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Abstract. We present an overview of Clousot, our current tool to stati-
cally check CodeContracts. CodeContracts enable a compiler and language-
independent specification of Contracts (precondition, postconditions and
object invariants).
Clousot checks every method in isolation using an assume/guarantee rea-
soning: For each method under analysis Clousot assumes its precondition
and asserts the postcondition. For each invoked method, Clousot asserts
its precondition and assumes the postcondition. Clousot also checks the
absence of common runtime errors, such as null-pointer errors, buffer or
array overruns, divisions by zero, as well as less common ones such as
checked integer overflows or floating point precision mismatches in com-
parisons. At the core of Clousot there is an abstract interpretation engine
which infers program facts. Facts are used to discharge the assertions.
The use of abstract interpretation (vs usual weakest precondition-based
checkers) has two main advantages: (i) the checker automatically infers
loop invariants letting the user focus only on boundary specifications;
(ii) the checker is deterministic in its behavior (which abstractly mim-
ics the flow of the program) and it can be tuned for precision and cost.
Clousot embodies other techniques, such as iterative domain refinement,
goal-directed backward propagation, precondition and postcondition in-
ference, and message prioritization.

1 Introduction

A limiting factor to the adoption of formal methods in everyday programming
practice is that tools do not integrate well into the existing programming work-
flow. Often, the price programmers have to pay to enjoy the benefits of formal
methods include the use of non-mainstream languages or non-standard compil-
ers.

The CodeContracts project [15] at Microsoft Research aims at bridging the
gap between practice and formal specification and verification using the princi-
ple of least interference in the programmer’s existing workflow. The main insight
of CodeContracts is that program specifications can be authored as code [16].
Contracts take the form of method calls to a standard library. Therefore Code-
Contracts enable the programmer to write down specifications as Boolean ex-
pressions in their favorite .NET language (C#, F#, VB . . . ). This has several
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advantages: the semantics of contracts is given by the IL produced by the com-
piler, no compiler modification is required, contracts are serialized and persisted
as code (no need for separate parsing, type-checking . . . ), all the IDE support
(intellisense, code refactoring . . . ) the programmer is used to is automatically
leveraged.

CodeContracts provide a standard and uniform way to describe contracts
which can then be consumed by several tools. At Microsoft Research, we have
developed tools to automatically generate the documentation (ccdoc), to perform
runtime checking (ccrewrite) and to perform static checking (cccheck, internally
called Clousot). The tools are available for download at

http : //msdn.microsoft.com/es− ar/devlabs/dd491992(en− us).aspx

A main difference of our static contract checker, with respect to similar and
existing ones is that it is based on abstract interpretation [9] instead of solely
relying on a theorem prover (automatic [19, 2, 18] or semiautomatic [3]). The
use of abstract interpretation allows the checker to focus on some properties
of interest, as for instance non-nullness, linear arithmetic or array invariants
while forgetting more complex or unusual ones such as existentially quantified
or arbitrarily universally quantified properties. An abstract interpretation-based
static checker has the advantage of being more automatic and tunable than
theorem prover-based ones. For instance, it can automatically compute loop
invariants, which frees the programmer from the burden of specifying (often
self-evident) loop invariants. The built-in abstract domains are optimized for
the properties of interest, so that the precision/cost ratio can be finely set.
Furthermore, the analysis is deterministic, in that it does not depend on internals
of theorem provers such as random seeding, quantifier instantiation, or matching
loops.

2 CodeContracts by Example

The class in Fig. 1 in an example of a C# class annotated with CodeContracts
specifications. Contracts are defined by means of calls to static methods of a
Contract class, part of .NET since v4.0. The class implements a simple stack of
non-null objects. Externally, one can create a stack, can push or pop elements,
can inquire about the number of stack elements and whether the stack is empty
or not. Internally, the stack is backed-up by two fields: a growing array of objects
containing the stack elements and a pointer to the next free position in the stack.

As a programmer, one would like to express some simple properties about
those fields. The first property is that the array is never null and that the pointer
can never be negative. Furthermore, the stack pointer can never be larger than
the array length (it can be equal when the stack is full). Finally, all the elements
in the interval a[0] . . . a[nextFree− 1] should be not-null.



public class NonNullStack<T> where T : class

{

private T[] arr;

private int nextFree;

[ContractInvariantMethod] /* Define the object invariant */

void ObjectInvariant()

{

Contract.Invariant(arr !=null);

Contract.Invariant(nextFree >= 0);

Contract.Invariant(nextFree <= arr.Length);

Contract.Invariant(Contract.ForAll(0, nextFree, i => arr[i] != null));

}

public NonNullStack(int len)

{

Contract.Requires(len >= 0); /* Method precondition */

this.arr = new T[len];

this.nextFree = 0;

}

public void Push(T x)

{

Contract.Requires(x != null);

if (nextFree == arr.Length)

{

var newArr = new T[arr.Length * 2]; /* bug here */

for (int i = 0; i < nextFree; i++) newArr[i] = arr[i];

arr = newArr;

}

this.arr[nextFree++] = x;

}

public T Pop()

{

Contract.Requires(!this.IsEmpty);

Contract.Ensures(Contract.Result<T>() != null); /* Method postcondition */

return this.arr[--nextFree];

}

public bool IsEmpty { get { return this.nextFree == 0; } }

public int Count { get { return this.nextFree; } }

}

Fig. 1. A (buggy) implementation of a stack of non-null values annotated with Code-
Contracts. Contract.Requires specifies the precondition, Contract.Ensures specify the
postcondition, Contract.Result denotes the return value (not expressible in C#). The
attribute ContractInvariantMethod tags the method containing the object invariant
(specified with the Contract.Invariant).



