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Transient Dynamic Analysis of 
Rotors Using SiAC Techniques: 
Part 1, Formulation 
A new method is introduced for performing transient dynamic analysis of rotor 
systems using a Successive Merging and Condensation (SMAC) technique. This 
approach can be applied to rotor analysis problems formulated with the finite element 
method. Condensation is done on the partitioned equations of motions for an 
element, and the result is merged into the next element's equations of motion. Such 
manipulations result in a reduced size for the system's matrices, producing a com­
putationally more efficient scheme. After the boundary conditions are applied, a 
time-marching scheme provides the transient solution at each time step. 

1 Introduction 
In general, the transient response of mechanical systems 

involving chain-like and branching systems, such as rotors and 
gear train systems, can be obtained by using the methodology 
of finite elements combined with a suitable scheme to solve 
the equations of motion. In rotor technology, the finite element 
method (FEM) is employed for spatial discretization of rotors 
(Lalanne and Ferraris, 1990; Nelson and McVaugh, 1976; Ruhl 
and Booker, 1972). This discretization approximates the in­
finite-dimensional spatial domain of the rotor system by a finite 
number of degrees of freedom (i.e., d.o.f.) coupled with suit­
able shape functions. The commonly used schemes to solve 
the discretized equations of motions are: Modal Superposition, 
Time-marching schemes, and Transfer Matrix Methods 
(TMM). These methods generally involve a large number of 
computations that are very time-consuming, especially when 
dealing with systems with a large number of d.o.f. To this end, 
a new method is introduced in this paper for performing tran­
sient dynamic rotor analysis that is computationally more ef­
ficient than existing methods. 

In the modal superposition method, the algebraic eigenvalue 
problem associated with a discretized model is solved, which 
allows decoupling the equations of motion by way of a co­
ordinate transformation. Each decoupled equation then can 
be solved separately to obtain the modal responses, which can 
finally be transformed into the physical response. Modal su­
perposition methods provide for a qualitative as well as quan­
titative understanding of the system's behavior. For a 
nongyroscopic, proportional damping system model, or a con­
servative gyroscopic one, the associated eigenvalue problem is 
a real eigenvalue problem (Meirovitch, 1975 and 1980). How­
ever, for a general model it is required to deal with a complex 
eigenvalue problem, thereby increasing the number of com­
putations required for solution. Also, if the number of d.o.f. 
of the system is large, which is usually the case, the transient 
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analysis using a modal superposition technique involves re­
solving a large-scale eigenvalue problem for different speeds 
of the rotor. This is very costly in terms of computer resources. 
Yee and Tsuei (1990) have presented a Component Modal 
Synthesis Method for performing the transient analysis of lin­
ear systems. This method divides the system into subsystems, 
performs the modal analysis on the subsystems, and applies 
compatibility conditions. The method has been reported for 
systems with proportional damping. 

Alternatively, one might directly use a time-marching scheme, 
such as Runge-Kutta, Wilson-0, or Houbolt methods (Bathe 
and Wilson, 1976) to get the response in the physical coor­
dinates. Due to the large size of the matrices, the ordinary 
time-marching schemes generally take large CPU times to in­
tegrate the equations of motion. A common way of reducing 
the size of these matrices is by using the well-known Guyan 
reduction scheme (Guyan, 1965). This is suitable when the 
inertia associated with some coordinates is much smaller than 
the inertia associated with other coordinates. The smaller in­
ertia, and the forces acting on the corresponding coordinates, 
are then neglected. Although this results in a reduction of the 
computation time, the accuracy of the obtained response might 
be affected by the exclusion of small inertias and forces. 

