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reliability and small sample size). Taking into account the variability of sample alpha with an
interval estimator may lead to retaining reliable tests that would be otherwise rejected. Here,
the authors performed simulation studies to investigate the behavior of asymptotically
distribution-free (ADF) versus normal-theory interval estimators of coefficient alpha under
varied conditions. Normal-theory intervals were found to be less accurate when item skew-
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preferable, regardless of item skewness and kurtosis. A formula for computing ADF confi-
dence intervals for coefficient alpha for tests of any size is provided, along with its
implementation as an SAS macro.
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Arguably the most commonly used procedure to assess
the reliability of a questionnaire or test score is by means of
coefficient alpha (Hogan, Benjamin, & Brezinski, 2000). As
McDonald (1999) pointed out, this coefficient was first
proposed by Guttman (1945), with important contributions

by Cronbach (1951). Coefficient alpha is a population pa-
rameter and, thus, an unknown quantity. In applications, it is
typically estimated with the sample coefficient alpha, a
point estimator of the population coefficient alpha. As with
any point estimator, sample coefficient alpha is subject to
variability around the true parameter, particularly in small
samples. Thus, a better appraisal of the reliability of test
scores is obtained by using an interval estimator for coef-
ficient alpha. Duhachek and Iacobucci (2004; see also Du-
hachek, Coughlan, & Iacobucci, 2005, and Iacobucci &
Duhachek, 2003) made a compelling argument for the use
of an interval estimator, instead of a point estimator, for
coefficient alpha.

Methods for obtaining interval estimators for coefficient
alpha have a long history (see Duhachek & Iacobucci, 2004,
for an overview). The initial proposals for obtaining confi-
dence intervals for coefficient alpha were based on model as
well as distributional assumptions. Thus, if a particular
model held for the covariance matrix among the test items,
and the test items followed a particular distribution, then a
confidence interval for coefficient alpha could be obtained.
The sampling distribution for coefficient alpha was first
derived (independently) by Kristof (1963) and Feldt (1965),
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who assumed that the test items are strictly parallel (Lord &
Novick, 1968) and normally distributed. This model implies
that all the item variances are equal and all item covariances
are equal (i.e., a compound symmetric covariance struc-
ture). However, Barchard and Hakstian (1997) found that
confidence intervals for coefficient alpha obtained from
these results were not sufficiently accurate when model
assumptions were violated (i.e., the items were not strictly
parallel). As Duhachek and Iacobucci (2004) suggested, the
lack of robustness of the interval estimators for coefficient
alpha to violations of model assumptions have hindered the
widespread use of these intervals in applications.

A major breakthrough in interval estimation occurred
when van Zyl, Neudecker, and Nel (2000) derived the
asymptotic (i.e., large sample) distribution of sample coef-
ficient alpha without model assumptions.1 The normal-the-
ory (NT) interval estimator proposed by van Zyl et al. does
not require the assumption of compound symmetry. In par-
ticular, these authors assumed only that the items compris-
ing the test were normally distributed. Duhachek and Iaco-
bucci (2004) recently investigated the performance of the
confidence intervals for coefficient alpha using the results of
van Zyl et al. versus procedures proposed by Feldt (1965)
and those proposed by Hakstian and Whalen (1976) under
violations of the parallel-measurement model. They found
that the model-free, NT interval estimator proposed by van
Zyl et al. uniformly outperformed competing procedures
across all conditions.

However, the results of van Zyl et al. (2000) assume that
the items composing the test can be well approximated by a
normal distribution. In practice, tests are most often com-
posed of binary or Likert-type items for which the normal
distribution can be a poor approximation. Yuan and Bentler
(2002) showed that the NT-based confidence intervals for
coefficient alpha are asymptotically robust to violations of
the normality assumptions under some conditions. Unfortu-
nately, these conditions cannot be verified in applications.
So whenever the observed data are markedly nonnormal, the
researcher cannot verify if the necessary conditions put
forth by Yuan and Bentler are satisfied or not.

Recently, using the scales of the Hopkins Symptom
Checklist (HSCL; Derogatis, Lipman, Rickels, Uhlenhuth,
& Covi, 1974), Yuan, Guarnaccia, and Hayslip (2003) com-
pared the performance of the NT confidence intervals of van
Zyl et al. (2000) with a newly proposed model-free, asymp-
totically distribution-free (ADF) confidence interval and
with several confidence intervals based on bootstrapping.
Yuan et al. concluded that the ADF intervals were more
accurate for the Likert-type items of the HSCL than were
the NT intervals but less accurate than were the bootstrap-
ping procedures.

However, as Yuan et al. (2003, p. 7) pointed out, their
conclusions may not be generalized to other Likert-type
scales, because the item-distribution shapes, such as skew-

ness and kurtosis, of the HSCL subscales may not be shared
by other psychological inventories composed of Likert-type
scales. The purpose of the current study is to investigate by
means of a simulation study the behavior of the ADF
interval estimator for coefficient alpha, introduced by Yuan
et al., versus the NT interval estimator, proposed by van Zyl
et al. (2000), with Likert-type data.2 In so doing, we con-
sider conditions in which the Likert-type items show skew-
ness and kurtosis similar to those of normal variables but
also conditions of high skewness, typically found in re-
sponses to questionnaires measuring rare events, such as
employee drug usage, psychopathological behavior, and
adolescent deviant behaviors such as shoplifting (see also
Micceri, 1989). Computing the ADF confidence interval for
coefficient alpha can be difficult when the number of vari-
ables is large. Our work provides some simplifications to the
formulas that enable the computation of these confidence
intervals for tests of any size. Yuan et al. did not provide
these simplifications, and practical use of their equations
would be limited in the number of variables. Further, we
provide an SAS macro with the simplifications to compute
the NT and ADF confidence intervals for coefficient alpha.

Coefficient Alpha and the Reliability of a Test Score

Consider a test composed of p items, Y1, . . . , Yp, intended
to measure a single attribute. One of the most common tasks
in psychological research is to determine the reliability of
the test score X � Y1 � . . . � Yp, that is, the percentage of
variance of the test score that is due to the attribute of which
the items are indicators.

The most widely used procedure to assess the reliability
of a questionnaire or test score is by means of coefficient
alpha (Cronbach, 1951; Guttman, 1945). In the population
of respondents, coefficient alpha is

� �
p

p � 1 �1 �

�
i

�ii

�
ij

�ij�, (1)

where �
i
�ii denotes the sum of the p item variances in the

1 Only a positive definite covariance matrix is assumed. All
previous derivations, which assumed particular models (e.g., tau
equivalence) for the covariance matrix, can be treated as special
cases of their result.

2 Bootstrap confidence intervals are not considered in this study.
On the one hand, there are a variety of procedures that should be
investigated (for an overview, see Hartmann, 2005). On the other
hand, they are computationally more intensive. Most important,
differences between ADF and bootstrap confidence intervals in
Yuan et al.’s (2003) study are in all cases in the third decimal, a
negligible difference for practical purposes.
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population, and �
ij

�ij

�ij denotes the sum of the
p(p � 1)

2
unique

item covariances. In applications, a sample of N respondents
from the population is available, and a point estimator of the
population alpha given in Equation 1 can be obtained using
the sample coefficient alpha

�̂ �
p

p � 1 �1 �

�
i

sii

�
ij

sij�, (2)

where sij denotes the sample covariance between items i and
j, and sii denotes the sample variance of item i.

A necessary and sufficient condition for coefficient alpha
to equal the reliability of the test score is that the items are
true-score equivalent (i.e., essentially tau-equivalent items)
in the population (Lord & Novick, 1968, p. 50; McDonald,
1999, Chapter 6). A true-score equivalent model is a one-
factor model in which the factor loadings are equal for all
items. The model implies that the population covariances
are all equal, but the population variances need not be equal
for all items.