2.1 Specification

The formal specification with CodeContracts of those invariants is given by the
method ObjectInvariant if Fig. 1. CodeContracts require the object invari-
ant to be specified in a void method annotated with the attribute Contract-

InvariantMethod. The object invariant method body can only contain calls
to Contract.Invariant, which specify the object invariant. Valid conditions for
contracts are language expressions, including those containing method calls (pro-
vided the callee is marked with the [Pure] attribute) augmented with dummy
methods to specify limited universal (Contract.ForAll) and existential quan-
tification (Contract.Exists).

Preconditions are expressed via Contract.Requires. In the example, the
precondition of the NonNullStack constructor requires the caller to pass a non-
negative initial size for the stack.

Postconditions are expressed via Contract.Ensures. In the example, the
postcondition of the method Pop ensures that the returned value is not-null.
The void method call Contract.Result 〈T〉() is used to denote the return value
of the method, which is not directly expressible in the source language.

CodeContracts, being simple method calls, are totally transparent to the
compiler, and thanks to the shared type system in .NET, also to the different
languages. Programmers can author Contracts in their favorite .NET language
(C#, VB, F# . . . ). The compiler compiles contracts to straight CIL (Common
Intermediate Language [14]). Our tool extracts the contracts from the CIL and
use them for multiple purposes: Documentation generation, Runtime checking
and Static checking (Clousot).

2.2 Static checking

Clousot analyzes every method in isolation, using the usual assume/guarantee
reasoning. The precondition of the method is turned into an assumption and
the postcondition into an assertion. For public methods, the object invariant is
assumed at the method entry and asserted at the exit point. For each method
call, its precondition is asserted, and the postcondition assumed.

From a user-perspective, Clousot makes the distinction between explicit and
implicit assertions (or proof obligations). Explicit proof obligations are those
provided by the user as specifications or as an explicit assertion. In the running
example, the object invariant and the postcondition of Pop are the assertions
to be proved. Implicit proof obligations are those defined by the CIL language
semantics, to avoid runtime errors such as null deference, index out of range for
arrays or overflows for checked arithmetic expressions, but also buffer overruns
which do not cause an exception to be thrown, but may compromise the stability
(and security) of the program. In the default configuration, Clousot only checks
the explicit proof obligations, to avoid overwhelming the user with too many
warning messages. At first, we want the user to focus on boundary specifications.
Once those are resolved (possibly going to zero warnings), the programmer can
(selectively) enable the checking of the implicit proof obligations.



The analysis proceeds by performing some abstract interpretations of the
method body, where all the contracts are turned into asserts or assumes. Clousot
contains abstract domains tailored to specific properties of interest, such as heap
location equalities, non-nullness, linear arithmetic, disjunctions and simple uni-
versally quantified facts. Those properties are enough to analyze and verify the
example of Fig. 1.

Static contract checking To prove the object invariant for NonNullStack, one
must be able to track nonnullness (to prove that arr! =null), linear arithmetic
relationships (to prove that 0 ≤ nextFree ≤ arr.Length) and quantified facts
(to prove that ∀i ∈ [0, arr.Length).arr[i]! =null). The most interesting case is
the implementation of Push. First it checks if the backing array is full. If it is,
it allocates an array twice as large and copies all the original elements into it.
Finally it updates the array with x and increments the stack pointer.

The nonnull analysis infers that in both if-branches arr ! = null, so it con-
cludes that the first conjunct of the invariant is satisfied.

The numerical analysis infers in one case (array full) that 0 ≤ nextFree ≤
arr.Length and in the other that 0 ≤ nextFree < arr.Length, so that 0 ≤
nextFree ≤ arr.Length holds before the array store. The method exit point is
reached only if the store was successful, i.e., the index was inbounds, so that
the abstract element can be refined to 0 ≤ nextFree < arr.Length, and hence
prove the other two conjuncts of the object invariant.

The universally quantified component of the object invariant is a little bit
trickier. We know that the elements arr[0] . . . arr[nextFree− 1] are not null
(from the object invariant), and that the element to be pushed is not null (from
the precondition). When there is still space, we can easily conclude that the el-
ements arr[0] . . . arr[nextFree− 1], arr[nextFree] are all not null. When there
is no more space, a new array is allocated and all the elements are copied into it.
Proving that newArr[0] . . . newArr[nextFree− 1] are all not null requires infer-
ring the quantified loop invariant ∀j ∈ [0, i]. arr[j]! =null. In Clousot we have
new abstract domains to infer such invariants efficiently (Sect. 5.4).

Static runtime-error checking Once all the boundary contracts are proved,
the user can opt-in to prove the absence of common runtime errors in the imple-
mentations. For instance, the user can turn on the non-null and array bounds
checking. Then every time a field, an array, and in general a reference is ac-
cessed, Clousot will try to prove that such a reference is not null. In our exam-
ple, Clousot will prove the absence of null references in the class. As for array
bounds checking, every time an array is created, read or written, Clousot will
try to prove that the access is in-bounds. For instance for an array store a[exp]
Clousot will emit the condition 0 ≤ exp (underflow) and exp < a.Length (over-
flow). In our example the most interesting case is Push. When the stack is full,
then a new array is allocated and all the elements are copied into it. To prove
the array accesses correct, Clousot infers the loop invariant 0 ≤ i ≤ nextFree,
which combined with the guard nextFree == arr.Length, the array creation



postcondition newArr.Length = 2 ∗ arr.Length and the loop guard, allows prov-
ing the safety of the newArr store and arr read inside the loop. At the end
of the loop, one only knows that 0 ≤ nextFree ≤ newArr.Length, which is
not enough to prove the safety of the next store instruction. In fact, when
a.Length = 0, then 0 = nextFree = newArr.Length and the store is in-
deed causing an overrun. The programmer can fix it by changing the alloca-
tion expression to arr.Length ∗ 2 + 1, in which case Clousot will discover that
nextFree < newArr.Length, and hence validating the store.

