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Online Degradation Assessment
and Adaptive Fault Detection
Using Modified Hidden Markov
Model
Online condition monitoring and diagnosis systems play an important role in the modern
manufacturing industry. This paper presents a novel method to diagnose the degradation
processes of multiple failure modes using a modified hidden Markov model (MHMM)
with variable state space. The proposed MHMM is combined with statistical process
control to quickly detect the occurrence of an unknown fault. This method allows the state
space of a hidden Markov model to be adjusted and updated with the identification of
new states. Hence, the online degradation assessment and adaptive fault diagnosis can be
simultaneously obtained. Experimental results in a turning process illustrate that the tool
wear state can be successfully detected, and previously unknown tool wear processes can
be identified at the early stages using the MHMM. �DOI: 10.1115/1.4001247�

Keywords: hidden Markov model, online degradation assessment, adaptive fault
detection
Introduction
Condition-based maintenance �CBM� recommends mainte-

ance plans based on the information collected through numerous
ondition monitoring techniques �1,2�. The basic principle behind
BM is that defects that gradually yield in machines can be de-

ected through suitable monitoring techniques at the early stages
o that appropriate maintenance plans can be scheduled accord-
ngly. Because of the complexity of modern plants, CBM has
ecome widely accepted as one of the key drivers to reduce main-
enance costs and machine downtime of manufacturing systems
3�.

Condition monitoring techniques for machine diagnosis have
een studied extensively �1�. Many signal processing techniques
hat involve the analysis of the acquired data in time �4�, fre-
uency �5�, and time-frequency domains �6� have been developed.
aya et al. �7� developed a condition monitoring method, which
elied on wavelet transformation and artificial neural networks. A
imilar work that uses principal component analysis was reported
n Ref. �8�. These methods are feature-based methods that use the
tatistical features of the signal. However, these methods require
oo much data and time to obtain the results of condition moni-
oring and diagnosis. In addition, they are data-based methods,
hich do not take the physical model of the system into consid-

ration. On the other hand, model-based methods, under the as-
umption that measured information is stochastically correlated
ith the actual machine condition, take advantage of understand-

ng the system structure �1�.
This assumption leads to the application of a hidden Markov
odel �HMM� through a statistical approach in identifying the

ctual machine conditions from observable monitoring signals.
lthough HMMs were motivated by their successes in speech

ecognition �9�, many applications of the HMM in machine pro-
ess diagnosis have also been studied, demonstrating its effective-
ess in online diagnosis. For example, Ertunc et al. �10� presented
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a HMM approach for tool wear detection and prediction in a drill-
ing process. A similar approach was also described for a turning
process by Wang et al. �11�. Li et al. �12� used a HMM as a fault
diagnosis tool in speed-up and speed-down processes for rotating
machinery.

According to the literature review, most previous condition-
based diagnosis models based on a HMM mainly focus on the
online degradation assessment of a single failure mode system
�9–12�. A HMM with a single failure mode system assumes that
all possible system condition states are known a priori and that
training data sets from associated states are available. In addition,
training a HMM should be conducted offline. These assumptions
significantly impede machine diagnosis applications when it is
difficult to identify and train all of the possible states of the sys-
tem in advance �13,14�. For instance, if a HMM that has been
trained to model gradual tool wear in a drilling process does not
have a state to represent a tool breakage or shortage of coolant, it
is impossible for the HMM to estimate the correct state when
these untrained states occur. The state structure of a conventional
HMM will not be updated after the training stage. This inflexibil-
ity may cause serious estimation errors in the emergence of un-
known or untrained faults that might provoke catastrophic dam-
ages to machining processes.

Therefore, it is necessary to introduce an anomaly detection
algorithm into a HMM to trigger the HMM to adjust the number
of hidden states or the hidden structure, and thus result in a more
accurate model for the system. In this paper, the modified Hidden
Markov Model �MHMM� with variable state space is developed
to estimate the current state of system degradation as well as to
detect the emergence of unknown faults at an early stage. The
statistical process control �SPC� technique �15� is used in un-
known fault detection and diagnostics in conjunction with the
MHMM. By measuring the deviation of the current signal from a
reference signal representing prior known states, the MHMM is
able to see whether the current signal is within the control limits.