A special case of the true-score equivalent model is the
parallel-items model, in which, in addition to the assump-
tions of the true-score equivalent model, the unique vari-
ances of the error terms in the factor model are assumed to
be equal for all items. The parallel-items model results in a
population-covariance matrix with only two distinct param-
eters, a covariance common to all pairs of items and a
variance common to all items. This covariance structure is
commonly referred to as compound symmetry. In turn, a
special case of the parallel-items model is the strictly par-
allel-items model. In this model, in addition to the assump-
tions of parallel items, the item means are assumed to be
equal across items. When items are parallel or strictly par-
allel, coefficient alpha also equals the reliability of the test
score.

When the items do not conform to a true score-equiv-
alent model, coefficient alpha does not equal the reliabil-
ity of the test score. For instance, if the items conform to
a one-factor model with distinct factor loadings (i.e.,
congeneric items), then the reliability of the test score is
given by coefficient omega.3 Under a congeneric mea-
surement model, coefficient alpha underestimates the true
reliability. However, the difference between coefficient
alpha and coefficient omega is small (McDonald, 1999),
unless one of the factor loadings is very large (e.g., .9)
and all the other factor loadings are very small (e.g., .2;
Raykov, 1997). This condition is rarely encountered in
practical applications.

NT and ADF Interval Estimators for
Coefficient Alpha

In this section, we summarize the main results regarding
the large sample distribution of sample coefficient alpha.
Technical details can be found in the Appendix.

In large samples, �̂ is normally distributed with mean �
and variance �2 (see the Appendix). As a result, in large
samples, an x% confidence interval for the population co-
efficient alpha can be obtained as (LL; UL). The lower limit
of the interval, LL, is �̂ � zx/2�̂, and the upper limit, UL,
is �̂ � zx/2�̂, where �̂ is the square root of the estimated
large sample variance of sample alpha (i.e., its asymptotic
standard error), and zx/2 is the �1 � x/2)% quantile of a
standard normal distribution. Thus, for instance, zx/2 � 1.96
for a 95% confidence interval for alpha.

No distributional assumptions have been made so far. The
above results hold under NT assumptions (i.e., when the data
are assumed to be normal) but also under the ADF assumptions
set forth by Browne (1982, 1984).4 Under normality assump-
tions, �2 depends only on population variances and covari-
ances (bivariate moments), and as a result, it can be estimated
from the sample variances and covariances (see the Appendix).

In contrast, under ADF assumptions, �2 depends on fourth-
order moments (see Browne, 1982, 1984, for further details).
As a result, the estimation of �2 requires computing an estimate
of the asymptotic covariance matrix of the sample variances
and covariances. This matrix is of dimensions q 	 q, where

q �
p(p � 1)

2
, the number of unique variances and covari-

ances. One consideration when choosing between the ADF and
NT intervals is that the former are, in principle, computation-
ally more intensive, because a q 	 q matrix must be stored, and
the size of this matrix increases very rapidly as the number of
items increases. However, we show in the Appendix that an
estimate of the asymptotic variance of coefficient alpha under
ADF assumptions can be obtained without storing this large
matrix. This formula has been implemented in an SAS
macro, which is available as supplementary material online.
Detailed instructions on using the macro, along with a
sample dataset for testing the macro, are provided. The
macro is easy for applied researchers to use, and it also
provides the NT confidence interval. It can be used to
compute ADF confidence intervals for tests of any size, and
in our implementation, the computation is only slightly
more involved than that for the NT confidence intervals.

3 The formula for coefficient omega can be found in the Appendix.
4 ADF estimation replaces the normality assumption by the

milder assumption that eighth-order moments of the distribution of
the data are finite. This assumption is satisfied in the case of Likert-
type items, where the distribution of each item is multinomial. The
assumption ensures that the fourth-order sample moments are consis-
tent estimators of their population counterparts (Browne, 1984).
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Some Considerations in the Use of NT Versus ADF
Interval Estimators

Both the NT and ADF interval estimators are based on
large-sample theory. Hence, large samples will be needed
for either of the confidence intervals to be accurate. Because
larger samples are needed to accurately estimate the fourth-
order sample moments involved in the ADF confidence
intervals than the bivariate sample moments involved in the
NT confidence intervals, in principle, larger samples will be
needed to accurately estimate the ADF confidence intervals
compared with the NT confidence intervals. On the other
hand, because ADF confidence intervals are robust to non-
normality in large samples, we expect that when the test
items present high skewness, high positive kurtosis, or both,
the ADF confidence intervals will be more accurate than the
NT confidence intervals. In other words, we expect that
when the items are markedly nonnormal and large samples
are available, the ADF confidence intervals will be more
accurate than the NT confidence intervals. In contrast, we
expect that when the data approach normality and sample
size is small, the NT confidence intervals will be more
accurate than the ADF confidence intervals. However, it is
presently unknown under what conditions of sample size
and nonnormality the ADF confidence intervals are more
accurate than NT confidence intervals. This is investigated
in the following sections by means of simulation.

Two simulation studies were performed. In the first sim-
ulation, data were simulated so that population alpha
equaled the reliability of the test score. In the second sim-
ulation, data were simulated so that population alpha un-
derestimated the reliability of the test score. This occurs, for
instance, when the model underlying the items is a one-
factor model with unequal factor loadings (i.e., a congeneric
measurement model).

Previous researcher (e.g., Curran, West, & Finch, 1996;
Hu, Bentler, & Kano, 1992) has found that the ADF esti-
mator performs poorly in confirmatory factor-analysis mod-
els with small sample sizes. In fact, they have recommended
sample sizes over 1,000 for ADF estimation. However, our
use of ADF theory differs from theirs in two key aspects.
First, there is only one parameter to be estimated in this
case, coefficient alpha. As in Yuan et al. (2003), we estimate
this parameter using sample coefficient alpha. Thus, we use
ADF theory only in the estimation of the standard error and
not in the point estimation of coefficient alpha. Hu et al.
(1992) and Curran et al. (1996) used ADF theory to estimate
both the parameters and standard errors. Second, there is
only one standard error to be computed here, the standard
error of coefficient alpha. These key differences between the
present usage of ADF theory and previous research on the
behavior of ADF theory in confirmatory factor analysis led
us to believe that much smaller sample sizes would be
needed than in previous studies.

A Monte Carlo Investigation of NT Versus ADF
Confidence Intervals When Population Alpha Equals

the Reliability of the Test

Most often, tests and questionnaires are composed of
Likert-type items, and coefficient alpha is estimated from
ordered categorical data. To increase the validity and gen-
eralizability of the study, we used ordinal data in the sim-
ulation study. The procedure used to generate the data was
similar to that of Muthén and Kaplan (1985, 1992). It
enabled us to generate ordered categorical data with known
population item skewness and kurtosis.

More specifically, the following sequence was used in the
simulation studies:

1. Choose a correlation matrix � and a set of thresh-
olds �.

2. Generate multivariate normal data with mean zero
and correlation matrix �.

3. Categorize the data using the set of thresholds �.

4. Compute the sample-covariance matrix among the
items, S, after categorization. Then, compute sample
coefficient alpha using Equation 2 and its NT and
ADF standard errors using Equations 5 and 7 (see the
Appendix). Also, compute NT and ADF confidence
intervals as described in the previous section.

5. Compute the true population-covariance matrix
among the items, 
, after categorization. Techni-
cal details on how to compute this matrix are given
in the Appendix.