The programmer can be more picky, and may want to prove more things
about the program. He/she can turn on the arithmetic obligations switch in
Clousot to check for common arithmetic errors such as division by zero or the
overflow of checked expressions. In the particular example Clousot discovers that
the array allocation newint[arr.Length ∗ 2 + 1] may cause an overflow excep-
tion. The expression arr.Length ∗ 2 + 1 may overflow to a negative Int32, that
when converted into a UInt32 will cause an overflow. Inserting an explicit check
against overflow will remove the warning.

Finally, Clousot helps to reduce the annotation burden by inferring some
“easy” postconditions. In the default settings, Clousot infers postconditions only
for: (i) properties and (ii) methods that return a non-null value. For the get-
ter IsEmpty in our example, Clousot infers the postcondition Contract.Result
〈bool〉() == (this.nextFree == 0). The postcondition is then propagated to
all the call sites, so that for instance one can prove the safety of the array load
in the Pop method.

3 The Analysis

Target language Clousot works at the bytecode level (CIL, Common Interme-
diate Language [14]). This is different from many other static analyzers, which
work at the source level. There are several advantages of working at the byte-
code level. First, the analysis is language independent: Clousot can analyze code
produced by any compiler generating CIL (C#, VB, F# . . . ). Second, the anal-
ysis leverages the compiler to give semantics to complex constructs. For instance
C# 3.0 introduced type inference for locals. The type inference algorithm is
quite complicated, but once the compiler inferred all the types, then it generates
straight IL. A source level analyzer for C# 3.0 would have to replicate the com-
piler type inference algorithm. A bytecode level analyzer can simply analyze the
compiled IL. Third, the analysis is stable among different versions of the same
language: languages change, CIL stays the same. For instance, C# 4.0 added
many features over C# 3.0, such as the dynamic keyword or named parameters.
A source level analyzer would have required (at least) a new parser to adapt
to the new syntax. To the bytecode level analyzer the upgrade is totally trans-
parent. Fourth, Contracts (serialized and persisted as CIL) do not need to be
decompiled to some high level description.

Bytecode analysis has drawbacks too [30]. The main one is that high-level
structure is lost, so that some additional analysis must be carried out to re-



cover some of the information. Furthermore classical static analysis refinement
techniques such as loop unrolling are harder to implement.

Phases Clousot has three main phases: Inference, Checking and Propagation.
During the inference phase, the methods of the assemblies to analyze are sorted,
so that callees are analyzed before their callers when possible. If there is a cyclic
dependency between methods, it is broken by picking one method in the chain.
For each method under analysis, its IL is read from the disk and its contracts
are extracted. Then the method is analyzed. By analysis we mean a fixpoint
computation with widening over a suitable abstract domain. First, aliasing is
resolved (under some optimistic hypotheses) and the method code is abstracted
into a scalar program. Then further analyses are run on the top of it to infer
facts on the program. In the checking phase, the (explicit and implicit) proof
obligations are collected, and the inferred facts are used to discharge them. If a
proof obligation cannot be discharged, then the analysis is refined. If the more
refined analysis fails, then a warning is reported to the user. Eventually, the
inferred facts are used to materialize method postconditions that are attached
to the method under analysis, and hence automatically propagated to the call
sites.

4 Basic Framework

The inference phase is in its turn divided into two phases: (i) the scalar program
construction and expression recovery; and (ii) the fact discovery. The first phase
takes care of building the control flow graph (CFG), extracting the contracts and
inserting them at the right spots, get rid of the stack, perform a heap analysis,
and reconstruct larger expressions lost during compilation. The output of this
phase is a program in scalar form. The second phase takes as input the scalar
program, and performs a series of value analyses to infer facts for each program
point in the method body.

Contract Extraction and CFG Construction The code to be analyzed is
factored into subroutines: one subroutine per method body, one subroutine for
a method’s preconditions, and one subroutine for a method’s postconditions.
The actual code to be analyzed is then formed by inserting calls to appropriate
contract subroutines in the method body. Additionally, at each method call-site,
we insert a call to the precondition subroutine of the called method just prior
to the actual call, and a call to the corresponding postcondition subroutine im-
mediately following the call. The actual contract calls to Contract.Requires or
Contract.Ensures turn into either assert or assume statements depending on
their context. Requires on entry of a method turn into assume and Ensures on
exit of a method turn into assert. Conversely, at call-sites, Requires turn into
assert, and Ensures turn into assume. Conditional branches are expanded into
non-deterministic branches with assume statements on the outgoing edges. In



this manner, all conditions are simply sequences of CIL instructions, no different
than ordinary method body code, and all assumptions are assume statements,
and all explicit proof-obligations are assert statements.

Heap Abstraction The heap is abstracted by a graph, the Heap-graph, which
maintains equalities between access paths (rooted in a local or a method param-
eter). Nodes in the graph denote symbolic values or heap locations, and edges
denote containment or field selection. The intuitive meaning is that if two paths
in the graph lead to the same node, then: (i) in the concrete executions they
always represent the same value; and (ii) this value is symbolically denoted by
the same symbolic value sv. The heap graph abstraction is optimistic in that it
makes certain assumptions about non-aliasing of data structures that may not be
correct in all executions. It is the only place in Clousot where such assumptions
are made. Namely we assume that memory locations not explicitly aliased by the
code under analysis are non-aliasing. This is clearly an optimistic assumption,
but works very well in practice. Second, we guess the set of heap locations that
are modified at call-sites (we do not require programmers to write heap modifi-
cation clauses). Our guesses are often conservative, but may be optimistic if our
non-aliasing assumptions are wrong. These assumptions allow us to compute a
value numbering for all values accessed by the code, including heap accessing ex-
pressions. We also introduce names for uninterpreted functions marked as [Pure]
by the programmer. This provides reasoning over abstract predicates. Finally,
abstracting the heap also removes old-expressions in postconditions that refer to
the state of an expression at the beginning of the method.