The rest of this paper is organized as follows: Sec. 2 introduces
the principle of a HMM and the proposed MHMM for online
degradation assessment and state update. In Sec. 3, case studies

are performed to validate the effectiveness of the MHMM algo-
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ithm and to compare its performance with other methods using a
urning process. The conclusions and future research directions
re given in Sec. 4.

The Proposed MHMM With Variable State Space

2.1 Hidden Markov Model and State Estimation. Before
ntroducing the MHMM with variable state space, we present the
asic form of a traditional HMM with fixed state space, as shown
n Fig. 1. The HMM �= �P ,b ,�� under consideration consists of

• a finite set of M states S= �S1 , . . . ,SM�
• a state transition probability matrix P= �pij�M�M �1� i , j

�M�, where pij = P�q�n+1�=Sj �q�n�=Si� �1� i , j�M , 1
�n�N�

• an observation symbol probability distribution bi�O�n��
= P�O�n� �q�n�=Si� �1� i�M , 1�n�N�

• an initial state probability distribution �= ��i�M, where �i

= P�q�1�=Si� �1� i�M�

A HMM technique is applicable to a process that is assumed to
ossess homogeneous Markovian property �16� as follows:

pij = P�q�n� = Sj�q�n − 1� = Si, . . . ,q�1� = Sk� = P�q�n�

= Sj�q�n − 1� = Si� �1�

quation �1� implies that the conditional probability of the current
tate, given the knowledge of all previous states, is the same as the
onditional probability of the current state, given the knowledge
f the system state of one previous time unit.

The state transition probability matrix P encodes the uncer-
ainty in the true underlying state evolution of the stochastic pro-
ess, while each state emits observation symbols with the prob-
bility distribution bi�O�n��, as shown in Fig. 1. Let On

�O�1� , . . . ,O�n�� denote a sequence of all observation symbols
p to time n, where an observed data point O�n� is taken at time n.
he actual state sequence up to time n can be represented as qn
�q�1� , . . . ,q�n��, where a state q�k��S �1�k�n�. Then, we can
nd the maximum likelihood state sequence q̂n= �q̂�1� , . . . , q̂�n��
ssociated with a given sequence of observations On
�O�1� , . . . ,O�n�� as well as a HMM model �= �P ,b ,�� through

he Viterbi algorithm �17,18�. Furthermore, it is possible to adjust
he HMM model parameters �= �P ,b ,�� to maximize the prob-
bility of the observation sequence using an iterative procedure
uch as the Baum–Welch method �19� or the expectation-
aximization �EM� algorithm �20�.
Since the primary purpose of a HMM in this paper is to esti-
ate the system state as early as possible, the forward procedure

9� based on past and present measurements is employed. Con-
ider the forward variable �n�i� defined as �n�i�

Fig. 1 Basic
P�O�1� , . . . ,O�n�∧q�n�=Si ���, indicating the joint probability
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of a series of observed symbols On= �O�1� , . . . ,O�n�� and state Si

at time n, given the model �. We can then calculate �n�i� recur-
sively, as follows:

�1� Initialization

�1�i� = �ibi�O�1��, 1 � i � M �2�
�2� Induction

�n+1�j� = �	
i

pij�n�i�
bj�O�n + 1�� ,

1 � n � N, 1 � j � M �3�

Once �n�i� are obtained, the posterior probabilities P�q�n�
=Si �O�1� , . . . ,O�n�∧�� that the current state q�n� is in state
Si, given the observed symbols On= �O�1� , . . . ,O�n�� can be
calculated by the Bayes’ rule