Transfer Matrix Methods (Rao, 1983) deal with relatively 
small matrices. Although this method (Degen et al., 1985; 
Dokainish, 1972; Mucino and Pavelic, 1981; Ohgaet al., 1983) 
was initially used only in frequency domain, Rao et al. (1987) 
recently used a TMM in the time domain. In this method, the 
relations between state vectors of different stations are found 
using transfer matrices. The state vector consists of the dis­
placement variables and their time derivatives up to the 4th 
order. At each time step, boundary conditions are used to solve 
for the displacement variables. Because of the inclusion of 
time derivatives of displacement variables, the size of the state 
vectors becomes large. Kumar et al. (1986) combined a suitable 
numerical scheme with TMM to perform the response analysis 
of a mass-spring-damper system in the time domain. At the 
beginning of each, time step, the application of the numerical 
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scheme establishes relationships between the displacement vari­
ables and their derivatives. For this reason, the state vectors 
do not contain any time derivatives of the displacement vari­
ables. This makes the size of the state vector smaller than the 
one required in the method proposed by Rao et al. (1987). 
Another recently developed TMM algorithm (Subbiah, 1988), 
referred to as Transient Properties Transfer Approach (TPTA), 
marches out the solution of rotor problems in time domain. 
In TPTA, the dynamical properties (forces and displacements) 
of one node are transferred to the next node, with the maximum 
size of the matrices being twice the number of d.o.f. at each 
node (usually two displacements and two rotations). The ad­
vantage in using this approach is that storage space and com­
putation time requirements are much less than those required 
by time-marching schemes and by the modal superposition 
method. Furthermore, the TMM as well as direct time-march­
ing schemes, in general, can handle nonconservative gyroscopic 
and nongyroscopic systems and are capable of analyzing non­
linear systems. As efficient as this recently developed approach 
is, a complete transient rotor analysis might still require a large 
CPU time. 

The method introduced in this paper, the Successive Merging 
and Condensation (SMAC) method, is suitable for transient 
dynamic rotor analysis and is capable of handling linear and 
nonlinear, as well as conservative and nonconservative, rotor 
systems. Condensation and merging manipulations are per­
formed with the purpose of reducing the size of matrices being 
handled. The resulting matrices are of order equal to the num­
ber of degrees of freedom modeled at each node of the rotor's 
FE model. The proposed SMAC method involves the com­
putation and storage of the coefficient matrices. These, for 
each time step, are then multiplied by the modified column 
matrices obtained from the merging stage. The mathematical 
formulation, and the algorithm for proper computer imple­
mentation, of the SMAC method are presented in this paper. 

2 Equations of Motion 

2.1 Finite Element Formulation. A rotor consists of a 
shaft, disks, and bearings which can be modeled using an FEM 
formulation as n discrete elements or subsystems (Fig. 1). The 
end points of an element are called nodes (or stations), and 
they are located such that each disk or bearing of the rotor 
coincides with a node. Each element is assumed to be contin­
uous in diameter, with discontinuity of diameter allowable only 

V (i- 1)"" element-, _ - i ' " 1 element 

undeformed axis 

N o d e # (i-1) 

i"1 node 

Fig. 1 Model of a typical rotor system 

N o d e # i 

N o d e # ( i + l ) 

(i - 1 ) m element element 

V- J j"> disk (M, I, e) 

Fig. 2 Degrees of freedom for discretized model 

between elements. The degrees of freedom for a typical finite 
element formulation (Nelson and McVaugh, 1976) are shown 
in Fig. 2. 

The equations of motion for an element take the form 

M , ' i ' U ) + C x ' ( 0 + K ' ' x / ( / ) = F ' ( 0 (1) 

where M' and K' denote the symmetric mass and stiffness mat­
rices, respectively, for the /th element. For a physical system, 
M' is a positive definite matrix, and K' is a semipositive definite 
matrix. For a conservative model, C' represents the skew sym­
metric gyroscopic matrix, and for a nonconservative model 
which includes damping, C represents a positive definite, or 
positive semi-definite, matrix. The vector F'(/) represents the 
generalized force vectors for the /th element, which is partially 
due to the eccentricities of the shafts and the disks. The vector 
x'(t) consists of displacement variables for the /th element. 