To compute the value numbering, we break the control flow of the analyzed
code into maximal tree fragments. The root of each tree fragment is a join point
(or the method entry point) and is connected by edges to predecessor leafs of
other tree fragments. The set of names used by the value numbering is unique
in each tree fragment. Edges connecting tree leafs to tree roots contain a set of
assignments effectively rebinding value names from one fragment to the names
of the next. The resulting code is in mostly passive form, where each instruction
simply relates a set of value names. The assignments on rebinding edges between
tree fragments provide a way to transform abstract domain knowledge prior to
the join from one set of value names to the next, so that the join can operate
on a common set of value names. The rebinding acts as a generalization of φ-
nodes. In contrast to φ-nodes which provide a join for each value separately, our
rebindings form a join for the entire state simultaneously, which is crucial to
maintain relational properties.

Example 1. Consider the code snippet in Fig. Fig. 2. The heap analysis captures
the fact that p.b and a.b are aliases starting from program point (∗).

The heap graph looks like the one in Fig. 2 (intermediate address nodes for
locals and fields have been omitted for brevity) where symbols on edges denote
the fields being selected, and sv1 is the symbolic value of a.b, and sv2 is the
symbolic value of a.b.x. ut



void HeapExample(bool b, A a, P p)

{

p.b = a.b; // (*)

if (b)

a.b.x = 12;

else

p.b.x = 4;

Contract.Assert(a.b.x >= 4);

}

a

b

  A
AA

AA
AA

A p

b

~~}}
}}

}}
}}

sv1

x

��
sv2

Fig. 2. A simple program and the corresponding Heap abstraction.

In the following we let sv(p) denote the symbolic value assigned by the heap
analysis to the path p.

Expression Reconstruction The expression reconstruction analysis allows
to recover some of the structure of Boolean and Arithmetic expressions that
may have been lost during the compilation. The analysis is similar in many
aspects to the symbolic abstract domain of [35]. A main difference is that the
depth of exploration for the expression reconstruction is dynamically chosen by
the particular analysis (essentially performing a widening). A comprehensive
discussion of the pros and the cons of a bytecode level analysis is in [30].

5 Fact Inference

5.1 NonNull Analysis

The NonNull analysis discovers those references which are definitely not-null or
definitely null. Given a reference r, the analysis assigns r a value in the flat
lattice ⊥ v N, NN v >, with N meaning that the reference is always null and NN

meaning that the reference is never null.

5.2 Numerical Analysis

The numerical analysis discovers ranges and linear arithmetic relationships be-
tween symbolic values. Those relationships are then used to discharge proof
obligations containing numerical conditions. The numerical analysis is a usual
forward fixpoint computation with widening [7] parametrized by a numerical
abstract domain.

Transfer functions corresponding to CIL instructions are parametrized by the
underlying abstract domain. For instance, when an array store ldelem a[exp] is
encountered, two numerical constraints are pushed to the numerical abstract
domain: 0 ≤ sv(exp) and sv(exp) < sv(a.Length).



Example 2. Let us consider the example in Fig. 2. A simple numerical domain
infers that sv2 = 12 at the end of the true branch of the conditional, and sv2 =
4 at the end of the false branch. As a consequence, at the exit point of the
conditional 4 ≤ sv2 ≤ 12, which is sufficient to prove the assertion. ut

Thresholds are used to improve the precision of the widening (as in [4]).
The thresholds are collected from the constants appearing in assumptions and
assertions in the method. The numerical analysis assumes the common case that
arithmetic expressions do not overflow, but it explicitly checks it in presence
of checked operations 1. Therefore our assumption can be easily checked by
instructing the compiler to threat all the operations as checked. Clousot will
then try to prove that they do not overflow.

Numerical abstract domains They abstract the values of numerical program
variables. In the literature many numerical abstract domains have been devel-
oped with different precision/cost tradeoffs. Intervals [9] infer properties in the
form x ∈ [a, b], where a, b ∈ Z ∪ {−∞,+∞}. Intervals are very efficient yet un-
suitable for symbolic reasoning as they do not keep track of relations among
different variables. At the opposite end of the precision spectrum Polyhedra [13]
capture arbitrary linear inequalities in the form of

∑
ai · xi ≤ b. Polyhedra are

very precise yet expensive (the worst case, easily attained in practice is expo-
nential). In between these two domains, other domains (weakly relational) have
been developed to tune the precision/cost ratio. Examples include Octagons [34]
(±x ± y ≤ b), TVPI [38] (a1x + a2y ≤ b) or Octahedra [6] (

∑
±xi ≤ b). In

Clousot, we first tried using some of these domains, but we found them unfit
for our purposes. For instance, Octagons introduce a non-negligible slowdown
(the complexity is cubic in the number of variables, with a large multiplicative
constant). A known technique to have Octagons scale up is bucketing (or pack-
ing), where buckets are restricted to a certain fixed number, and some weak
relations are kept by using pivot variables. We rejected buckets, as they make
the analysis result dependent on the order in which the heap analysis generates
the variables, introducing a degree of non-determinism in our analysis which we
prefer to avoid. We also tried Polyhedra, but early results turned out to be very
bad [17]. As a consequence we developed a series of new numerical abstract
domains, refining and combining existing ones. They are mainly validated by
empirical experimenting and tuning.