P�q�n� = Si�O�1�, . . . ,O�n� ∧ ��

=
P�q�n� = Si ∧ O�1�, . . . ,O�n����

P�O�1�, . . . ,O�n����
=

�n�i�

	
j

�n�j�
,

1 � i � M �4�

Hence, we can estimate the state q̂�n�, which maximizes the
posterior probability as

q̂�n� = argmax
i

�P�q�n� = Si�O�1�, . . . ,O�n� ∧ ��� �5�

Furthermore, the EM algorithm is used to find the maximum
likelihood HMM parameters �= �P ,b ,�� that could have
produced the sequence of observations ON
= �O�1� , . . . ,O�N��. Define �n�i , j� and �n�i� as follows:

�n�i, j� = P�q�n� = Si ∧ q�n + 1� = Sj�ON ∧ �� �6�

�n�i� = P�q�n� = Si�ON ∧ �� �7�

where �n�i , j� in Eq. �6� is the probability of being in state Si

at time n and in state Sj at time n+1, given the model � and
the observation sequence ON up to time N. Note that �n�i� in
Eq. �7� is the probability of being in Si at time n, given the
model and the observation sequence ON. Thus, a set of re-
estimation for �= �P ,b ,�� would be expressed as

ˆ

m of a HMM
�i = �1�i� �8�
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p̂ij =

	
n=1

N−1

�n�i, j�

	
n=1

N−1

�n�i�

, 1 � i, j � M �9�

b̂i�O�n�� � N�	i,
i� �10�
We will use Eqs. �8�–�10� to update a HMM. It should be
noted that the number of discrete states and the selection of
training data sets have a great influence on the HMM per-
formance for the state estimation. Therefore, states have to
be selected in such a way that maximizes the discrepancies
among the states. In addition, the size of the training data
set has to be large enough to ensure observation symbol
probability distributions to be statistically significant.

2.2 The Modified Hidden Markov Model. We propose to
se the MHMM with variable state space to detect the emergence
f the different failure modes at early stages as well as to estimate
he current state of system degradation. The technique of SPC is
ombined with a HMM to detect the different failure modes and
iagnostics. The MHMM can check whether the current signals

Fig. 2 Block diagram of the p
Fig. 3 Markov chain with an unknown state S5

ournal of Manufacturing Science and Engineering
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are emitted from unknown failure modes that have not been ob-
served by calculating the deviation of the current signal from the
reference signals representing prior known states.

Suppose that there are m observations available from the pro-
cess, each of size b and the observation symbol probability distri-
butions bi�O�n��= P�O�n� �q�n�=Si� follow a p-jointly Gaussian
density distribution. This assumption is reasonable in many appli-
cations because of the central limit theorem, which states that the
sum of independently distributed random variables is approxi-
mately Gaussian-distributed regardless of the distributions of the
individual variables as the number of samples becomes large �16�.
Then bi�O�n�� can be expressed as

bi�O�n�� = P�O�n��q�n� = Si� =
1

�2��p/2�
i�1/2exp�−
1

2
�O�n�

− 	i�T
i
−1�O�n� − 	i� �11�

where 	N= �	1 , . . . ,	N� is the mean vector and 
 is the covari-
ance matrix of the distribution.

Then the weighted distance of Ō�n� from 	i, known as the
Mahalanobis distance �21�, can be calculated as

D2�Ō�n�,	i� = b�Ō�n� − 	i�T
i
−1�Ō�n� − 	i� �12�

where Ō�n� is the vector of the observation symbol mean of the

osed modified HMM algorithm
rop
nth observation
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s of Use: http://www.asme.org/about-asme/terms-of-use



W

b
t
f
i
v
i
t
i

F
k

0

Downloaded From:
Ō�n� =
1

b	
k=1

b

Ok�n�

e use this statistic to detect an unknown state in the MHMM

ecause D2�Ō�n� ,	i� can represent a dissimilarity distance when
he number of monitoring signals is more than one �22�. The most
amiliar multivariate process monitoring technique is the Hotell-
ng multivariate control chart �23�. We use the Hotelling multi-
ariate control chart technique for an anomaly detection algorithm
n the MHMM because this method can deal with multiple moni-
oring signals, make an online decision based on current monitor-
ng signals, and has shown effectiveness, especially in the manu-

ig. 4 Original observable signals and the HMM with the four
nown states
Fig. 6 Posterior probability o