6. Compute the population coefficient alpha via Equation
1, using �, the covariance matrix in the previous stage.

7. Determine if confidence intervals cover the true
alpha, underestimate it, or overestimate it.

In the first simulation study, all elements of � were equal,
as implied by a parallel-items model. Also, the same thresh-
olds were used for all items.5 These choices resulted in a
compound symmetric-population covariance matrix � (i.e.,
equal covariances and equal variances) for the ordered
categorical items (see the Appendix). In other words, � was
consistent with a parallel-items model.

Overall, we investigated 144 conditions. These were ob-
tained using a factorial design by crossing the following:

5 The use of a common set of thresholds for all items simplifies the
presentation of the findings, because all items have a common skewness
and kurtosis. Additional simulations were performed with unequal thresh-
olds, yielding results very similar to those reported in the article.

160 MAYDEU-OLIVARES, COFFMAN, AND HARTMANN



1. Four sample sizes (50, 100, 200, and 400 respon-
dents);

2. Two test lengths (5 and 20 items);

3. Three different values for the common correlation
in � (.16, .36, and .64; this is equivalent to assum-
ing a one-factor model for these correlations with
common factor loadings of .4, .6, and .8, respec-
tively); and

4. Six item types (three types consisted of items with
two categories, and three types consisted of items
with five categories) that varied in skewness
and/or kurtosis.

The sample sizes were chosen to be small to very large in
typical questionnaire-development applications. Also, in
our experience, 5 and 20 items are the typical shortest and
longest lengths for questionnaires measuring a single at-
tribute. Finally, we included items with typical small (.4) to
large (.8) factor loadings.

The item types used in the study, along with their popu-
lation skewness and kurtosis, are depicted in Figure 1.
Details on how to compute the population item skewness
and kurtosis are given in the Appendix. These item types
were chosen to be typical of a variety of applications. We
report results only for positive skewness, because the effect
was symmetric for positive and negative skewness. Items of
Types 1–3 consisted of only two categories. Type 1 items
had the highest skewness and kurtosis. The threshold was
chosen such that only 10% of the respondents endorsed the
items. Type 2 items were endorsed by 15% of the respon-
dents, resulting in smaller values of skewness and kurtosis.
Items of Types 1 and 2 are typical of applications in which
items are seldom endorsed. On the other hand, Type 3 items
were endorsed by 40% of the respondents. These items had
low skewness, and their kurtosis was smaller than that of a
standard normal distribution.6 Items of Types 4–6 consisted
of five categories. The skewness and kurtosis of Type 5
items closely matched those of a standard normal distribu-
tion. Type 4 items were also symmetric (skewness � 0);
however, the kurtosis was higher than that of a standard
normal distribution. These items can be found in applica-
tions in which the middle category reflects an undecided
position, and a large number of respondents choose this
middle category. Finally, Type 6 items showed a substantial
amount of skewness and kurtosis. For these items, the
thresholds were chosen so that the probability of endorsing
each category decreased as the category label increased.

For each of the 144 conditions, we obtained 1,000 repli-
cations. For each replication, we computed the sample co-
efficient alpha, the NT and ADF standard errors, and the NT
and ADF 95% confidence intervals. Then, for each condi-
tion, we computed (a) the relative bias of the point estimate

of coefficient alpha as bias��̂� �
mean�̂ � �

�
, (b) the

relative bias of the NT and ADF standard errors as

bias��̂� �
mean�̂ � std�̂

std�̂
, and (c) the coverage of the NT

and ADF 95% confidence intervals (i.e., the proportion of
estimated confidence intervals that contain the true popula-
tion alpha).

The accuracy of ADF versus NT confidence intervals was
assessed by their coverage. Coverage should be as close to
the nominal level (.95 in our study) as possible. Larger
coverage than the nominal level indicates that the estimated
confidence intervals are too wide; they overestimate the
variability of sample coefficient alpha. Smaller coverage
than the nominal level indicates that the estimated confi-
dence intervals are too narrow; they underestimate the vari-
ability of sample coefficient alpha.

Note that there are two different population correlations
within our framework: (a) the population correlations before
categorizing the data (i.e., the elements of �) and (b) the
population correlations after categorizing the data (i.e., the
correlations that can be obtained by dividing each covari-
ance in � by the square root of the product of the corre-
sponding diagonal elements of �). We refer to the former as
underlying correlations and to the latter as interitem popu-
lation correlations. Also note that in our factorial design,
probabilities of responding to item alternatives are manip-
ulated to yield different item types. Thus, skewness and
excess kurtosis are not independently manipulated. Rather,
the effects of skewness and kurtosis are confounded. Either
one can be used to illustrate the effect of departure from
normality on coverage rates for ADF and NT intervals. In
this simulation, coverage results are shown as a function of
skewness. In the second simulation, they are shown as a
function of excess kurtosis.

Table 1 summarizes the relationship between the average
interitem correlations in the population after categorization
of the data and the underlying correlation before categori-
zation. The average interitem correlation is the extent of
interrelatedness (i.e., internal consistency) among the items
(Cortina, 1993). There are three levels for the average
population interitem correlation, corresponding to the three
underlying correlations. Table 1 also summarizes the pop-
ulation alpha corresponding to the three levels of the aver-
age population interitem correlations. As may be seen in this
table, the population coefficient alpha used in our study

6 The skewness and kurtosis of a standard normal distribution
are 0 and 3, respectively. We subtracted 3 from the kurtosis values
so that 0 indicated no excess kurtosis, a positive value indicated
excess kurtosis greater than that of a normal distribution, and a
negative kurtosis value indicated excess kurtosis less than that of
a normal distribution.
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ranges from .25 to .97, and the population interitem corre-
lations range from .06 to .59. Thus, in the present study, we
consider a wide range of values for both the population
coefficient alpha and the population interitem correlations.

Empirical Behavior of Sample Coefficient Alpha:
Bias and Sampling Variability

To our knowledge, the behavior of the point estimate of
coefficient alpha when computed from ordered categorical
data under conditions of high skewness and kurtosis has never
been investigated. Consequently, we report results on the
bias and variability of sample alpha under these conditions.

The results for the bias of the point estimates of coeffi-
cient alpha are best depicted graphically as a function of the
true population alpha. The results for the 144 conditions

investigated are shown in Figure 2. Three trends are readily
apparent from Figure 2. First, bias increases with decreasing
true population alpha. Second, bias is consistently negative.
In other words, the point estimate of coefficient alpha con-
sistently underestimates the true population alpha. Third,
the variability of the bias increases with decreasing sample
size. For fixed sample size and true reliability, bias increases
with increased kurtosis and increased skewness. This is not
shown in the figure, for ease of presentation. Nevertheless,
the coefficient-alpha point estimates are remarkably robust
to skewness and kurtosis: Provided sample size is larger
than 100, relative bias is less than 5% whenever population
alpha is larger than .3.

Results on the variability of sample alpha are reported
graphically in Figure 3. This figure depicts the standard

Table 1
Relationship Between Underlying Polychoric Correlation (�), the Average Population Interitem
Correlation (��), and the Population Coefficient Alpha (�)

�

�� Population �

Level M Minimum Maximum M Minimum Maximum

.16 Low .11 .06 .15 .53 .25 .77

.36 Medium .25 .16 .33 .74 .49 .91

.64 High .48 .36 .59 .88 .73 .97

Figure 2. Relative bias of the coefficient-alpha point estimates as a function of the true population
alpha. A quadratic model has been fit to the points to model the relationship between relative bias
and true alpha by sample size. Bias increases with decreasing sample size and decreasing population
alpha.
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deviation of the point estimate of coefficient alpha as a
function of the true population alpha. As can be seen in this
figure, the variability of the point estimate of coefficient
alpha is the result of the true population coefficient alpha
and sample size. As the population coefficient alpha ap-
proaches 1.0, the variability of the point estimate of coef-
ficient alpha approaches zero. As the population coefficient
alpha becomes smaller, the variability of the point estimates
of coefficient alpha increases. The increase in variability is
larger when the sample size is small. An interval estimator
for coefficient alpha is most needed when the variability of
the point estimate of coefficient alpha is largest. In those
cases, a point estimator can be quite misleading. Figure 3
clearly suggests that an interval estimator is most useful
when sample size is small and the population coefficient
alpha is not large.