DisIntervals DisIntervals are a simple extensions of Intervals to a finite dis-
junction. Formally they are an abstraction of the disjunctive completion of In-
tervals [8]. Elements of Disintervals are normalized sequences of non-overlapping
intervals: [a0, b0], . . . [ai, bi], [ai+1, bi+1] . . . [an, bn] with the property that only a0
can be −∞; only bn can be +∞ and that ∀i ∈ [0, n − 1].bi < ai+1. Usual

1 The CIL instruction set has checked counterparts for all the arithmetic operations
which cause an exception to be thrown if an overflow has occurred.



operations on Intervals can be easily lifted to Disintervals (only the widen-
ing needs some care). DisIntervals present a very cheap way to represent non-
relational disjunction as well as common “negative” information. For instance x ∈
[−∞,−1], [1, 5], [50,+∞] is a compact representation for x 6= 0∧x 6= 6∧. . . x 6= 49.
This kind of information is needed for instance when dealing with enumerations.

In early versions of Clousot we had one abstract domain for Intervals and
one for simple disequalities. It turned out that combining the two into the Dis-
interval abstract domain improves the precision, simplifies the implementation,
and produces no observable slow-down in our tests and experiments.

Zones DisIntervals, or Intervals are non-relational domains which are useful in
many situations. However, in modular static analysis one needs to perform some
form of symbolic reasoning. The easiest one involves simple upper bounds.

Example 3. Let us consider the method AllZero in Fig. 3. (Dis)Intervals infer
the loop invariant sv(i) ∈ [0,+∞], which is enough to prove that the array store
will not cause an underflow. To prove no overflow will ever occur, one needs to
propagate the constraint sv(i) < sv(a.Length). To prove the assertion at the end
of the loop, one needs to infer the loop invariant sv(i) ≤ sv(a.Length), which
together with the loop exit condition is exactly the assertion. ut

void AllZero(int[] a)

{

Contract.Requires(a != null);

int i;

for(i = 0; i < a.Length; i++) a[i] = 0;

Contract.Assert(i == a.Length);

}

Fig. 3. Example requiring a numerical ab-
stract domain able to perform symbolical
reasoning.

In Clousot, WeakUpperBounds
capture simple strict upper-bounds
x < y0, . . . yi and WeakUp-
perBoundsEqual capture upper-
bounds x ≤ y0, . . . yi. They enable
very efficient implementations in
terms of maps. We call Disinter-
vals combined with WeakUpper-
Bounds and WeakUpperBound-
sEqual Pentagons [31]. Pentagons
are essentially a weak form of
the zones abstract domains [32].
The major difference is that
Pentagons avoid performing the

costly closure operation, relying instead on hint operators to keep acceptable
precision at join points [27].

Linear Equalities We use the abstract domain of linear equalities [24] to infer
and propagate relations in the form

∑
ai · xi = b. The linear equalities domain

enables a very efficient implementation in terms of sparse arrays which largely
compensates for the cubic cost. When combined with Pentagons, Linear Equal-
ities can produce very powerful analyses at a moderate cost.

Example 4. Let us consider the example in Fig. 4 (taken from [37]): At loop
exit, (Dis)intervals infer sv(i) ∈ [1,+∞], sv(j) ∈ [−∞,+∞], sv(x) ∈ [0, 0], sv(y) ∈



[−∞,+∞] and Linear Equalities infer sv(x)−sv(y) = sv(i)−sv(j). At the assertion
we can then conclude that sv(i) = sv(j). ut

void Foo(int i, int j)

{

var x = i, y = j;

if(x <= 0) return;

while(x > 0)

{ x--; y--; }

if(y == 0)

Contract.Assert(i == j);

}

Fig. 4. Example needing the
inference of the loop invari-
ant 〈x − y = i − j, x ∈
[0,+∞]〉, easily obtained by
combining Linear Equalities
and Intervals.

Please note that even if the assertion has a
shape that would fit other weak relational do-
mains, proving it require inferring a relation in-
volving four variables, which is out of reach of
those domains. This an extremely common case
that we found over and over.

Combination of domains Every single ab-
stract domain sketched above is weak by itself,
but their combination can produce very power-
ful analyses [10]. The basis of the combination
of numerical abstract domains in Clousot is the
reduced product [9]. Given two abstract domains
A1 and A2, the cartesian product A1×A2 is equiv-
alent to running the two analyses separately, so
that no precision gain is obtained by the com-
position (worse, in general it can slow down the
analysis). If the two domains are allowed to com-
municate, by either pulling or pushing informa-
tion, then the analysis precision can be dramati-
cally improved. The example of the previous sec-
tion is an example of pushing: By pushing the

information that sv(x) = 0 at the end of the loop, the abstract state for linear
equalities is refined to sv(x)− sv(y) = sv(i)− sv(j) ∧ sv(x) = 0. Please note that
linear equalities alone cannot infer that sv(x) = 0, as this is a consequence of
the loop invariant sv(x) ≥ 0, which is not a linear equality. Pulling is mainly
used during the fixpoint computation when transfer functions may explictly ask
other domains to refine some information, or if some relation holds. For instance
suppose that we have to evaluate the expression sv(u) − sv(w) in an interval
environment where sv(u) ∈ [0,+∞], sv(w) ∈ [0,+∞]. With no additional infor-
mation the result can be any Int32. Intervals can pull information from other
domains (oracles), for instance asking if sv(w) < sv(u). The oracle can return
four possible outcomes: >, meaning “I do not know”; ⊥ meaning this program
point is unreachable, so the evaluation simply returns ⊥; true so that the result
can be refined to [1,+∞]; false meaning that sv(w) ≥ sv(u) holds, so that the
result can be refined to [−∞, 0]. To avoid computing a fixpoint computation
among the different abstract domains at every single step of the analysis, the
domains are ordered according to a tree structure (as in [10]) where the most
precise yet expensive domains are at the root, and the less precise yet cheaper
are towards the leafs. Every domain is allowed to pull information from every
domain, but only higher-rank domains can push information to lower-rank ones.



void ArrayCopy(int[] input, int[] output, int index)

{

Contract.Requires(index >= 0);

Contract.Requires(output.Length - index >= input.Length);

for (var i = 0; i < input.Length; i++) output[i+index] = input[i];

}

Fig. 5. Simple example where fully fledged relational numerical domains are needed.