21010-4 / Vol. 132, APRIL 2010
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facturing industry �22�. The Hotelling multivariate control chart
signals that a statistically significant shift in the mean has oc-
curred when

D2�Ō�n�,	i� � UCL �13�

where UCL�0 is a specified upper control limit �UCL�.
The calculation of the UCL depends on whether the values of 	

and 
 are known or not in advance. If 	 and 
 are known, the D2

statistic follows the �2-distribution with p degrees of freedom
�24�. Thus, the UCL can be obtained as

UCL = �2
�,p �14�

Fig. 5 HMM algorithm serving to estimate the states
f Pˆq„n…=Si �O„1… , . . . ,O„n…‰
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here � is the risk level.
If 	 and 
 are not known, the m observation subgroups of each

ize b must be used to estimate 	 with O� , the overall mean vector,

nd 
 with S̄, the covariance matrix. O� and S̄ can be calculated:

O� =
1

m	
n=1

m

Ō�n� �15�

Fig. 7 Result of a wrong state estimation
Fig. 8 Posterior probability,

ournal of Manufacturing Science and Engineering
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S̄ =
1

m	
n=1

m

�Ō�n� − O� �T�Ō�n� − O� � �16�

It has been shown that O� and S̄ are the maximum likelihood
estimates of 	 and 
, respectively �25�. In this case, the D2 sta-
tistics and the UCL for the Hotelling multivariate control chart are
defined as follows:

D2�Ō�n�,O� � = b�Ō�n� − O� �TS̄−1�Ō�n� − O� � �17�

UCL =
p�m − 1��b − 1�
mb − m − p + 1

F�,p,mb−m−p+1 �18�

Equation �18� is based on the fact that the D2�Ō�n� ,O� � statistic
follows an F-distribution with p and �mb−m− p+1� degrees of
freedom when its mean and covariance are not known �26�.

Therefore, we can claim that the process of interest is experi-
encing a statistically significant shift in the mean if the Mahalano-
bis distance D2 becomes larger than the UCL. The MHMM makes
use of this characteristic of the SPC for the purpose of detecting
the unknown states. The MHMM with variable state space will

Fig. 9 Test bed of the turning process with coolant supply „Ft:
thrust force; Fc: cutting force…
but no wiggling is shown
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s of Use: http://www.asme.org/about-asme/terms-of-use



a
o
m

s
T

s

c
e

c

=

S
m
t
b
c
d

o
t
D
b
s
n
d
d
t
M
t

3

S
f
H
n
n
t

C

S

P
T
M

C

0

Downloaded From:
djust the number of hidden states or the hidden structure based
n the result of the Hotelling multivariate control chart. A sum-
ary of the MHMM algorithm is shown in Fig. 2.
Suppose the initial MHMM is trained only with prior known

tates Sknown= �S1 ,S2 , . . . ,SM� and associated training data sets.
his MHMM receives a set of data �O1�n� , . . . ,Ob�n�� with a

ample size b at time n. The sample mean of each set Ō�n� is

alculated, i.e., Ō�n�=1 /b	k=1
b Ok�n�, and fed to the HMM state

stimation algorithm, as shown in Eqs. �2� and �3�, to estimate the

urrent state q̂�n� from the sequence of observation symbols Ōn

�Ō�1� , . . . , Ō�n��. If q̂�n� belongs to the prior known state set

known, then the distance D2�Ō�n� ,	q̂t
� and UCL are obtained by

eans of Eqs. �12� and �14�, respectively. This is possible because
he corresponding 	 and 
 of q̂�n� are known. If q̂�n� does not
elong to the prior known state space Sknown, Eqs. �17� and �18�
an be used instead. If any anomalous behavior has not been
etected via the control chart �i.e., D2�UCL�, the sequence of

bservation symbols Ōn= �Ō�1� , . . . , Ō�n�� will be used to update
he MHMM through the EM algorithm. On the other hand, if

2�UCL occurs R consecutive times, a new state SM+1 needs to
e introduced to the MHMM to model an unknown state of the
ystem with 	M+1 and 
M+1, as shown in Eqs. �15� and �16�. The
umber R can be used to control the sensitivity of the unknown
etection algorithm. For instance, if R is increased, the unknown
etection algorithm may become more robust against false detec-
ions caused by process randomness itself. On the other hand, the

HMM may respond more slowly to the unknown state. Thus,
he number R needs to be chosen with considerable caution �27�.