For convenience, the following vector and matrix partitions 
are introduced: 

M' = 
nin 

m 2 i 

m12 

m22 

, c'= Cll 

|_C21 

Cl2 

c22_ 
, K ' = 

kn k12 

k2i k22 
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*jk 
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k,* 

damping matrix 
matrices of size 4 x 4 
generalized force vector 
gyroscopic matrix 
stiffness matrix 
submatrices of size 4 x 4 
mass matrix 
vectors, dependent upon 
x, x, x and numerical 
scheme 
submatrix of damping 
matrix C' 
generalized force vector 
for /th node 
external force at /th node, 
due to unbalance 
vector of dimension 4 
submatrix of stiffness 
matrix K' 
submatrix of mass matrix 
M' 

n — number of elements in ro­
tor system 

q, = state vector of displace­
ment for /th node 

q = time derivative of q 
q = second time derivative of 

q 
Si, s2 = vectors of dimension 4 

t0 = initial time of integration 
v = vector, dependent upon 

M, C, and a, b 
x(t) = state vector of displace­

ment at time / 
x = time derivative of x 
x = second time derivative of 

x 
z = a vector of dimension 4 

At = time step for the numeri­
cal integration 

6 = constant in the Wilson-0 
method 

a, (3 - constants, dependent 
upon At and the numeri­
cal scheme 

Subscript 

/ = used for showing associa-

Superscript 

tion with the /th node 

used for showing associa­
tion with the /th element 

Presuperscript 

R or L = shows the association of 
the vector with the right 
or left side elements of 
the node described by the 
subscript 
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x 'u )H q ' ( / ) ] ' .^ )4 f ' ( 0 (3) 

where q,-(/) and f;(/) refer to the /th nodal displacements and 
generalized forces, respectively. In FEM, valid matrices are 
formulated for all the elements and then assembled into global 
matrices to get the discretized equations of motion for the 
rotor system. These equations still remain to be solved. The 
statement of the problem can be posed as follows: 

Given: x(t), x (/) and x(t) 

Find: x(t +At), x(t + At) and x(t + At) 

A solution can then be obtained by applying a suitable 
scheme, such as modal superposition, step-by-step time-march­
ing procedures, TMM, or the proposed SMAC method, which 
is presented next. 

3 Proposed SMAC Method 
The proposed SMAC algorithm is an alternate procedure 

for performing the integration process in rotor dynamics. This 
method makes use of the fact that the displacements of one 
node can be expressed in terms of the displacements of the 
next node, thereby allowing the elimination of the unknown 
forces from the original equations for the element. Conse­
quently, the size of the matrices being dealt with becomes 
smaller, half the size required by TMM, thus significantly 
reducing the computational requirements. 

3.1 Formulation of the Method. The formulation begins 
by expressing the velocity and the acceleration coordinates in 
terms of the associated displacement coordinates. There are 
many existing numerical schemes (e.g., Wilson-0 method, Hou-
bolt methods) which allow writing of x(t + At) and x(t + 
At) in the following form: 

x(t + At)=ax(t + At)+a(t) (4) 

x(t + At)=0x(t + At)+b(t) (5) 

where a and /3 are constants dependent upon the time-step size 
(At) chosen, and where a( /) and b(t) are vectors dependent 
upon x(t), x(t), and x(t). 

Substitution of Eq. (4) and Eq. (5) into Eq. (1) results in 
the following: 

(aM' + /3C + K')x' (t + At)+ M'a' ( 0 

+ Cibi(t)=Fi(t + At) (6) 

This can further be written as 

'Ki'i 'Ki'2 

'K2'i 'K22 

where 

q,(f + Ar) 

qi+l(t + At) 

'Ki'i 'Ki'2 

'K2'i 'K22 

*v/(0 

MO 

%(t+At)-RV;{t) 
-f ;+1(/ + A/ ) - L v , + 1(f) 

aM'' + /3C''+K'' 

= M'a''(/)+C'b'(/) 

(7) 

a'(0 , . b ' ( o = b ' ( 0 

a,+ 1(/)J 0>i+i(t) 
(8) 

with a'(/) and b'(/) partitioned consistent with x'(/) . Super­
scripts R and L represent right- and left-side elements, re­
spectively, of the /'th node. 

In order to proceed, the following claim is made and then 
proved: 

Claim: If the following relationship exists for the /th node 

Y,q,(/ + A/)={Lf , ( / + A / ) - L v , ( / ) j - z / ( / + A/) (9) 

where Y,- and z-,(t + At) are known, then the same type of 
relationship will exist for the (/+ l)th node. 