Do NT and ADF Standard Errors Accurately
Estimate the Variability of Coefficient Alpha?

The relative bias of the estimated standard errors for all
conditions investigated is reported in Tables 2 and 3. Re-
sults for NT standard errors are displayed in Table 2, and
results for ADF standard errors are displayed in Table 3.

As can be seen in Table 3, the ADF standard errors
seldom overestimate the variability of sample coefficient
alpha. When it does occur, the overestimation is small (at
most 3%). More generally, the ADF standard errors under-
estimate the variability of sample coefficient alpha. The bias
can be substantial (�30%), but on average it is small
(�5%). The largest amount of bias appears for the smallest

sample size considered. For sample sizes of 200 observa-
tions, relative bias is at most �9%.

NT standard errors (see Table 2) also occasionally over-
estimate the variability of sample coefficient alpha. As in
the case of ADF standard errors, the overestimation of NT
standard errors is small (at most 4%). More generally, the
NT standard errors underestimate the variability of sample
coefficient alpha. The underestimation can be very severe
(up to �55%). Overall, the average bias is unacceptably
large (�14%). Bias increases with increasing skewness, as
well as with an increasing average interitem correlation. For
the two most extreme skewness conditions, and the highest
level of average interitem correlation considered (.36–.59),
bias is at least �30%.

As can be seen by comparing Tables 2 and 3, of the 144
different conditions investigated, the NT standard errors
were more accurate than the ADF standard errors in 45
conditions (31.3% of the time). NT standard errors were
more accurate than ADF standard errors when skewness
was less than .5 (nearly symmetrical items) and the average
interitem correlation was low (.06–.15) or medium (.16–
.33). Even in these cases, the differences were very small.
The largest difference in favor of NT standard errors is 5%.
In contrast, in all remaining conditions (68.7% of the time),
the ADF standard errors were considerably more accurate
than NT standard errors. The average difference in favor of
ADF standard errors is 12%, with a maximum of 44%.

Accuracy of NT and ADF Interval Estimators

Figure 4 shows the coverage rates of NT and ADF con-
fidence intervals as a function of skewness. The coverage
rates of NT confidence intervals decrease dramatically as a
function of the combination of increasing skewness and in-
creasing average interitem correlations. The coverage rates can
be as low as .68 when items are severely skewed (Type 1
items) and the average interitem correlation is high (.36–.59).

Figure 4 also shows the coverage rates of ADF confidence
intervals as a function of item skewness by sample size. The
ADF confidence intervals behave much better than NT
confidence intervals. The effect of skewness on their cov-
erage is mild. The effect of sample size is more important.
For sample sizes of at least 200 observations, ADF coverage
rates are at least .91, regardless of item skewness. For a
sample size of 50, the smallest coverage rate is .82. The
maximum coverage rate is .96, as was also the case for NT
intervals.

Table 4 provides the average coverage for NT and ADF
95% confidence intervals at each level of sample size and
skewness. This table reveals that the average coverage of
ADF intervals is as good as or better than the average
coverage of NT intervals whenever item skewness is larger
than .5, regardless of sample size (i.e., sample size � 50).
Also, ADF intervals are uniformly more accurate than NT

Figure 3. Variability of the coefficient-alpha point estimates as a
function of the true population coefficient alpha by sample size.
Linear functions have been fit to the points to model the relation-
ship between the standard deviation of sample coefficient alpha
and the true population coefficient alpha.
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intervals with large samples (� 400; i.e., regardless of item
skewness). When sample size is smaller than 400 and item
skewness is smaller than .5, the behavior of both methods is
indistinguishable for all practical purposes. NT confidence
intervals are more accurate than ADF confidence intervals
only when the items are perfectly symmetric (skewness �
0) and sample size is 50. In summary, the empirical behav-
ior of ADF confidence intervals is better than that of the NT
confidence intervals.

A Monte Carlo Investigation of NT Versus ADF
Confidence Intervals When Population Coefficient
Alpha Underestimates the Reliability of the Test

When the population covariances are not equal, then
population coefficient alpha generally underestimates the

true reliability of a test score.7 As a result, on average,
sample coefficient alpha will also underestimate the true
reliability, and so should the NT and ADF confidence in-
tervals for coefficient alpha. Here, we investigate the em-
pirical behavior of these intervals under different condi-
tions. Using a factorial design, we crossed

1. Four sample sizes (50, 100, 400, and 1,000),

2. Three test lengths (7, 14, and 21 items), and

7 Coefficient alpha is a lower bound to the reliability of a test
score when (a) the items can be decomposed as Xi � Ti � Ei, with
Ti and Ei being uncorrelated, and (b) the covariance matrix of the
Eis is diagonal (Bentler, in press).

Table 2
Relative Bias of Normal-Theory Standard Errors

N No. variables

Skewness

2.667 1.960 0.980 0.408 0 0

Excess kurtosis

5.111 1.843 �0.200 �1.833 �0.500 0.878

Low ��

50 5 �.15 �.15 �.05 �.07 �.07 �.08
20 �.24 �.20 �.11 �.08 �.06 �.05

100 5 �.17 �.12 �.07 �.01 �.03 .01
20 �.24 �.20 �.09 .00 �.02 �.07

200 5 �.18 �.15 �.06 .01 �.03 .01
20 �.23 �.16 �.08 �.01 �.01 �.03

400 5 �.17 �.13 �.04 �.01 .04 .01
20 �.21 �.14 �.06 �.01 �.01 �.02

Medium ��

50 5 �.36 �.27 �.11 �.04 �.03 �.05
20 �.40 �.31 �.12 �.02 �.07 �.09

100 5 �.35 �.22 �.10 �.04 �.01 �.04
20 �.40 �.31 �.12 .01 �.01 �.05

200 5 �.33 �.25 �.11 �.03 .01 �.03
20 �.39 �.28 �.11 .00 �.01 �.04

400 5 �.31 �.22 �.08 �.01 .03 .02
20 �.36 �.26 �.10 .00 �.01 �.04

High ��

50 5 �.53 �.42 �.18 �.07 �.05 �.13
20 �.55 �.41 �.16 �.04 .02 �.13

100 5 �.46 �.35 �.13 �.06 .00 �.09
20 �.51 �.38 �.15 �.02 .01 �.10

200 5 �.45 �.34 �.13 �.08 �.01 �.07
20 �.46 �.34 �.14 �.05 .00 �.09

400 5 �.43 �.31 �.10 �.05 .02 �.04
20 �.45 �.34 �.14 �.05 .00 �.09

Note. �� � average population interitem correlation.
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3. The six item types used in the previous simulation
(three types consisted of items with two catego-
ries, and three types consisted of items with five
categories),

resulting in 72 conditions. We categorized the data using the
same thresholds as in our previous simulation. Thus, items
with the same probabilities, and therefore with the same
values for skewness and kurtosis, were used (see Figure 1).

We used the same procedure described in the previous
section except for two differences. First, in Step 1 we used
a correlation matrix � with a one-factor structure and factor
loadings of .3, .4, .5, .6, .7, .8, and .9. Thus, the data were
generated assuming a congeneric measurement model. For
the test length with 14 items, these loadings were assigned
to Items 1–7 and then repeated for Items 8–14. For the test

length with 21 items, these loadings were repeated once
again for Items 15–21. Second, Steps 6 and 7 consisted of
two parts, as we computed both the population coefficient
alpha and population reliability (in this case, population
alpha underestimates reliability). We then examined the
behavior of the ADF and NT confidence intervals with
respect to both population parameters.