Case Studies

3.1 Inability of a Conventional HMM With Unknown
tate. In this section, we illustrate the effectiveness and outper-
ormance of the MHMM with comparison to a conventional
MM using a numerically generated case study. To study the
umerical cases where some of the hidden states of a HMM are
ot known, we consider the HMM which is trained initially with
he four states Sknown= �S1 ,S2 ,S3 ,S4�, while the true system actu-

Table 1 The cutting conditions

Depth of cut
�	m�

Feed rate
�	m / rev�

Cutting speed
�m/min�

onditions 228.6 228.6 152.4

Table 2 Three states of HMM b

tates S1

ictures
ool flank wear �	m� 79.050.005
ean of the two forces N �108.5 124.6�

ovariance matrix of the two forces �226.0 199.1

199.1 242.0
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ally contains another unknown state S5, as shown in Fig. 3.
Suppose that two signals �X1 ,X2� are monitored. The observa-

tion symbol probabilities from each state have two jointly Gauss-
ian density distributions, and the HMM has the transition prob-
ability matrix P, summarized as follows:

	1 = �20

20

, 	2 = �20

35

, 	3 = �35

35

, 	4 = �35

20




1 = �20 0

0 20

, 
2 = �15 0

0 15

, 
3 = � 15 − 2

− 2 15

 ,


4 = �5 0

0 5



P = �
0.99 0.01 0 0

0 0.99 0.01 0

0 0 0.99 0.01

0.01 0 0 0.99
�

One possible result of the observable signals is illustrated in Fig.
4 if samples of size b=10 �i.e., one subgroup consists of ten
samples� are taken. Note that these signals are abstract and are not
linked to any specific physical meaning.

However, the estimated states obtained from the sequence of
observable signals by means of the conventional HMM algorithm
are different from the true states of the system, as shown in Fig. 5.
This is because the conventional HMM has to assign each obser-
vation to one of the known states Sknown= �S1 ,S2 ,S3 ,S4� according
to the posterior probability calculation via Eq. �4� even when an
observation signal is emitted from the unknown state S5, where

	5 = �28

28

, 
5 = �10 3

3 10



The posterior probabilities of being in each state given the se-
quence of the observation symbols up to the current time are
obtained and illustrated in Fig. 6. The wiggling in the posterior
probabilities happens after approximately the 400th sample, since
the conventional HMM does not account for the emergence of the
unknown state. In this case, the conventional HMM is unable to
estimate the correct states. On the other hand, the wiggling in the
posterior probabilities represents the presence of an unknown state
from the observation symbols. From the result shown in Fig. 6, we
might conclude that the posterior probability is the key criterion in
determining the detection of unknown states, as explained in Ref.
�13�. However, the following case study shows that this conclu-

d on different tool flank wears

S2 S3

103.700.005 151.800.005
�166.7 251.1� �230.4 404.8�

�151.1 547.7

547.7 2198.7

 �159.8 234.2

234.2 538.4
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ion may not always be true.
The trained HMM �= �P ,b ,�� is the same as in the previous

xample. However, in this case, it turns out that an unknown state

5 has the following Gaussian observation symbol density distri-

Fig. 10 „a… Normal turning process with
without coolant
ution

ournal of Manufacturing Science and Engineering
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	5 = �50

