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Abstract

Let N be a complete hyperbolic 3-manifold that is an algebraic limit of geometrically
finite hyperbolic 3-manifolds. We show N is homeomorphic to the interior of a compact
3-manifold, or tame, if one of the following conditions holds:

1. N has non-empty conformal boundary,

2. N is not homotopy equivalent to a compression body, or

3. N is a strong limit of geometrically finite manifolds.

The first case proves Ahlfors’ measure conjecture for Kleinian groups in the closure of
the geometrically finite locus: given any algebraic limit Γ of geometrically finite Kleinian
groups, the limit set of Γ is either of Lebesgue measure zero or all of Ĉ. Thus, Ahlfors’
conjecture is reduced to the density conjecture of Bers, Sullivan, and Thurston.

1 Introduction

Let N be a complete hyperbolic 3-manifold. Then N is said to be tame if it is homeomorphic
to the interior of a compact 3-manifold. A clear picture of the topology of hyperbolic 3-
manifolds with finitely generated fundamental group rests on the following conjecture of A.
Marden.

Conjecture 1.1 (Marden’s Tameness Conjecture) Let N be a complete hyperbolic
3-manifold with finitely generated fundamental group. Then N is tame.

In this paper, we employ new analytic techniques from the theory of hyperbolic cone-
manifolds to fill in a step in W. Thurston’s original program to prove Conjecture 1.1 [Th2].
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Theorem 1.2 Let N be an algebraic limit of geometrically finite hyperbolic 3-manifolds. If
N has non-empty conformal boundary then N is tame.

Each complete hyperbolic 3-manifold N is the quotient H3/Γ of hyperbolic 3-space
by a Kleinian group, namely, a discrete subgroup of Isom+H3, the orientation-preserving
isometries of hyperbolic 3-space. The group Γ and its quotient N = H3/Γ are called
geometrically finite if a unit neighborhood of the convex core of N (the minimal convex
subset whose inclusion is a homotopy equivalence) has finite volume, and N is an algebraic
limit of the manifolds Ni = H3/Γi if there are isomorphisms ρi : Γ→ Γi so that ρi converges
up to conjugacy to the identity as a sequence of maps to Isom+H3.

The extension to Ĉ of the action of Γ partitions the Riemann sphere into its domain of
discontinuity Ω(Γ), where Γ acts properly discontinuously, and its limit set Λ(Γ), where Γ
acts chaotically. The quotient Ω(Γ)/Γ, the conformal boundary of N , gives a bordification
of N by finite area hyperbolic surfaces (see [Ah1]). In regard to the action of Γ on Ĉ, L.
Ahlfors made the following conjecture (see [Ah1, 1.4]).

Conjecture 1.3 (Ahlfors’ Measure Conjecture) Let Γ be a finitely generated Kleinian
group. Then either Λ(Γ) is all of Ĉ or Λ(Γ) has Lebesgue measure zero.

Ahlfors established his conjecture for geometrically finite Γ in [Ah2]. Work of Thurston,
Bonahon and Canary demonstrated the relevance of Conjecture 1.1 to Ahlfors’ conjecture.

Theorem 1.4 ([Th1, Bon2, Can1]). If N = H3/Γ is tame, then Ahlfors’ conjecture holds
for Γ.

Thus, Theorem 1.2 readily implies the following case of Ahlfors’ conjecture.

Theorem 1.5 Let N = H3/Γ be an an algebraic limit of geometrically finite hyperbolic
3-manifolds. Then Ahlfors’ conjecture holds for Γ.

Theorem 1.5 reduces Ahlfors’ conjecture to the following conjecture originally formulated
by Bers and expanded upon by Sullivan and Thurston.

Conjecture 1.6 (Bers-Sullivan-Thurston Density Conjecture) If N is a complete
hyperbolic 3-manifold with finitely generated fundamental group, then N is an algebraic limit
of geometrically finite hyperbolic 3-manifolds.