Under the conditions of this simulation study, true reli-
ability is obtained using coefficient omega (see McDonald,
1999). Details on how the true reliabilities for each of the
experimental conditions can be computed are given in the
Appendix. Coefficient omega, 
, (i.e., true reliability)
ranges from .60 to .92. To obtain smaller true reliabilities,
we could have used fewer items and smaller factor loadings.

Also, for each condition, we computed (a) the absolute

Table 3
Relative Bias of Asymptotically Distribution-Free Standard Errors

N No. variables

Skewness

2.667 1.960 0.980 0.408 0 0

Excess kurtosis

5.111 1.843 �0.200 �1.833 �0.500 0.878

Low ��

50 5 �.16 �.14 �.07 �.08 �.10 �.13
20 �.19 �.17 �.13 �.12 �.10 �.09

100 5 �.12 �.08 �.06 �.02 �.04 �.01
20 �.13 �.12 �.08 �.03 �.04 �.09

200 5 �.07 �.08 �.04 .01 �.03 .00
20 �.07 �.05 �.05 �.03 �.03 �.04

400 5 �.04 �.03 .00 .00 .03 .00
20 �.02 �.01 �.02 �.02 �.02 �.03

Medium ��

50 5 �.26 �.17 �.08 �.04 �.06 �.09
20 �.25 �.18 �.10 �.06 �.11 �.13

100 5 �.16 �.05 �.05 �.03 �.03 �.05
20 �.17 �.13 �.07 �.01 �.05 �.06

200 5 �.08 �.05 �.04 �.02 �.01 �.03
20 �.09 �.05 �.04 �.02 �.03 �.04

400 5 �.02 .00 .00 .00 .02 .03
20 �.01 �.01 �.02 �.02 �.03 �.03

High ��

50 5 �.30 �.21 �.10 �.02 �.09 �.11
20 �.30 �.17 �.09 �.02 �.02 �.11

100 5 �.12 �.06 �.02 .00 �.03 �.05
20 �.16 �.09 �.05 �.01 �.03 �.06

200 5 �.06 �.03 �.01 �.02 �.03 �.02
20 �.04 �.01 �.03 �.03 �.03 �.03

400 5 �.01 .02 .02 .02 .00 .02
20 �.01 �.02 �.02 �.03 �.04 �.03

Note. �� � average population interitem correlation.
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bias of sample coefficient alpha in estimating the true reli-
ability as mean�̂ � 
, (b) the relative bias of sample
coefficient alpha in estimating the true reliability
mean�̂ � 




, (c) the proportion of estimated NT and ADF

95% confidence intervals that contain the true population
alpha (i.e., coverage of alpha), and (d) the proportion of
estimated NT and ADF 95% confidence intervals that

contain the true population reliability (i.e., coverage of
omega).

Empirical Behavior of Sample Coefficient Alpha: Bias

Under the conditions of this simulation study, the ab-
solute bias of population alpha ranged from �.01 to
�.02, with a median of �.01. Thus, the bias of popula-

Table 4
Average Coverage Rates for Normal-Theory (NT) and Asymptotically Distribution-Free (ADF)
95% Confidence Intervals at Each Level of Sample Size and Skewness, When Population
Coefficient Alpha Equals True Reliability

N Method

Skewness

0 0.41 0.98 1.96 2.67

50 ADF .92 .94 .92 .89 .86
NT .94 .94 .92 .85 .80

100 ADF .94 .94 .93 .92 .90
NT .94 .94 .92 .86 .80

200 ADF .94 .94 .94 .93 .93
NT .94 .94 .92 .86 .80

400 ADF .95 .95 .95 .95 .94
NT .94 .94 .93 .87 .81

Note. Coverage rates should be close to nominal rates (.95). Boldface type indicates the more accurate method
for each combination of sample size and skewness.

Figure 4. Proportion of times (coverage) that 95% confidence intervals (CIs) for alpha include
population reliability as a function of skewness. Data have been generated so that population alpha
equals reliability. Coverage rates should be close to nominal rates (95%). A quadratic model has
been fit to the points to model the relationship between coverage and skewness. The accuracy of
normal-theory (NT) CIs worsens as average interitem correlation gets smaller and skewness
increases. The accuracy of asymptotically distribution-free (ADF) CIs worsens as sample size
decreases and skewness increases. The accuracy of both CIs is similar for items with low skewness
(� �1�); for higher skewness, ADF CIs are more accurate than NT CIs, provided sample size � 100
observations.
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tion alpha is small, as would be expected in typical
applications in which a congeneric model holds (Mc-
Donald, 1999).

The same trends regarding the bias and variability of
sample alpha observed in the previous simulation were
found in this simulation. First, the bias of sample coefficient
alpha in estimating population reliability increases with de-
creasing population reliability. Second, bias is consistently
negative. In other words, the point estimate of coefficient alpha
consistently underestimates the true population reliability.
Third, the variability of the bias increases with decreasing
sample size. For fixed sample size and true reliability, bias
increases with increased kurtosis and increased skewness.

However, in this simulation, the magnitude of the bias is
larger. In the first simulation, when population coefficient
alpha equals reliability, the bias of sample alpha was neg-
ligible (relative bias less than 5%), provided that (a) sample
size was equal to or larger than 100 and (b) population
reliability was larger than .3. In contrast, when population
coefficient alpha underestimates the reliability of test
scores, relative bias is negligible, provided sample size is
larger than 100 only whenever population reliability is
larger than .6. This is because in this simulation sample,

alpha combines the effects of two sources of downward
bias. One source of downward bias is the bias of the true
population alpha. The second source of downward bias is
induced by using a small sample size.

The results of the two combined sources of downward
bias are displayed in Figure 5. In this figure, we have plotted
the absolute bias of sample alpha as a function of the true
population reliability by sample size. Because the absolute
bias of population alpha equals (to two significant digits) the
estimated bias of sample alpha when sample size is 1,000,
the points in this figure for sample size 1,000 are also the
absolute bias of population alpha. We see in this figure that
absolute bias of population alpha ranges from �.01 to �.02.
We also see in this figure that the underestimation does not
increase much when sample size is 400 or larger. However,
the underestimation increases substantially for sample size
100 if the population reliability is .6 or smaller.

Do NT and ADF Standard Errors Accurately
Estimate the Variability of Coefficient Alpha?

It is interesting to investigate how accurately NT and
ADF standard errors estimate the variability of sample alpha

Figure 5. Absolute bias of the coefficient-alpha point estimates as a function of the true population
reliability when population alpha underestimates true reliability. A linear model has been fit to the
points to model the relationship between bias and true reliability by sample size. Bias increases with
decreasing sample size and decreasing population reliability. The absolute bias of population alpha
equals the estimated bias of sample alpha (to two significant digits), when sample size is 1,000.
Therefore, the points for sample size 1,000 are also the absolute bias of population alpha.
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when population alpha is a biased estimator of reliability.
The mean standard errors versus the standard deviations of
sample alpha for each of the conditions investigated are
shown separately for NT and ADF in Figure 6.

Ideally, for every condition, the mean of the standard
errors should be equal to the standard deviation of sample
alpha. This ideal situation has been plotted along the diag-
onal of the scatterplot. Points on the diagonal or very close
to the diagonal indicate that the standard error (either NT or
ADF) accurately estimates the variability of sample alpha.
Points below the line indicate underestimation of the vari-
ability of sample alpha (leading to confidence intervals that
are too narrow). Points above the line indicate overestima-
tion of the variability of sample alpha (leading to confidence
intervals that are too wide). As can be seen in Figure 6,
neither NT nor ADF standard errors are too large. Also, the
accuracy of NT standard errors depends on the excess
kurtosis of the items, whereas the accuracy of ADF standard
errors depends on sample size. NT standard errors negligi-
bly underestimate the variability of alpha when excess kur-
tosis is less than 1. However, when excess kurtosis is larger
than 1, the underestimation of NT standard errors can no
longer be neglected, particularly as the variability of sample
alpha increases. On the other hand, Figure 6 shows that for
sample sizes greater than or equal to 400, ADF standard
errors are exactly on target. ADF standard errors underes-
timate the variability of sample alpha for smaller sample
sizes, but for sample sizes over 100 ADF standard errors are
more accurate than NT standard errors.