Proof: Merging Eq. (9) into Eq. (7) yields the following 
expression: 

*K,, + Y, 'ICVlf q,(/ + A/) 

'K21 i&JU+iO + AOj 
Rfi(t + At)+Lfi(t + At)-~(Rvi(t)+

L\i(t))-zi(t + At)l 
Lf,+ l(/ + A/)-Lv,+ 1(/) J 

(10) 

where the unknown forces Rfj{t) and Lf-,(t) at the /th node are 
related to the known external nodal force ff ' ( /) by 

*f ;(/)+Lf,(/)=fr(/) (11) 
Similarly, the sum of Rv,-(t) and Lv,(/) can be expressed as 

v/(0, 
\ ( / ) + L v , ( / ) = v , ( / ) 

\ a,(0 

,a,+ i ( 0 . 

[m^i1 m a ' + m ' n m'12] 

(V,(o 
+ [C2l' Cii'+C'i, C'12] b,-(0 

b , + 1 ( 0 . 

(12) 

(13) 

thereby reducing the number of computations required by the 
analysis. Combining Eqs. (11) and (12) with Eq. (10) yields 
the expression: 

* „ 'K l 2 i r q,(f + A0 
'K21

 ;K22J[q, + 1(/+A/)^ 

fjXI(t + At)-vi(t)-zi(t + Atfl 

Lf,+ 1 ( / + A / ) - L v , + i ( 0 

where the following notation is used: 

'K. ' .+Y^'K, , 

'K1'2 = 'K12 

'K2'i = 'K2i 

'K2'2 = 'K22 (14) 

Using Eq. (13), q;(f + A/) can be expressed in terms of 
q / + 1( / + A/) 

q,-(f + AO=-'K,-i"K1 2q / + , (f + A/) 

+ 'Kr1
1(ff'(/ + A / ) - v , ( / ) - z , ( / + A/)) (15) 

Equation (13) can now be used in conjunction with Eq. (15) 
to yield the following expression for q,+ 1 ( / + A/): 

('K22-'K21'Kr1"K12)q,+ 1 ( / + AO 

= (Lf /+1(/ + A / ) - L v / + i ( 0 ) 

-'K21 'Kr1
1(ff'(/ + A / ) - v ; ( / ) - z , ( / + A/)) (16) 

It can be seen that Eq. (16) is of the same form as Eq. (9), 
where 

2,+ 1 ( / + A/)='K2/Kr1
1(ff '(/ + A / ) - v , ( / ) - z , ( / + A/)) (17) 

and 

Y,+ , = (/K22-'K2i'Kri"Ki2) (18) 

thus validating the claim previously made. 
It should be noted that Eq. (9) is also valid for /= 1, where 

the following conditions hold: 
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Y, =0 
Lfi(/ + AO=0 

L v , U ) = 0 

Zi(t + At)=0 (19) 

allowing for the determination of all z,(? + A/) and Y,- (/'=!, 
2, ..., n + 1). For / = « + 1, Eq. (9) can also be written as 

Y„+ iq„+ , ( / + A/) = J i f„ + , ( / + A/) 

- L v „ + i ( 0 ) - z „ + 1 ( ? + A0 (20) 

with the following boundary conditions for the rotor: 

%+l(t + At)=Ch(t + At) (21) 

Lv„+1(/) = [m'l'2 m y 
a„(0 

a „ + i ( 0 
+ [Cl2 C'h] 

Kit) 

>«+i(0 
(22) 

hence, q„+ i (? + A/) can be calculated. Additionally, all 
q,(C + Ar) (/' = «, «—1, ..., 1) can be calculated as well using 
Eq. (15). It is important to mention that all matrices Y,- and 
K,(/ = 1, 2, ..., n+ 1) are calculated only once for a constant 
rotational speed of the system. 

3.2 Computer Implementation. The algorithm for the in­
troduced SMAC method followed in the computer implemen­
tation is given below: 

(1) Input the data for the rotor system. 
(2) Obtain the equations of motion for each finite element 

formulations. 
(3) Get the initial conditions (i.e., q,(/o) and q,Uo)), and 

calculate q,(?o), for /= 1, 2, ..., n+ 1. 
(4) Set the value of At, and calculate the values of a and 

0. 
(5) Form all K' matrices, (Eq. (7)) for ;'= 1, 2, ...n. 
(6) Set ,K,, = ,Ki, 

Form '" 'D, 'Kn.- '- 'E 
, ' - 'D = /- |K2'I 

'K„ = 'K1'1 +
 / 

for /' = 2, 3, .../?+ 1 as follows 

'-'Kf,1 

K22 'D'-'K,'-

Ml *M2 

(7) For each time step: 
(a) Depending upon the numerical method utilized and 

the values of q;(?)> Q/(0 andq,(r) , calculate a,-(?) 
and b,-(0 for /= 1, 2, . . .«+ 1. 