With the same methods, we obtain Conjecture 1.1 for limits of geometrically finite manifolds
provided either π1(N) is not isomorphic to the fundamental group of a compression body,
or N is a strong limit. We detail these consequences after providing some context for our
results.

Theorem 1.2 is part of a history of tameness results for limits of either tame or geo-
metrically finite manifolds. The first of these was proven by Thurston, who carried out his
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original suggested approach to Conjecture 1.1 (see [Th2]) by promoting geometric tameness,
a geometric criterion on the ends of a hyperbolic 3-manifold, to algebraic limits N for which
π1(N) is freely indecomposable (the condition is slightly different in the presence of cusps;
see [Th1]). He also showed that his geometric tameness criterion was sufficient to guarantee
the topological tameness condition of Conjecture 1.1 in this setting.

F. Bonahon later established that geometric tameness holds generally under such as-
sumptions on π1(N) [Bon2], obviating any need for limiting arguments. Using Bonahon’s
work, Canary established the equivalence of geometric tameness and the topological condi-
tion of Conjecture 1.1 [Can1].

The inspiration for the present argument arises from the successful pursuit by R. Canary
and Y. Minsky [CM] of Thurston’s original limiting approach when π1(N) may decompose
as a free product, and its recent extension by the third author [Ev2]. Each of these limiting
arguments, however, makes strong working assumptions about the type of convergence and
the role of parabolics in particular.

Our aim here is to employ the analytic theory of cone-deformations to force such as-
sumptions to hold for some approximation of a given hyperbolic 3-manifold N . Before
outlining our approach to Theorem 1.2, we record some other applications of our methods.

Algebraic and geometric limits. One element of our proof of Theorem 1.2 relies on an
in-depth study of the relationship between algebraic and geometric convergence carried out
by Anderson and Canary [AC1, AC2] in their work on a conjecture of T. Jørgensen (see
Conjecture 2.2). Their results are applicable in another setting, to which our techniques
then also apply.

We will say a group G is a compression body group if it admits a non-trivial free prod-
uct decomposition into orientable surface groups and infinite cyclic groups (then G is the
fundamental group of a compression body, see [Bon1, App. B]).

Theorem 1.7 Let N be an algebraic limit of geometrically finite hyperbolic 3-manifolds
and assume π1(N) is not a compression body group. Then N is tame.

When the algebraic limit N of Ni is also the geometric limit, or the Gromov-Hausdorff
limit of Ni (with appropriately chosen basepoints), we say Ni converges strongly to N . As
we will see, our study is closely related to this notion of strong convergence. Conjecture 1.1
also follows for this category of limits, with no assumptions on the limit itself.

Theorem 1.8 Let N be a strong limit of geometrically finite Ni. Then N is tame.

Drilling accidental parabolics. The central new ingredient in our proof of Theorem 1.2
has its origins in the deformation theory of hyperbolic cone-manifolds as developed by S.
Kerckhoff, C. Hodgson and the second author, and its utilization in the study of Conjec-
ture 1.6 by the first and second authors (see [Brm4, BB2, BB1]). The key tool arising from
these techniques is a drilling theorem, proven in [BB2], whose efficacy we briefly describe.
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A sufficiently short closed geodesic η in a geometrically finite hyperbolic 3-manifold N
can be “drilled out” to yield a new complete hyperbolic manifold N0 homeomorphic to N \η.
A “torus” or “rank-2” cusp remains in N0 where η has receded to infinity. The Drilling
Theorem (see Theorem 3.3) gives quantitative force to the idea one can drill out a short
geodesic with small effect on the geometry of the ambient manifold away from a standard
tubular neighborhood of the geodesic. In practice, the theorem allows one effectively to
eliminate troublesome accidental parabolics in an algebraically convergent sequence Ni →
N , namely, parabolic elements of π1(N) whose corresponding elements in π1(Ni) are not
parabolic.