We next investigated how the bias of sample coefficient
alpha and the accuracy of its standard errors affect the
accuracy of the NT and ADF interval estimators.

Do NT and ADF Interval Estimators Accurately
Estimate Population Coefficient Alpha?

Figure 7 shows the proportion of times that 95% confi-
dence intervals for alpha include population alpha as a
function of kurtosis and sample size. Coverage rates should
be close to nominal rates (95%). For items with excess
kurtosis less than 1, the behavior of both estimators is
somewhat similar: Both estimators accurately estimate pop-
ulation coefficient alpha, with NT confidence intervals be-
ing slightly more accurate than ADF confidence intervals
when sample size is 50. However, for items with excess
kurtosis higher than 1, coverage rates of NT confidence
intervals decrease dramatically for increasing kurtosis, re-
gardless of sample size. On the other hand, ADF confidence
intervals remain accurate regardless of kurtosis, provided
that sample size is at least 400. As sample size decreases,
ADF intervals become increasingly more inaccurate. How-
ever, they maintain a coverage rate of at least 90% when
sample size is 100.

Table 5 provides the average coverage for NT and ADF
95% confidence intervals at each level of sample size and
item kurtosis. This table reveals that the average coverage of
ADF intervals is as good as or better than the average
coverage of NT intervals whenever sample size is 400. Even

Figure 6. Scatterplot of mean standard errors (SEs) versus standard deviation of sample coefficient
alpha. The mean SEs should be equal to the standard deviation of sample coefficient alpha. This is
indicated by the reference line in the diagonal of the graph. Points below the line indicate
underestimation of the variability of sample coefficient alpha. Normal-theory (NT) SEs underesti-
mate the variability of coefficient alpha when excess kurtosis � 1. Asymptotically distribution-free
(ADF) SEs underestimate the variability of coefficient alpha, when sample size � 100. Across levels
of kurtosis, ADF SEs are more accurate than NT SEs, provided sample size � 100.
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with sample sizes of 100, ADF confidence intervals are
preferable to NT intervals, because the NT intervals under-
estimate coefficient alpha when excess kurtosis is larger
than 1. Only with sample sizes of 50 do NT confidence
intervals consistently outperform ADF intervals when ex-
cess kurtosis is less than 1, and even in this situation, the
advantage of NT over ADF intervals is small.

In summary, ADF intervals are preferable to NT intervals.
They portray accurately the population alpha, even when
this underestimates true reliability, provided sample size is
at least 100. However, because population alpha underesti-

mates the true reliability, it is of interest to investigate the
extent to which ADF and NT confidence intervals are able
to capture true reliability.

Do NT and ADF Interval Estimators Accurately
Estimate Population Reliability?

Figure 8 shows the proportion of times (coverage) that
95% confidence intervals for coefficient alpha include the
true reliability of the test scores as a function of kurtosis and
sample size. For items with excess kurtosis less than 1, the

Table 5
Average Coverage of Population Coefficient Alpha for Normal-Theory (NT) and Asymptotically
Distribution-Free (ADF) 95% Confidence Intervals at Each Level of Sample Size and Kurtosis,
When Population Coefficient Alpha Underestimates True Reliability

N Method

Excess kurtosis

�1.83 �0.50 �0.20 0.88 1.84 5.11

50 ADF .94 .93 .93 .93 .90 .87
NT .95 .95 .94 .94 .87 .79

100 ADF .95 .94 .94 .94 .93 .90
NT .96 .95 .94 .94 .87 .79

400 ADF .95 .95 .95 .94 .95 .95
NT .96 .96 .94 .94 .87 .81

1000 ADF .96 .95 .95 .95 .95 .95
NT .97 .96 .94 .94 .88 .79

Note. Coverage rates should be close to nominal rates (.95). Boldface type indicates the more accurate method
for each combination of sample size and kurtosis.

Figure 7. Proportion of times (coverage) that 95% confidence intervals (CIs) for coefficient alpha
include population coefficient alpha as a function of kurtosis and sample size. Data have been
generated according to a congeneric model. Coverage rates should be close to nominal rates (95%).
A nonparametric procedure has been used to model the relationship between coverage and excess
kurtosis by sample size. The accuracy of both CIs is similar (and adequate) for items with low excess
kurtosis (� 1). For items with higher excess kurtosis, asymptotically distribution-free (ADF)
intervals are more accurate, particularly when sample size is greater than 100 observations.
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behavior of both estimators is somewhat similar. Confi-
dence intervals contain the true reliability only when sample
size is less than 400. For larger sample sizes, confidence
intervals for alpha increasingly miss true reliability.

For excess kurtosis larger than 1, the behavior of both
confidence intervals is different. NT confidence intervals
miss population reliability, and they do so with increasing
sample size. On the other hand, ADF intervals for popula-
tion alpha are reasonably accurate at including the true
population reliability (coverage over 90%), provided sam-
ple size is larger than 100. They are considerably more
accurate than NT intervals, even with a sample size of 50.

To understand these findings, one must notice that the
confidence intervals for coefficient alpha can be used to test
the null hypothesis that the population alpha equals a fixed
value; for instance, � � .60. In Figure 7, we examine
whether the confidence intervals for alpha include the pop-
ulation alpha. This is equivalent to examining the empirical
rejection rates at a (1 � .95) � 5% level of a statistic that
tests for each condition whether � � �0, where �0 is the
population alpha in that condition. In contrast, in Figure 8,
we examine whether the confidence intervals for alpha
include the population reliability, which is given by coeffi-
cient omega, say 
0. This is equivalent to examining the
empirical rejection rates at a 5% level of a statistic that tests
for each condition whether � � 
0, where 
0 is the popu-
lation reliability in that condition. However, in this simula-
tion, study population alpha is smaller than population re-

liability. Thus, the null hypothesis is false, and the coverage
rates shown in Figure 8 are equivalent to empirical power
rates.

Figure 8 shows that when items are close to being nor-
mally distributed, both confidence intervals have power to
distinguish population alpha from the true reliability, when
sample size is large. In other words, when sample size is
large and the items are close to being normally distributed,
both interval estimators will reject the null hypothesis that
population alpha equals the true population reliability. On
the other hand, when excess kurtosis is greater than 1, the
ADF confidence intervals, but not the NT confidence inter-
vals, will contain the true reliability. The ADF confidence
interval contains the true reliability in this case, because it
does not have enough power to distinguish population alpha
from true reliability, even with a sample size of 1,000.
However, the NT confidence intervals do not contain the
true reliability, because, as we show in Figure 7, they do not
contain alpha.

These findings are interesting. A confidence interval is
most useful when sample coefficient alpha underestimates
true reliability the most, which is when sample size is small.
It is needed the least when sample size is large (i.e., 1,000),
because in this case, sample alpha underestimates true reli-
ability the least. When sample size is small, the ADF
interval estimator may compensate for the bias of sample
alpha, because the rate with which it contains true reliability
is acceptable (over 90% for 95% confidence intervals).