Subpolyhedra In the general setting of contract checking, arbitrary linear
inequalities are needed for effective symbolic reasoning. For instance in the ex-
ample in Fig. 5, one needs to infer the loop invariant 0 ≤ sv(i) + sv(index) ≤
sv(output.Length).

Using the classical Polyhedra turned out to be far too expensive [17]. We are
aware that many advances have been made to optimize them [1, 22], but we are
still skeptical that they can scale up to the needs of Clousot’s customers. Clas-
sical Polyhedra have a double representation for an abstract state: geometrical
(where the Polyhedra is expressed as a set of points and generators) and algebraic
(maintaining the tableau of equations defining the polyhedron). Some abstract
operations are very efficient in one form, some in another. Converting from one
form to its dual is very expensive (exponential) and it has been shown that it
cannot be done faster [25]. Hence we developed a new abstract domain, Supoly-
hedra, which is as expressive as Polyhedra, but which gives away some of the
inference power. The main, simple idea, is to split a linear inequality

∑
ai ·xi ≤ b

into an equality and an interval via a slack variable β:
∑
ai ·xi = β∧β ∈ [−∞, b].

Each of the two conjuncts is handled by a separate abstract domain, i.e., linear
equalities and intervals. There are two main challenges here. The first one is to
have a precise enough join, the pairwise join being simply to rough. The second
one is to have an effective reduction algorithm to get the tightest bounds on the
intervals. We have defined in [28] a join (and widening) operator which allow
fine tuning the two points above, de facto defining a family of abstract domains,
where the precision/cost ratio can be adjusted: more precise domains are ob-
tained by improving the hints [26] at join/widening points and the reduction
subroutine. In our tests Subpolyhedra scales to hundreds of variables, going well
beyond the current state of the art of Polyhedra implementations.

5.3 Floating point values

We have an implementation of Intervals supporting the IEEE 754 standard. We
have not yet extended this support to relational domains, as for instance [33, 5],
so that the amount of reasoning that can be done on floats is very limited. We
have an analysis to figure out possible precision mismatches in double compar-
isons caused by implicit conversions between 80 and 64 bits of precision. Such



private double balance;

public void Deposit(double amount)

{

Contract.Requires(amount >= 0.0);

Contract.Ensures(this.balance == Contract.OldValue(balance) + amount);

balance = balance + amount;

}

Fig. 6. Example showing problems induced by the extra-precision for doubles allowed
by the ECMA standard. The field balance is stored into a 64 bits memory location
whereas the result of balance + amount is stored into a 80 register.

conversions may introduce subtle bugs. This is best illustrated by the example
in Fig. 6.

One may expect the postcondition to trivially hold. However, using an au-
tomatic test generation tool as e.g. PEX [39] one can easily find counterexam-
ples to the postconditions! The ECMA standard [14] allows locals (including
parameters) to be passed with the full precision of the architecture, whereas
fields should always be truncated to 64 bit doubles. In an x86 architecture,
double registers are 80 bits long. As a consequence, amount is passed as an
80 bit value, the result of this.balance + amount is stored in a CPU register
(80 bits), but when written back to memory, it gets truncated to 64 bits. As
a consequence the postcondition may be violated at runtime for specific val-
ues of amount. Clousot tracks floating point types of a symbolic values accord-
ing to the flat lattice ⊥ v Float, CPUFloat v >, Float 6= CPUFloat. In the
example, Clousot infers balance + amount : CPUFloat and balance : Float,
and hence issues a warning for a possible precision mismatch. An explicit cast
forces the truncation: the correct postcondition is hence balance == (double)
(Contract.OldValue(balance)+amount).

5.4 Arrays and Collections

The abstract domains for scalar values are lifted to sequences (like arrays or
collections) via a parametric segmentation functor [12]. The functor automati-
cally and semantically divides (e.g.) arrays into sequences of consecutive non-
overlapping possibly empty segments. Segments are delimited by sets of bound-
ary expressions and abstracted uniformly. The overhead of the analysis is very
low (around 1% on large framework libraries). Once again we developed a new
(functor) abstract domain as existing solutions turned out either to require too
much extra-assistance from the user [23] or to be inherently not-scalable [20, 21].

Example 5. At the end of the for loop of the (incorrect version of the) method
Push, the array analysis associates the following two abstract elements to the

arrays:
arr 7→ {0}NN{sv(i), sv(nextFree), sv(arrLen)}?

newArr 7→ {0}NN{sv(i), sv(nextFree)}?N{sv(newArrLen)?}



stating that all the elements of newArr up to nextFree are not-null, but also
that sv(i) = sv(nextFree) (expressions in bounds are equal) and that it may be
the case 0 = sv(nextFree) = sv(newArrLen), in which case the newArr is empty
(? denotes the fact that successive segments may be equal). ut

Example 6. For the method AllZero of Fig. 3, at loop exit the analysis dis-
cover the invariant a 7→ {0}[0, 0]{sv(i), sv(a.Length)}? which compactly repre-

sents ∀j ∈ [0, a.Length).a[j] = 0 ∧ sv(i) = sv(a.Length) ∧ 0 ≤ sv(i).