(b) Calculate v,-(0 as given in Eq. (12), for / = 1 , 2, 
...« + 1 (for /= 1, all the quantities ms', c£ with su­
perscript (/— 1) are equal to zero). 

(c) Calculate all external forces ff ' ( / + At) 
(d) ^tgx = nx'{t+At)+ydt). 

Get g;, for / = 2 , 3, . . .«+ 1 as follows: 

g,- = 'K„'[ff (t + At) + v;(t) -'- 'D g,_,] 

(e) Set q,1+i(/ + AO=g„+|. 
Get g,-(r + A0 , for / = « , « — 1 , ...2, 1 as follows: 

q/(f + Af)=g,- /Eq,-+ 1 ( r + AO 
(/) Calculate q,-(f + A0 and q,(r + A0 , for i=\, 2, 

...n+l, Eq. (4) and Eq. (5). 
(g) Go to step (7a) after setting the value of time t to 

t + At. 
A flowchart for the proposed SMAC method is presented 

in Fig. 3. In this particular implementation the equations of 
motion were obtained using a FEM formulation corresponding 
to a conservative system (Lalanne and Ferraris, 1990; Nelson 
and McVaugh, 1976). The Wilson-0 numerical scheme was 
applied in the implementation of Step 7 [Eqs. (4) and (5)] of 
the algorithm. The algorithm developed is applicable to single-
shaft rotor systems, and development of the appropriate sub­
routines for extension to multishaft rotor system is currently 
under way. 

Read Data 

Get E.O.M. for 
each element 

Read Initial Conditions 

q, (Q and q; (Q 

Set At 
Calculate a and (1 

Calculate <\{ (ty) 

Form all [%,} 

Equation 7. 

Form I'Ku], ['£)] and [;fi] 

Step 6. algorithm 

Set t ~ to 

Print q ( t ) and t 

Calcnlte a,-(t) and b ( ( t ) 

v,-(t) and fr'{t + At) 

Calculate g; 

Step 7d. algoritlim 

Calculate q^t + At) 

Step 7e. algorithm 

Calcnlte q,-(t + At) and 

q;(t + At) (Eqs. 4 and 5) 

Set t = t + At 

Yes 

Exit 

Fig. 3 Flow-chart for the proposed SMAC algorithm 

4 Implementation Issues 
Two issues of importance in the evaluation of a numerical 

method for time-dependent phenomena are: stability and time-
step size. The numerical stability of the proposed SMAC 
method is solely dependent upon the numerical scheme used 
in solving Eq. (4) and Eq. (5). Since the Wilson-0 method was 
utilized, in order to ensure accuracy and unconditional stability 
an appropriate value of the parameter 6 should be selected 
(Bathe and Wilson, 1973). 

Selection of the time-step size is important since accuracy 
and CPU time increase by decreasing it. In transient response, 
the selection of the time step basically depends on the rotor 
speed and the frequencies of the lower modes of the system. 
The use of FEM formulations results in inaccurate magnitudes 
for the higher modes, indicating that smaller time steps may 
not always produce more accurate results. Numerical examples 
and performance evaluations are presented in Part 2 of this 
paper (Ratan and Rodriguez, 1992). 

5 Summary 

A new method for the transient dynamic analysis of rotor 
systems has been presented. The proposed method, referred 
to as the Successive Merging and Condensation (SMAC) 
method, employs condensation and merging techniques on the 
equations of motion of a rotor system. These manipulations 
of the FEM-based matrices make the introduced scheme com­
putationally more efficient than existing algorithms. A Claim, 
and its Proof, have been presented as the basis for the for­
mulation of the proposed algorithm. The SMAC method is 
capable of handling linear as well as nonlinear, and conserv­
ative as well as nonconservative gyroscopic systems. The for­
mulation presented is appropriate for single-shaft systems, and 
extensions to multishaft systems are currently under study. 
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