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Most model studies of arterial fluid mechanics have assumed that blood is a Newtonian 
fluid and that vessel wall motion driven by the pressure pulse has a small influence on the 
local velocity and pressure distributions. This paper provides a brief historical review of 
arterial flow modeling which emphasizes recent developments in non-Newtonian blood 
analog fluids and studies of the influence of vessel wall motion on local flow fields. It is 
pointed out that vessel wall motion can have a dominant effect on mean pressure gradient 
and a significant effect on mean wall shear stress in the aorta. 

INTRODUCTION 

The classical model of blood flow in the circulatory 
system derives from experiments of the French 
physician J. L. Poiseuille (1799-1869). Poiseuille's 
law describes the relationship between pressure 
drop (AP0) and flow rate (Q0) for steady flow of a 
Newtonian fluid (viscosity ji) in a rigid, straight 
vessel of length L and uniform diameter 
(D0 = 2R, o;> 

AP0 = 
8uL) 

TtRn 
Qn (1) 

The axial velocity profile associated with this flow 
has the well known parabolic shape, and the shear 
stress imposed by this flow on the wall of the 
vessel is given by 

[ 4» 
TIR0 

Qn (2) 

Equation (1) is the standard model employed in 
Physiology textbooks to describe blood flow in 
individual vessels and to explain the distribution of 
flow in the series / parallel network of vessels 
which distributes blood to tissues of the body. 
Because the shear stress of flowing blood on vessel 
walls has been shown in recent years to have a 
profound influence on the biology of the arterial 

wall (Frangos, 1993), physicians and 
physiologists have used equation (2) to 
estimate x0 from measurements of flow rate 
and vessel dimension. 

Of course Poiseuille's law does not 
account for the characteristic pulsatile nature 
of blood flow or for the elasticity of blood 
vessel walls which allow pressure and flow 
waves to propagate from the heart. The one-
dimensional, inviscid theory of wave 
propagation in elastic tubes dates back to the 
first half of the 19th century and is associated 
with the names T. Young and E. H. Weber 
(see Noordergraaf, 1969). However, the two-
dimensional, viscous, linear theory was not well 
developed until much later in the work of 
Morgan and Kiely (1954) and Womersley 
(1955). D. A. McDonald, in his classic 
monograph "Blood Flow in Arteries" (First 
edition, 1960) described Womersley's theory in 
great detail and reviewed available experi
mental data from the arteries of dogs which 
showed a very satisfying agreement between 
Womersley's theory and measurements of 
pulsatile pressure gradient and flow. 

Womersley's theory reveals that the 
unsteadiness of oscillatory flow, as charac
terized by the unsteadiness parameter 

a ( = R0yWv ; « is the angular frequency of 

the fundamental flow harmonic and u is the 
kinematic viscosity of the fluid) can have a 
major influence on the magnitude of the 
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longitudinal impedance (pressure gradient / flow 
rate) of the flow and its associated wall shear 
stress. At high values of a (a>10) which are 
characteristic of pulsatile flow in the largest 
arteries, the modulus of the longitudinal 
impedance normalized by its Poiseuille flow value 

TcR0j approaches <x2/8 and the modulus of the 
wall shear stress divided by the flow rate 
normalized by its Poiseuille flow value(4u./-n:R0j 
approaches a/4. Thus, in a large artery like the 
aorta where a —20 for the fundamental flow 
oscillation, the peak pressure gradient would be 
some 50 times that predicted by Poiseuille's law 
and the peak wall shear stress could be 5 times the 
Poiseuille flow value. These are very significant 
effects associated with flow unsteadiness which are 
described by Womersley's theory but not 
accounted for by Poiseuille's law. 