6 Checking

Assertion Crawling The code of the method under analysis is crawled to col-
lect a set of proof obligations P. Proof obligations are either explicit or implicit.
Explicit proof obligations are either: (i) preconditions at call sites; (ii) explicit
assertions; or (iii) postcondition for the current method. Checking of explicit
proof obligations is always on. Implicit proof obligations are induced by the CIL
semantics. For a reference access r, a non null proof obligation r 6= null is emit-
ted. For an array creation with size exp, a proof obligation 0 ≤ exp is emitted.
For an array load or store with index exp, the two proof obligations 0 ≤ exp

and exp < svLen are emitted. Similarly for buffer accesses, divisions, negation of
minint, overflow checking and floating type mismatches. The checks for implicit
proof obligations (such as non-null dereferencing and array bound checks) can
be individually activated by the user. The rationale is to avoid drowning the user
with too many warnings and instead have him/her first focus on the contracts.

Direct Checking For each proof obligation 〈pc, c〉 ∈ P Clousot individually
asks each of the analyses if at program point pc the condition c holds. Each
analysis implements a specialized decision procedure (in the numerical and the
array analysis those specialized decision procedures are also invoked during the
fixpoint computation to refine the analysis itself). The analysis fetches the ab-
stract state at program point pc, and checks if it implies c. Fetching may cause
a re-run of a part of the analysis, as for performance and memory considerations
we only save abstract states at some specific program points (e.g. loop heads as
in [4]). There are four possible check outcomes: true, meaning that c holds for
all the possible executions reaching pc; false, meaning that there is no execution
reaching pc such that c holds; ⊥, meaning that the program point pc is un-
reached (dead code); and > meaning that the analysis does not have a definite
answer. Direct checking 〈pc, c〉 is aborted as soon as an outcome different from >
is reported. This approach may fail to report the most precise answer, produced
by the meet of all the analyses outcomes. We do so mainly for performance
reasons (projects typically contain tenths of thousands of proof obligations to
discharge).



string Nums(int a)

{

Contract.Requires(a > 0);

string s = null;

var i = 0

/* 1 */

for (; i < a; i++) { s += i.ToString(); /* 2 */}

/* 3 */

Contract.Assert(s != null);

return s;

}

Fig. 7. Example showing the combination of analyses via backward goal propagation.
The NonNull analysis discovers that s! = null at 2, and the Numerical analysis dis-
covers that the path 1 → 3 is unfeasible.

Domain Refinement If all the analyses had > as outcome, then Clousot refines
the analysis. One first way of refining the analysis is to re-analyze the method
body with a more precise abstract domain. Clousot implements an iterative
strategy in which first less precise abstract domains are used (e.g. the numerical
analysis instantiated with Pentagons) then moving to more precise yet expensive
domains. In the worst case, one may always resort to the most expensive domain
(e.g Subpolyhedra with all the hints on and the Simplex-based reduction [27]).
Empirically we noticed that refinement pays off since the number of cases where
one needs the most expensive domains is relatively small.

Goal directed backwards analysis If domain refinement is not good enough
to discharge a proof obligation, we propagate the condition backwards. Essen-
tially, the condition c is turned into an obligation for all the predecessor program
points using weakest preconditions. We attempt to use the abstract state at those
points to discharge the condition. This approach is good at handling disjunctive
invariants which our abstract domains typically do not represent precisely. E.g.,
an assert after a join point may not be provable due to loss of precision at the
join. However, the abstract states at the program points just prior to the join
may be strong enough to discharge the obligation. This backwards analysis dis-
charges an obligation if it can be discharged on all the paths leading to the
assertion. It thus acts as a form of on-demand trace partitioning [36]. Further-
more, it also provide: (i) another way of modularly combining different analyses,
as for instance one branch may be discharged by the non-null analysis and the
other by the numerical analysis (the common case for implication-like conditions
such as a == null || a.Length > 0); and (ii) to lazily perform loop unrolling.



Example 7. Let us consider the code in Fig.7. Intuitively the assertion holds
because the loop is executed at least once. At program point 3, the NonNull
analysis infers sv(s) = N t NN = >, and the numerical analysis infers sv(i) =
sv(a) ∧ sv(i) ∈ [1,+∞]. So the direct check cannot prove the assertion. The
condition is pushed back to the predecessor program points, 1 corresponding to
0 executions of the loop, and 2 corresponding to > 0 loop iterations. At 2, we
know that sv(s) = NN from the forward analysis, so this path can be discharged.
At 1, we know that sv(i) = 0, but sv(i) > 0 at 3 from the forward analysis,
hence a contradiction, so the path 1→ 3 is unfeasible, and the condition can be
discharged. ut

7 Contract Inference

To help the programmer get started with the CodeContracts, Clousot performs
some amount of inference, which is either suggested to the user as missing con-
tracts or silently propagated.

Precondition inference When a proof obligation cannot be discharged with
any of the methods sketched above, Clousot checks if all the variables appear-
ing in the condition: (i) existed in the pre-state of the method; and (ii) are
unmodified. In this case it suggests a possible precondition. For instance in the
example of Fig. 5, Clousot will suggest the two preconditions input! = null and
output! = null. The precondition is only suggested and not inferred as it may
be wrong. In the same example, suppose that the code

if(input == null) return;

was added before the loop, then Clousot would still have suggested output! = null

as precondition, but it would be incorrect, as output can perfectly be null when
input is null. We have a better and correct solution for the precondition infer-
ence problem [11], but have yet to implement it at the time of writing.

Postcondition inference Theoretically the postcondition inference problem
is simply the projection of the abstract state(s) at the method return point.
In practice one must also consider two facts: (i) avoid repeating postconditions
already provided by the user; and (ii) produce a minimal set of postconditions.
Our postcondition inference algorithm works as follows. First, ask all the analyses
to provide known facts at the method return point. Facts should be serialized
as Boolean expressions. Second, sort the Boolean expressions according to some
heuristic (e.g. equalities are more interesting than inequalities). Call the result S.
Third, create a product abstract state R abstracting the method postcondition.
Fourth, for each fact s ∈ S, check if it is implied by R. If it is not, output s as a
postcondition, and assume s in R. The algorithm produces a set of postconditions
which fulfills the two requirements above.