10

, 
5 = �10 3

3 10



Instead of being in the middle of the other states, the unknown

olant and „b… different tool wear modes
co
state is far away from the other four known states, as shown in
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ig. 7.
As shown in Fig. 8, we cannot see the wiggling in the posterior

robabilities even with the presence of the unknown state in Fig.
. In this case, the conventional HMM algorithm disguises the
nknown state by calculating P�q�n�=S1 �O�1� , . . . ,O�n��
0.9972 after around the 650th sample. The conventional HMM
isinterprets an unknown state S5 as the first state S1 with a high

robability even though the unknown state is located far from the
rst state S1. The fourth row of the transition probability matrix
�4, :�= �0.01 0.00 0.00 0.99� is defined in such a way that a

tate will move to either state S1 or state S4 after being in state S4.
he conventional HMM, however, excludes the chance of being

n state S4 after observing that an observation symbol is far away
rom state S4. Thus, the conventional HMM misjudges that
�q�n�=S1 �O�1� , . . . ,O�n��=0.9972.
These two examples lead us to conclude that considering only

he posterior probability in the identification of the unknown state
s not sufficient, based on the conventional HMM. This is why we
ropose the modified HMM algorithm to deal with challenges
elated to unknown states using the Hotelling multivariate control
hart. We will illustrate how the MHMM operates in Sec. 3.2 with
n example of the tool degradation process.

3.2 Case Study on the Tool Wear of the Turning Process.
he proposed MHMM has been tested with a turning process and

s shown to be able to perform an adaptive diagnosis of the dif-
erent failure modes as well as online degradation assessment. A
eramic tool is used to turn an Inconel718 workpiece with coolant
upplied, as shown in Fig. 9. During the turning process, two
rthogonal forces �the cutting and thrust forces� are measured by
he dynamometer.

The first step is to train the MHMM using the training data sets
ssociated with each state. The states are defined as the degree of
he tool flank wear. Three different degrees of tool flank wears
= �S1 ,S2 ,S3� are used to train the MHMM. The cutting and

hrust forces are measured under the same turning process condi-
ions such as the depth of cut, feed rate, and cutting speed �see

Fig. 11 Estimated states: vertical dash
solid lines represent the estimated states
able 1�. Note that enough coolant was supplied during this train-

21010-8 / Vol. 132, APRIL 2010

 https://manufacturingscience.asmedigitalcollection.asme.org on 06/28/2019 Term
ing stage.
Observation symbol probability distributions for each state are

then calculated from two force signals in the form of the joint
Gaussian density functions. The resultant mean and covariance
matrix with corresponding tool wears are displayed in Table 2.

We then restart the turning process with a new tool while mea-
suring the cutting and thrust forces. As shown in Fig. 10, both
cutting and thrust forces increase with the process duration as the
cutting tool loses its sharpness.

After the tool wear status reaches state S3, the coolant supply is
removed to introduce a different tool wear mode. The cutting
force seems to increase when the coolant is not supplied. This dry
machining condition generates nonexperienced forces from an un-
known state Sunknown that has not been seen during the training
stage. Figures 11 and 12 demonstrate the problem or drawback of
the conventional HMM, showing that a conventional HMM fails
to estimate Sunknown with high Mahalanobis distances. The dis-
tance statistic D2 becomes larger than the UCL after around the
2800th sample, which corresponds to the moment when the cool-
ant is shut off. The estimation failure in Fig. 11 causes higher
Mahalanobis distance in Fig. 12. On the other hand, the MHMM
is able to update its structure to add new states successfully by
calculating a statistical distance between the current forces and
known states. Since the MHMM has a new state to represent an
unknown condition, the Mahalanobis distance between the incom-
ing data and the new state is less than the UCL, as shown in Fig.
13. Although the estimation delay from state S1 to state S2 causes
some nonconsecutive data points to be out of control, these points
are not statistically significant to add another state in the MHMM.
However, the appearance of unknown states after the 2800th
sample does trigger the MHMM to add another state, resulting in
Fig. 13. It is critical to diagnose coolant shortage as early as
possible to avoid excessive tool wear, as shown in Fig. 10�b�. The
appearance of unknown states can be identified through the emer-
gence of a new state in the MHMM. Figures 12 and 13 illustrate
that the MHMM is not only a stochastic modeling technique but

lines indicate the true states, while the
ed
also an adaptive fault detector.
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Fig. 12 Control chart with conventional HMM