Interest in the effects of complex vessel 
geometry on arterial fluid mechanics came into 
focus in the late 1960's and early 1970's when 
attention was drawn to the fact that atherosclerotic 
lesions on blood vessel walls tended to be localized 
around branch points and in regions of vessel 
curvature and that the wall shear stress, either 
through a mechanical injury mechanism or a mass 
transport mechanism, was influential (Fry, 1969; 
Caro et al, 1971). Many studies, both 
experimental and theoretical, followed this initial 
impetus and demonstrated, using rigid wall models 
and Newtonian blood analog fluids, that wall shear 
stress is strongly dependent on spatial position in 
complex geometries (Friedman et al, 1981; Ku et 
al, 1985; Chang and Tarbell, 1988). These studies 
and others have provided circumstantial evidence 
that the localization of atherosclerotic plaques in 
arteries is associated with the wall shear stress 
distribution (Nerem, 1992). 

However, Moravec and Liepsch (1983) and 
Liepsch and Moravec (1984) conducted flow 
visualization and laser-Doppler anemometry 
(LDA) studies of pulsatile flow through an elastic 
arterial branch model using a non-Newtonian 
blood analog fluid and observed large differences 
in the velocity profiles relative to those measured 
with a Newtonian fluid in a rigid model. These 
studies stimulated considerable interest in the 
effects of non-Newtonian blood rheology and 

elastic vessel wall motion on velocity and wall 
shear stress distributions in arteries. 

NON-NEWTONIAN RHEOLOGY INFLUENCE 

Human blood is a non-Newtonian fluid which 
displays marked shear thinning behavior at low 
shear rates (below 100 s"1) in steady 
viscometric flows (Cokelet, 1987). At higher 
shear rates, blood viscosity approaches an 
asymptotic value of 3.5-4.0 cp at normal 
hematocrits (volume fraction of red blood 
cells) and appears to be Newtonian. If one 
uses the Poiseuille flow formula (eqn 2) to 
estimate mean (time-averaged) wall shear rates 
in arteries based on physiological 
measurements of Q0 and R0 (McDonald, 
1974), one typically finds values above 100 s"1; 
peak values are much higher. Thus, on the 
surface, it may seem reasonable to treat blood 
as a Newtonian fluid in modeling flow in 
arteries. However, regions of curvature and 
branching in the circulation may display flow 
separation, flow reversal and secondary flow, 
all of which can lead to non-uniform 
distribution of shear rate around the periphery 
of the vessel including low and high shear 
areas (Chang and Tarbell, 1985). 

To address the question of the 
influence of non-Newtonian rheology on 
pulsatile flow in complex geometries Moravec 
and Liepsch (1983) introduced aqueous 
polyacrylamide as a transparent blood analog 
fluid which would be useful for flow 
visualization and LDA studies of complex flow 
fields. Mann and Tarbell (1990) questioned 
the use of aqueous polyacrylamide as a blood 
analog fluid because the solutions are highly 
elastic (Bird et al, 1987), displaying significant 
normal stresses which are not characteristic of 
human blood (Copley and King, 1975). To 
test this hypothesis, Mann and Tarbell (1990) 
prepared aqueous polyacrylamide solutions 
which accurately matched the shear-thinning 
power law behavior of blood in steady 
viscometric flows. They measured large 
normal stress values for these solutions in the 
same shear rate range in which Copley and 
King (1975) were unable to detect normal 
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stresses in human blood. Measurements of wall 
shear rate waveforms in oscillatory through a 
curved artery model were then conducted using 
flush-mounted hot-film anemometry, and 
significantly different wall shear rate values were 
measured for the aqueous polyacrylamide blood 
analog fluid and bovine blood under nearly 
identical sinusoidal flow conditions. In fact, at the 
inner wall of the curved artery (nearest the center 
of curvature) the wall shear rate waveforms were 
qualitatively different, and the peak values differed 
by a factor of four (see Fig 8 of Mann and Tarbell, 
1990). This study indicated that aqueous 
polyacrylamide is not a good blood analog fluid. 