Readonly field invariant inference We have prototyped a static analysis to
infer object invariants on readonly fields based on [29].

8 Practical considerations

To make Clousot practical, we have engineered several solution to improve the
user experience.

Adaptive analysis, timeouts We spent a considerable amount of time profil-
ing and optimizing Clousot. However, there are corner cases in which a method
analysis can take too long. Single methods can present complex control flow with
a lot of join points (several thousands for a single method) or several nested loops
causing the fixpoint computation to converge too slowly, in particular with re-
lational domains. We have implemented an adaptive analysis, which tries to
figure out if the method to analyze is too complex, in which case it analyzes it
with cheaper abstract domains. Orthogonally, the fixpoint computation can be
aborted when a certain timeout is reached (by default 10 seconds).

Message prioritization Clousot has heuristics for sorting the warning mes-
sages, trying to report the more relevant ones first. The heuristics assign an initial
score IP to each warning depending on the proof obligation (P ∈ {Precondition,
Postcondition, Invariant, Assert, NonNullobligation . . . ). The initial score
is corrected with a reward ρ for the outcome (ρ(False) > ρ(⊥) > ρ(>) ≥ 1, and
a penalty δ on the variables in the condition (δ(Param) > δ(Field) > δ(Local) ≥
1). Intuitively, a warning on a condition with only locals (where all the infor-
mation should be known to Clousot) is more likely to be a bug than one on a
condition containing only references to parameters (for instance, the code may be
missing a precondition). Eventually, a proof obligation of type P , with condition
C and outcome O is prioritized according the formula IP ·ρ(O)/(

∑
v∈Vars(C) δ(v)).

Dealing with false positives There are two main reasons for which Clousot
reports a false warning: (i) it does not know some external fact (for instance
some third-party library methods returns a non-null value); (ii) it is incomplete
(as all the static analyses). The user can help Clousot by adding an explicit
assumption via Contract.Assume.

Clousot will simply believe the condition, and it will not try to check it
statically. The condition can be checked at runtime (it behaves as a normal
assertion). With the time, assumptions may grow very large in the codebase.
Clousot can be instructed to find duplicated assumptions (essentially Clousot
tries to prove the assumption, and if it succeeds reports it to the user, otherwise
it silently moves on).

Example 8. Let us consider the code snippet if Fig. 8, abstracting the common
case of an application using a third-party library without contracts (yet). With-
out any contract on GetSomeString, Clousot will issue a warning for a possible



var str = ThirdPartyLibrary.GetSomeString();

Contract.Assume(str != null);

/* Without the assumption, Clousot complains str may be null */

if(str.Length > 10) { ... }

Fig. 8. Example of using Assume to shut off a warning caused by a missing postcondi-
tion on third-party code.

null deference. The programmer, after reading the documentation, convinced
himself that the method will never return null, and hence decided to add the
assumption, hence documenting the fact that the warning has been reviewed,
and classified as a false warning. Clousot will then assume it, and it will not
issue the warning anymore. When the author of ThirdPartyLibrary releases a
new version of its library with contracts, then Clousot will inform the user that
the assumption is no longer needed. ut

If the assumption is not enough to shut off the warning, then the user can
mask it via the SuppressMessage attribute. This is normally the case when a
contract is far beyond what Clousot can understand (for instance it involves
several quantifiers). Furthermore, the user can focus the analysis on a particular
type or method via the ContractVerification attribute.

Visual Studio integration and Analysis Caching Clousot is fully inte-
grated into Visual Studio. In a normal run, it runs as a post-build step. Running
synchronously the whole analysis at every build may decrease the user experi-
ence. As a consequence we have implemented a caching mechanism to re-analyze
a small subset of the code that changed between two builds. Orthogonally, the
user can make the verification process more interactive by using the “analyze
this” feature, which runs the analysis only on the particular method or class
under the mouse pointer.

9 Conclusions

We presented an overview of Clousot, a static checked for CodeContracts. Clousot
analyzes annotated programs to infer facts (including loop invariants), and it uses
this information to discharge proof obligations. Unlike similar tools, it is based
on abstract interpretation and focused on specific properties of interest. Advan-
tages include more determinism, (tunable) performance and automation. Clousot
is distributed with the CodeContracts tools, available for downloading with aca-
demic license at http://research.microsoft.com/en-us/projects/contracts/.
So far, we have had positive feedback from our users. Still there is much work to
do, like increasing the expressivity of the heap analysis, adding abstract domains



for strings and bit vectors, improving the inter-method inference, and facilitating
the annotation process of legacy codebases.
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Rival. Combination of abstractions in the astrée static analyzer. In ASIAN’06.

11. P. Cousot, R. Cousot, and F. Logozzo. Contract precondition inference from inter-
mittent assertions on collections. Technical Report MSR-TR-2010-117, Microsoft
Research, 2010.

12. P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully
automatic and scalable array content analysis. Technical Report MSR-TR-2009-
194, Microsoft Research, 2010.

13. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In ACM POPL ’78.

14. ECMA. Standard ECMA-355, Common Language Infrastructure, June 2006.
15. M. Fähndrich, M. Barnett, and F. Logozzo. Code Contracts, March 2009.
16. M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract languages. In

ACM SAC’10, 2010.
17. P. Ferrara, F. Logozzo, and M. Fähndrich. Safer unsafe code in .NET. In OOP-

SLA’08. ACM Press, 2008.
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34. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,

19:31–100, 2006.
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