Figure 8. Proportion of times (coverage) that 95% confidence intervals (CIs) for coefficient alpha
include population reliability as a function of kurtosis. Data have been generated according to a
congeneric model, and population coefficient alpha is smaller than population reliability. As a result,
coverage rates should be smaller than nominal rates (95%). A nonparametric procedure has been
used to model the relationship between coverage and excess kurtosis by sample size. The accuracy
of both CIs is similar for items with low excess kurtosis (� 1). For items with higher kurtosis,
asymptotically distribution-free (ADF) CIs are more accurate.
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However, when sample size is large and items are close to
being normally distributed, both the NT and ADF intervals
miss true reliability by, on average, the difference between
true reliability and population coefficient alpha. Under the
conditions of our simulation study, this difference is at most
.02.

Discussion

Coefficient alpha equals the reliability of the test score
when the items are tau-equivalent, that is, when they fit a
one-factor model with equal factor loadings. In applications,
this model seldom fits well. In this case, applied researchers
have two options: (a) Find a better-fitting model and use a
reliability estimate based on such model, or (b) use coeffi-
cient alpha.

If a good-fitting model can be found, the use of a model-
based reliability estimate is clearly the best option. For
instance, if a one-factor model is found to fit the data well,
then the reliability of the test score is given by coefficient
omega, and the applied researcher should employ this co-
efficient. Although this approach is preferable in principle,
there may be practical difficulties in implementing it. For
instance, if the best-fitting model is a hierarchical factor-
analysis model, it may not be straightforward to many
applied researchers to figure out how to compute a reliabil-
ity estimate on the basis of the estimated parameters of such
a model. Also, model-based reliability estimates depend on
the method used to estimate the model parameters. Thus, for
instance, different coefficient-omega estimates will be ob-
tained for the same dataset, depending on the method used
to estimate the model parameters: ADF, maximum likeli-
hood, unweighted least squares, and so on. There has not
been much research on which of these parameter-estimation
methods lead to the most accurate reliability estimate.

Perhaps the most common situation in applications is that
no good-fitting model can be found (i.e., the model is
rejected by the chi-square-test statistic). That is, the best-
fitting model has a nonnegligible amount of model misfit. In
this case, an applied researcher can still compute a model-
based reliability estimate on the basis of his or her best-
fitting model. Such a model-based reliability estimator will
be biased. The direction and magnitude of this bias will be
unknown, because it depends on the direction and magni-
tude of the discrepancy between the best-fitting model and
the unknown true model. When no good-fitting model can
be found, the use of coefficient alpha as an estimator of the
true reliability of the test score becomes very attractive for
two reasons. First, coefficient alpha is easy to compute.
Second, if the mild conditions discussed in Bentler (in
press) are satisfied, the direction of the bias of coefficient
alpha is known: It provides a conservative estimate of the
true reliability. These reasons explain the popularity of
alpha among applied researchers.

As with any other statistic, sample coefficient alpha is
subject to variability around its true parameter, in this case,
the population coefficient alpha. The variability of sample
coefficient alpha is a function of sample size and the true
population coefficient alpha. When the sample size is small
and the true population coefficient alpha is not large, the
sample-coefficient-alpha point estimate may provide a mis-
leading impression of the true population alpha and, hence,
of the reliability of the test score.

Furthermore, sample coefficient alpha is consistently bi-
ased downward. It is therefore more likely to yield a mis-
leading impression of poor reliability. The magnitude of the
bias is greatest precisely when the variability of sample
alpha is greatest (small population reliability and small
sample size). The magnitude is negligible when the model
assumptions underlying alpha are met (i.e., when coefficient
alpha equals the true reliability). However, as coefficient
alpha increasingly underestimates reliability, the magnitude
of the bias need not be negligible.

To take into account the variability of sample alpha, one
should use an interval estimate instead of a point estimate.
In this paper, we investigated the empirical performance of
two confidence-interval estimators for population alpha un-
der different conditions of skewness and kurtosis, as well as
sample size: (a) the confidence intervals proposed by van
Zyl et al. (2000), who assumed that items are normally
distributed (NT intervals), and (b) the confidence intervals
proposed by Yuan et al. (2003), on the basis of asymptotic
distribution-free assumptions (ADF intervals). Our results
suggest that when the model assumptions underlying alpha
are met, ADF intervals are preferred to NT intervals, pro-
vided sample size is larger than 100 observations. In this
case, the empirical coverage rate of the ADF confidence
intervals is acceptable (over .90 for 95% confidence inter-
vals), regardless of the skewness and kurtosis of the items.
Even with samples of size 50, the NT confidence intervals
outperform the ADF confidence intervals only when skew-
ness is zero.

We found similar results for the coverage of alpha when
we generated data in which coefficient alpha underestimates
true reliability. Also, our simulations revealed that the con-
fidence intervals for alpha may contain the true reliability.
In particular, we found that if the bias of population alpha is
small, as in typical applications in which a congeneric
measurement model holds, the ADF intervals contain true
reliability for items with excess kurtosis larger than 1. If
item excess kurtosis is smaller than 1 (i.e., close to being
normally distributed), ADF intervals also contain popula-
tion reliability, for samples smaller than 400. For larger
samples, the ADF intervals underestimate population reli-
ability slightly, because there is power to distinguish be-
tween true reliability and population alpha. For near nor-
mally distributed items, the behavior of NT intervals is
similar. However, for items with excess kurtosis larger than
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1, NT confidence intervals miss the true reliability of the
test, because they do not even contain coefficient alpha.

As with any other simulation study, our study is limited
by the specification of the conditions employed. For in-
stance, when generating congeneric items, population alpha
underestimated population reliability only slightly, by a
difference of between �.02 and �.01. This amount of
misspecification was chosen to be typical in applications
(McDonald, 1999). Further simulation studies are needed to
explore whether the robustness of the interval estimators for
coefficient alpha hold (i.e., whether they contain population
coefficient alpha) under alternative-model misspecification,
such as bifactor models. Also, as the bias of population
alpha increases, confidence intervals for alpha should not
include the population reliability. Finally, further research
should compare the symmetric confidence intervals em-
ployed here against asymmetric confidence intervals, be-
cause the upper limit of symmetric confidence intervals for
alpha may exceed the upper bound of 1 when sample alpha
is near 1.

Conclusions

Following Duhachek and Iacobucci (2004), we strongly
encourage researchers to report confidence intervals as well
as point estimates of coefficient alpha when evaluating the
reliability of a test score. Failing to do so may result in an
underestimation of the true population coefficient alpha of
the test score, leading to rejection of reliable tests. NT
confidence intervals can be safely used when items are
approximately normally distributed. Also, NT intervals can
be used with very small sample sizes, provided items are
approximately normally distributed. Duhachek and Iaco-
bucci reported that accurate NT confidence intervals can be
obtained with sample sizes as small as 30.