Fig. 14 The estimated states via various algorithms: „a…
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Fig. 13 Control chart with MHMM
HMM, „b… neural network, „c… GMM, and „d… K-means
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We have also compared the proposed MHMM with other typi-
al clustering algorithms such as neural networks, Gaussian mix-
ure model �GMM�, and K-means clustering �21,25�. Artificial
eural networks are motivated by biological neural networks and
ave been used extensively over the past three decades for both
lassification and clustering �28�. GMM is based on the idea that
he data can be clustered using a mixture of multivariate Gaussian
istributions. On the other hand, K-means is the simplest and most
ommonly used algorithm. K-means starts with a random initial
artition and keeps re-assigning the patterns to clusters based on
he similarity between the patterns and cluster centers until a con-
ergence criterion is met �29�.

The MHMM algorithm is based on online data streaming,
hich is more applicable in equipment condition diagnosis, while
MM and K-means clustering approaches are based on off-line
ut unsupervised machine learning. The classification results of
he three different algorithms are illustrated in Fig. 14 and sum-

arized in Table 3. The accuracies are calculated by counting the
rrors between the true state and the state estimated via the clus-
ering algorithms. The MHMM clearly outperforms the others in
erms of the estimation accuracy because the MHMM makes use
f the information regarding the transition probability as well as
he observation symbol distributions.

The MHMM enables the identification of anomalous behavior
f a system by measuring Mahalanobis distance. We have shown
hat the proposed MHMM algorithm is successfully able to

odify its structure by increasing the number of states and esti-
ate the state of a system even in the existence of an unknown

tate.

Conclusion and Future Work
In this paper, the MHMM algorithm is developed to deal with

ariable state space. A method in the SPC has been combined into
HMM for unknown state detection and diagnosis. The results

llustrate that the proposed MHMM can �1� estimate current tool
onditions more effectively than other classification algorithms
uch as GMM, K-means, and neural network; �2� detect anoma-
ous behavior or an unknown state at an early stage by using the
otelling multivariate control chart; and �3� change its structure to

epresent degradation processes more accurately in the presence
f unknown faults.

Future work will involve further experimental validations of the
HMM algorithm. The assumption that the monitoring signals

ollow the Gaussian density distribution is strict in the case of
aving different observation symbol probability distributions. The
HMM needs to be modified to handle general distributions. Fur-

hermore, the false detection rate and the average time required to
etect faults should be theoretically examined in order to under-
tand the limits of MHMM.

omenclature
S= �S1 , . . . ,SM� � state space for the discrete degradation

process
P= �pij�M�M � state transition probability matrix

bi�O�n�� � observation symbol probability distri-

Table 3 Correct estimation rate comparison

stimation methods
Accuracy

�%�

HMM 99.06
MM 77.69
eural networks 97.71
MM 96.49
-means 92.81
bution, P�O�n� �q�n�=Si�

21010-10 / Vol. 132, APRIL 2010
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�= ��i�M � initial state probability distribution, �i
= P�q�1�=Si�

On= �O�1� , . . . ,O�n�� � sequence of all observation symbols up
to time n

qn= �q�1� , . . . ,q�n�� � actual state sequence up to time n
q̂n= �q̂�1� , . . . , q̂�n�� � maximum likelihood state sequence up

to time n
�= �P ,b ,�� � HMM model parameters

�n�i� � �n�i�= P�O�1� , . . . ,O�n�∧q�n�=Si ���
�n�i , j� � �n�i , j�= P�q�n�=Si∧q�n+1�

=Sj �ON∧��
�n�i� � �n�i�= P�q�n�=Si �ON∧��

	 � mean value

 � covariance matrix

Ō�n� � vector of the observation symbol mean
of the nth observation

D2�Ō�n� ,	i� � weighted distance of Ō�n� from the 	i
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