In a subsequent study, Brookshier and 
Tarbell (1993) developed a transparent blood 
analog fluid using aqueous solutions of the natural 
polymer Xanthan gum and glycerin. These 
solutions matched both the viscous and elastic 
components of the complex viscosity of low, 
medium and high hematocrit blood in the shear 
rate range 1-1000 s"1 at 2Hz. 

The normal stresses in this blood analog 
fluid are relatively low, as demonstrated previously 
for aqueous Xanthan gum solutions without 
glycerin (Mann and Tarbell, 1990). Measurements 
of wall shear rate in pulsatile flow were conducted 
in straight and curved artery models using both the 
blood analog fluid and porcine blood to compare 
their flow behavior. Peak wall shear rates 
determined in these models under nearly identical 
flow conditions with the two fluids were not 
statistically different (p>0.05). These results 
indicate that aqueous Xanthan gum / glycerin 
solutions provide a good blood analog fluid for 
flow conditions characteristic of large arteries. 
Because the fluid is transparent and made from 
readily available and fairly inexpensive materials, it 
may be generally useful for model hemodynamic 
studies, particularly those employing optical 
techniques. 

In addition to providing a useful blood 
analog fluid for experimental investigations, these 
studies suggest that a purely viscous, shear 
thinning, rheological constitutive equation should 
provide a good model for theoretical studies of 
blood flow in arteries. Simple examples would be 
the two-parameter Casson model and the two-
parameter power law model. In fact, three-
dimensional pulsatile flow simulations in rigid 

arterial bifurcations using these rheological 
models have been reported recently (Perktold 
et al, 1991; Xu et al, 1992). By making 
comparisons with Newtonian flow simulations 
under the same flow conditions these studies 
conclude that the non-Newtonian effects on 
velocity fields are relatively small. This is 
consistent with the experimental studies of 
Brookshier and Tarbell (1991, 1993). 

ELASTIC WALL MOTION INFLUENCE 

Blood vessel walls are elastic, and the diameter 
of large arteries can vary by ±5 percent over 
the cardiac cycle (McDonald, 1974). 
Traditional interest in elastic vessels has 
focused on the problem of propagation of 
pressure and flow pulses in the cardiovascular 
system (Noordergraff, 1969). Less attention 
has been paid to the influence of wall motion 
on the local flow field at a particular axial 
position in an artery (Ling and Atabek, 1972), 
and the potential influence of wave 
propagation / reflection on local flow fields 
seems to have been clearly recognized only 
recently (Klanchar et al, 1990). 

Wang and Tarbell (1992, 1994) 
developed a nonlinear analysis of flow in a 
straight, elastic tube (nonlinear Womersley 
problem) accounting for convective accelera
tion and drawing attention to the effects of 
wave reflection which alters the temporal 
phase relation between the pressure and flow 
waves. They modeled blood flow using a 
homogeneous, incompressible, Newtonian fluid 
in an isotropic, thin-walled elastic tube with 
longitudinal constraint. The latter assumption 
is consistent with observations that longitudinal 
motion of arteries is highly restricted because 
the vessel is tethered to the surrounding tissue 
(McDonald, 1974). The principal motion of 
the vessel wall is radial. The equations were 
analyzed by seeking perturbation solutions in 
the radius variation parameter, e (= (Rmax-R0) 
/ R0), where Rmax and R0 are the maximum 
and mean radii of the tube over a pulse cycle, 
respectively. The case of sinusoidal flow was 
considered in the perturbation solutions of 
Wang and Tarbell (1992, 1994), while 
numerical solutions for multi-harmonic 
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physiological flows were presented by Dutta et al 
(1992). 