Because test and questionnaire items are usually ordered
categorical variables, they may show considerable skewness
and kurtosis, thereby violating the normality assumption.
Accurately estimating the standard errors without normality
assumptions requires larger samples, but our results indicate
that for sample sizes over 100, the ADF confidence intervals
provide an accurate perspective on population alpha. In fact,
for sample sizes over 100, they are definitely preferred to
NT confidence intervals if the items show skewness over 1
or excess kurtosis over 1. Also, when item responses greatly
depart from normality (as in questionnaires measuring rare
events), the difference between the NT and ADF intervals
can be substantial.
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Appendix

Technical Details

Computation of the Normal-Theory (NT) and
Asymptotically Distribution-Free (ADF) Standard

Errors of Sample Alpha

In matrix notation, population alpha is � �
p

p � 1

� �1 �
tr���

1��1�, where � is the covariance matrix of the

items in the population, tr() denotes the trace operator, and 1 is

a p 	 1 vector of ones. Sample alpha is �̂ �
p

p � 1

� �1 �
tr(S)

1�S1�, where S denotes the sample covariance

matrix.
Let s � vecs(S), and let � � vecs(�), where vecs() is an

operator that takes the elements of a symmetric matrix on or
below the diagonal and stacks them onto a column vector.
Asymptotically (i.e., in large samples), the vector �N s is
normally distributed with mean � and covariance matrix � of
dimensions q 	 q. Because �̂ is a function of s, asymptotically,
�̂ is normally distributed with mean � and variance

�2 �
1

N
����, (3)

where �� �
��

���
is a 1 	 q vector of derivatives of � with

respect to �. The elements of � are:

��

��ij
� �

�p

p � 1

1��1 � tr(�)

(1��1)2 if i � j

2p

p � 1

tr(�)

(1��1)2 if i � j.
(4)

The above results hold under NT assumptions but also
under ADF assumptions. However, the � matrix differs
under NT and ADF assumptions. Henceforth, we use �NT

and �ADF to distinguish them.
If we are willing to assume that the test items are nor-

mally distributed, then Equation 3 can be estimated as (van
Zyl et al., 2000)

�̂NT
2

�
1

N

p2

(p�1)2

2[(1�S1)�tr�S2� � tr(S�2) � 2tr(S)(1�S21)]

�1�S1�3 . (5)

On the other hand, estimation of the asymptotic variance of
sample coefficient alpha under ADF assumptions requires
estimating �ADF. Let yi be the p 	 1 vector of data for
observation i, and y� be the p 	 1 vector of sample means.
Also, let si � vecs[(yi � y�)(yi � y�)�] be a q 	 1 vector of
squared deviations from the mean. Then, �ADF can be
estimated (Satorra & Bentler, 1994) as

�̂ADF �
1

N � 1 �
i�1

N

(si � s)(si � s)�. (6)

However, an estimate of the asymptotic variance of coeffi-
cient alpha under ADF assumptions can be obtained directly
without storing �̂ADF using

�̂ADF
2 �

1

N
�̂��̂ADF� �

1

N(N � 1) �
i�1

N ��̂��si � s��2

. (7)
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To see this, insert Equation 6 in Equation 3,

�̂ADF
2 �

1

N
�̂��̂ADF� �

1

N
�̂�	 1

N � 1
�i�1

N

(si � s)(si � s����̂

�
1

N(N � 1) 
�i�1

N

�̂��si � s)(si � s���̂�,

but because �̂� is a 1 	 q vector and (si � s) is a q 	 1
vector, �̂�(si � s) is a scalar. As a result,
�̂�(si � s)(si � s)��̂ � (�̂�(si � s))2, and we obtain Equa-
tion 7. Our SAS macro computes the NT standard error of
�̂ via Equation 5, and the ADF standard error of �̂ via
Equation 7.

Computation of Population Reliability for
Categorized Normal Variables

To compute the population coefficient alpha, one needs
the population variances and covariances. In our simulation
study, each observed variable Yi is multinomial, with m � 2
or 5 categories. The categories are scored as k � 0, . . . ,
m � 1. For categorical variables,

�ii � Var[Yi] � ��
k�0

m�1

k2Pr(Yi � k)� � �i
2, (8)

�ij � Cov[YiYj]

� ��
k�0

m�1 �
l�0

m�1

klPr[(Yi � k) � (Yj � l)]� � �i�j, (9)

where Pr��Yi � k) � (Yj � l)] stands for the probability that
item i takes the value k and item j takes the value l, and

�i � E[Yi] � �
k�0

m�1

kPr(Yi � k). (10)

Data are generated as follows: First we generate multivar-
iate normal data. In the first simulation, we used
z* � N(0,P), where P � �11� � (1 � �)I. That is, the
covariance matrix used to generate data is a correlation
matrix with a common correlation. The normal variables are
categorized via the threshold relationship Yi � ki, if �ik �
zi

* � �ik�1, ki � 0, . . . , K � 1, where �i0 � �� and �ik � �. The
thresholds were selected so that the items had the marginal
probabilities shown in Figure 1. In the second simulation,
we used the same procedure, except that to generate multi-
variate normal data, we used P � ��� � I � diag(���),
where �� � (.3, .4, .5, .6, .7, .8, .9), when p � 7. That is, in
the second simulation, we generated data using a correlation
matrix with a one-factor model structure.

Under this model of ordered categorized normal vari-
ables,

Pr�Yi � ki) � 

�ik

�ik�1

�1(zi
*:0,1)dzi

*, (11)

Pr��Yi � k) � (Yj � k�)]

� 

�ik

�ik�1



�jk�

�ik��1

�2(zi
*,zj

*:0,0,1,1,�ij)dzi
*dzj

*, (12)

where �ij is an element of �.
The population skewness and kurtosis reported in Figure

1 were computed using skewness �
K3

K 2
3/ 2 and excess kurto-

sis �
K4

K 2
2 � 3, where

Km � �
k�0

K�1

[(k � �i)
mPr(Yi � k)], m � 2, . . . , 4, (13)

and �i is the population mean given in Equation 10.
Also, the population correlation between two items can

be obtained using
�ij

��ii�jj

and Equations 8 and 9. Finally, the

average population interitem correlation is

�� �
1

q �
i�j

�ij

��ii�jj

, (14)

where q �
p(p � 1)

2
.

To illustrate, consider the condition with p � 5 items of
Type 3 in Figure 1 and P � �11� � (1 � �)I, where � � .8.
We generated multivariate normal data with mean zero and
correlation structure �. We dichotomized the data using the
threshold � � .253, as this is the threshold that yields Type
3 items. To obtain the population alpha, we computed the
population covariance matrix using Equations 8–12. For
this condition, all the variances in � are equal to .24, and all
covariances are equal to .11. As a result, the population � �
.796. Also, on the basis of Equation 14, the average population
interitem correlation is .438. When P � �11� � (1 � �)I, the
covariances in � are all equal, and population alpha equals the
reliability of the test score.

Consider now the case where P � ��� � I � diag(���).
In this case, the covariances in � are not equal, and as a
result, population alpha underestimates reliability. When
P � ��� � I � diag(���) and the same thresholds are
used for all items, the population covariance matrix �
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obtained using Equations 8–12 can be fitted exactly by a
one-factor model, say � � �̃�̃� � 	. In this decomposi-
tion, �̃ � �, where � are the factor loadings used to generate
the data. Because � follows a one-factor model, population
reliability is given by coefficient omega:


 �

� �
i�1

p

�̃i�2

��
i�1

p

�̃i�2

� �
i�1

p

�i
2

, (15)

where �i
2 is the element of the diagonal matrix 	 corre-

sponding to the ith item. Because the model fits exactly in
the population, any method can be used to estimate �̃ and 	
from �. They all yield the same result.

To illustrate, consider the condition with p � 7 items of
Type 3 in Figure 1. Before dichotomization, the simulated
data has population correlation matrix P � ���� I �
diag(���), with �� � (.3, .4, .5, .6, .7, .8, .9). We dichoto-
mized the data, using the threshold � � .253 to obtain Type

3 items. Now, using Equations 8–12, we obtain the follow-
ing population covariance matrix:

� � �
.24 .02 .02 .03 .03 .04 .04
.02 .24 .03 .04 .04 .05 .06
.02 .03 .24 .05 .05 .06 .06
.03 .04 .05 .24 .07 .08 .09
.03 .04 .05 .07 .24 .09 .10
.04 .05 .06 .08 .09 .24 .24
.04 .06 .07 .09 .10 .12 .24

� .

This � follows a one-factor model where ��
� (.11, .15, .19, .23, .28, .33, .37), and the elements of
the diagonal matrix 	 are (.22, .22, .20, .18, .16, .13,
.10). Thus, for this condition, the population � � .677,
and the population reliability is 
 � .692.
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