduced to solve this prob-

lem. For example, in Fig. 5(a), the five edges on the pentagon

are modeled as five double-sensor cliques. Two of these

double-sensor cliques can join together to form a virtual

triangle if they share one sensor. A virtual link is added

between the two non-sharing sensors in the group to finish

the triangle. Fig. 5(b) is a demonstration of this situation.

The dashed lines are virtual lines added to divide the polygon

region into virtual triangles. Triangle 4− 2 is a special case,

where it is formed by only one double-sensor clique. So, 4−2
is treated as a triangle when constructing the clique structure,

but when computing the joint distribution, it is just a single

double-sensor clique. The construction of the virtual triangles

obeys the following five rules as described in Algorithm 1.

C. The tracking algorithm in a grid-like structure

After the grid-like structure is constructed, the search

algorithm for Ising model can be applied to identify the

857



Algorithm 1 Constructing virtual triangles with double-

sensor cliques

1) An edge is a double-sensor clique if at least one of its

adjacent triangles are missing.

2) In order to form a virtual triangle, the two real edges

must both be double-sensor cliques.

3) Virtual links can be treated as double-sensor cliques

when constructing virtual triangles,

4) Virtual links are not included when computing the

clique potential and other statistic related quantities.

5) Virtual triangles can be formed if the added virtual

link does not cross any of the existing links (virtual or

real).

trajectory (boundary) of the target. However, since we don’t

have a true grid structure, and each “node” in our topology

actually represents three nodes in the original structure, the

detection models need to be modified slightly. The new

detection model can be expressed as

P (H0) =

3
∏

k=1

P (mk = n) =

3
∏

k=1

Pn(mk) (11)

P (H1) =

3
∏

k=1

P (mk = 1 + n) =

3
∏

k=1

Pn(mk − 1),

With P (H0) and P (H1) computed, the P (Cδ
1
) and P (Cl

δ)
can be computed. Note that l is the total number of the

cliques in the line, δ is the change point, and C is the cliques.

Since computation of P (Cδ
1
) anc P (Cl

δ) are symmetric, we

only focus on the computation for P (Cδ
1
).

Given the detection result, the readings of each clique is

independent to each other, hence,

P (Cδ
1
|H) =

∏

i

P (Ci|H). (12)

We can then expand equation (10) as,

P (Cδ
1
) =

∫

P (Cδ
1
|H)P (H)dH (13)

=

∫

P (Cδ|D)P (Cδ−1

1
|H)P (T )dH

= P (Cδ−1

1
)

∫

P (Cδ|H)P (H |Cδ−1

1
)dH.

This separates the terms containing the current clique Cδ and

all previous cliques Cδ−1

1
, hence it can be carried out in a

distributive fashion using message passing algorithm. Each

clique need only to compute their local P (Cδ
1
) and pass it

down the line; the next clique in line will treat the received

value as P (Cδ−1

1
). With the detection pattern defined, the

equation 8 can be rewritten as

P (δ ∈ boundary|Cl
1
, H0, H1) (14)

= KP (Cδ
1
)P (Cl

δ)

= KP (Cδ−1

1
)

∫

P (Cδ|H)P (H |Cδ−1

1
)dH

× P (Cn−1

δ )

∫

P (Cδ|H)P (H |Cn−1

δ )dH
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Fig. 6. Large target in a grid sensor field using Ising model

This equation works if there is only one change point δ in

the line of cliques, however, there may be several change

points in each line.

Let us introduce a new variable µ to represent the number

of change points in the path, and tweak the equation a little

to incorporate this variable,

P (δ ∈ boundary, µ|Cl
1
, H0, H1) (15)

= P (µ)P (δ ∈ boundary|µ,Cl
1
, H0, H1),

= P (µ)KP (Cδ1

1
)

µ−1
∏

i=1

P (C
δi+1

δi
)P (Cl

δµ
)

P (µ) is a priori distribution; it can be obtained empirically.

For instance, if a large target is known to be a circular shape,

a Poisson distribution with expected value of 2 should be a

good assumption, because a straight line of sensors would

have two intersections with the circle.

VI. SIMULATIONS

For the purpose of demonstration, assume 100 sensors are

deployed in a 20 by 20 square region. Each sensor has a

sensing radius of 5. The algorithm is carried out on this

square region to detect a small target, a large target, and

multiple large targets.

The search is first conducted on a sensor field that is

modeled by an Ising model (grid). Fig. 8 shows the results.

Since it is a grid network, no triangle clique is constructed.

Circles are sensors, the red ones are the sensors that detecting

the large target. The lines are the links in the chained-form

network representing the target boundary.

For the randomly deployed sensor field, a Gabriel Graph

is constructed on top of the sensor field, then virtual lines are

constructed to break the polygons into triangle cliques. The

triangle cliques are represented using “super nodes”, and the

“super nodes” topology is arranged into a grid-like structure.

Fig. 9 shows the detection of the large target in the

randomly deployed sensor field. The red triangles are real

triangle cliques, and the blue lines are virtual lines that

connect the double-sensor cliques into virtual triangles. Only

the cliques that are representing the boundary of the target

are shown.

Since the search algorithm is carried out on a Markov

random field, the detection of the target is independent
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Fig. 7. Large target in a randomly deployed sensor field

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Fig. 8. Detection of two large target in the sensor network

given the immediate neighboring sensors. Hence, if we have

multiple large targets, they can be tracked as well, using the

same search algorithm. Fig. 8 shows the detection of two

large targets in the same sensor field.

Finally, small target trajectory is searched by the algo-

rithm, and located on the sensor field with a chained-form

cliques. Fig. 9 shows the tracking result for the small target.

Once the chained-form network is constructed, multilatera-

tion can be used in each triangle cliques to compute the exact

position of the target at each time instance. The formulation

of the multilateration can be found in [18].

VII. CONCLUSION

A distributive algorithm is developed to solve target track-

ing problems in sensor networks. The algorithm inherits

the statistical framework for tracking, and at the same

time exploits the topology structure for both simplicity and

generality. Both the trajectory of the small targets and the

event boundary of the large targets can be found using

this algorithm. The distributive algorithm allows large scale

implementation. Simulations demonstrate the functionality of

the algorithm against small targets, large targets, and multiple

targets.
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