An interesting feature of the perturbation 
solutions is that the velocity field at a particular 
axial position along the tube (z) can be determined 
by knowing only the flow rate and radius variation 
waveforms at that position without a detailed 
description of the upstream and downstream 
boundary conditions. This "local flow", concept had 
been suggested earlier by Ling and Atabek (1972) 
without theoretical justification. The local flow 
idea is extremely important in cardiovascular flow 
modeling because one can avoid the complex axial 
boundary conditions associated with the branching 
architecture of the vascular tree. By measuring 
the flow and radius waveforms locally, it is possible 
to predict the local shear stress, pressure gradient 
and other flow features. Local flow results can be 
found in Wang and Tarbell (1992, 1994). 

The mean values of the shear stress and 
pressure gradient are affected by vessel wall 
motion to a greater degree than the amplitudes. 
The mean wall shear stress induced by vessel wall 

motion, x, ( = T - T 0 , where T is the time-averaged 
wall shear stress and -c0 is the Poiseuille value 
given by eqn 2 with Q0 and R0 denoting the mean 
flow rate and vessel radius), is given by 

T I / T O = 
<xe Q, 

Q, 0) 

(a,4>) (3) 

In eqn 3, Qj is the amplitude of the sinusoidal 
flow rate oscillation and tm is a function of the 
phase angle between the pressure and flow 
oscillations (4>) and the unsteadiness (a). tm is of 
order of magnitude 1 and at high a is proportional 
to cos(-<J>+45°). The mean pressure gradient 

induced by vessel wall motion, APjp A"P-AP0, 

where AP is the time-averaged pressure drop and 
AP0 is the Poiseuille value), is given by 

APJ/APQ 

2 a e Q, 

Q, 0) 

A P m ( M , ) <4> 

w h e r e A P m is a funct ion having o r d e r of m a g n i t u d e 
1 which is p r o p o r t i o n a l to sin(-<J>) at high a. 

Equations (3) and (4) indicate that the 
induced mean shear stress and pressure gradient 
are proportional to the unsteadiness (a), the 
diameter variation (e) and the pulsatility (Qj/Q0). 

These quantities are highest in the aorta near 
the heart. To obtain a sense of the magnitude 
of the induced quantities, consider a typical 
aortic flow case: a = 20, e = .05 and QJ/QQ = 
3. For these parameters, the magnitude of 
T/TQ is 0.375 and the magnitude of APr/AP0 is 
15. Clearly, the induced shear stress is 
significant and the induced pressure gradient is 
dominant. 

It is also clear that the phase angle (<j>) 
has an important influence. At high ot and a 
normal physiologic phase angle between the 
first harmonic of the pressure and flow pulses 
of -45°, the induced pressure gradient is 
negative (opposite the sign of the Poiseuille 
pressure gradient). This is consistent with 
physiological flow simulations in the aorta 
which indicate that the mean pressure actually 
rises in the direction of flow (Dutta et al 
1992). It is interesting to note that a 
vasoactive drug such as sodium nitroprusside 
can increase 4> to 0° and thus reduce the 
induced pressure gradient nearly to zero. It 
should also be noted that the sign of the 
induced wall shear stress changes in the 
physiologic range at about 4> = -45°. 

The effects of vessel wall motion on 
fluid mechanics in complex arterial geometries 
such as curves and branches are not well 
understood at present. A study by Duncan et 
al (1990) compared wall shear rate 
measurements in rigid and compliant models of 
a human aortic bifurcation under nearly 
identical flow conditions. They observed that 
compliance reduced shear rates at the outer 
walls, while at the walls of the flow divider the 
shear rate was increased. The deviations in 
shear rate between rigid and compliant models 
at different sites varied from 12% to 124%. 
However, this study did not use physiologic 
phase angles and thus there is still uncertainty 
as to the magnitude of the effects in a true 
physiologic simulation. 

It must also be remembered that the 
parameters a, e, (VQn and <f> which are so 
influential in the straight tube theory, vary 
widely throughout the circulation, depend on 
the age and health of individuals, and can be 
influenced by exercise, vasoactive drugs and 
environmental factors. Thus it seems that 
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further' studies of the influence of vessel wall 
motion on arterial fluid mechanics would be 
fruitful. 
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