Drilling out of Ni the short geodesic representatives of the accidental parabolics in N
changes the topology of Ni, but changes the geometry on a compact core carrying π1(Ni)
less and less. Passing to the cover corresponding to the core yields a manifold N̂i with the
correct (marked) fundamental group, and the geometric convergence of the cores guarantees
that this new sequence {N̂i} still converges to N . Moreover, the cusps of N are cusps in each
N̂i, so with respect to the approximation by N̂i the limit N has no accidental parabolics.
The incipient cusps have been “drilled” to become cusps in the approximates.

When the Drilling Theorem is applied to an appropriate family of approximates for N ,
we obtain a convergent sequence N̂i → N that is type-preserving: cusps of N are in one-to-
one correspondence with the cusps of N̂i. In other words, we have the following theorem,
which represents the central result of the paper.

Theorem 1.9 (Limits are Type-Preserving Limits) Each algebraic limit N of ge-
ometrically finite hyperbolic 3-manifolds is also a limit of a type-preserving sequence of
geometrically finite hyperbolic 3-manifolds.

(See Theorem 3.1 for a more precise statement).
Historically, accidental parabolics have represented the principal potential obstruction

to strong convergence, as they often signal the presence of extra parabolic elements in the
geometric limit (see, for example [BO], [Th4, Sec. 7], [Br], and Conjecture 2.2).

Theorem 1.9 represents the heart of the argument for Theorem 1.2. Indeed, applying
the results of Anderson and Canary mentioned above, we are ready to give the proofs of
Theorems 1.2, 1.5, and 1.7 assuming Theorem 1.9.

Proof: (of Theorems 1.2, 1.5, and 1.7). Let N be an algebraic limit of geometrically finite
hyperbolic 3-manifolds Ni, and assume that either

1. N has non-empty conformal boundary, or

2. π1(N) is not a compression body group.

Theorem 1.9 furnishes a type-preserving sequence N̂i → N . Applying results of Anderson
and Canary (see Theorem 2.3 or [AC2]), N̂i converges strongly to N . By a theorem of the
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third author (see Theorem 2.1 or [Ev2]), any type-preserving strong limit of tame hyperbolic
3-manifolds is also tame. It follows that N is tame, proving Theorems 1.2 and 1.7.

Theorem 1.5 follows from observing that if N = H3/Γ, then either Λ(Γ) = Ĉ or Ω(Γ)
is non-empty and N has non-empty conformal boundary. In the latter case, Theorem 1.2
implies that N is tame, and tameness of N guarantees that the Lebesgue measure of Λ(Γ)
is zero (see [Can1]). This proves Theorem 1.5. �

The strong topology. Implicit in the proofs of Theorems 1.2 and 1.7 is the idea that a
given algebraic limit can be realized as a strong limit. As an end in its own right, this step
in the proof verifies a conjectural picture of the deformation space due to Thurston (see
[Th3]) which we now briefly describe.

The space GF (M) of marked, geometrically finite hyperbolic 3-manifolds homotopy
equivalent to M inherits its topology from its inclusion in the set

H(M) = {ρ : π1(M)→ Isom+H3 | ρ is discrete and faithful}/conj.

equipped with the quotient of the topology of convergence on generators (the algebraic
topology). The set H(M) with this topology is denoted AH(M); in referring to a hyperbolic
manifold N as an element of H(M), we assume an implicit representation ρ : π1(M) →
Isom+H3 for which N = H3/ρ(π1(M)).

Marden and Sullivan proved [Mar1, Sul2] that the interior of AH(M) is the subset
MP (M) consisting of minimally parabolic geometrically finite structures, namely, those
whose only cusps are rank-2 (and therefore are forced by the topology of M).

If one imposes the stronger condition that convergent representatives ρ′i → ρ′ from
convergent conjugacy classes [ρi]→ [ρ] have images {ρ′i(π1(M))} that converge geometrically
to ρ′(π1(M)) (i.e. in the Hausdorff topology on closed subsets of Isom+H3) one obtains the
strong topology on H(M), denoted GH(M) (the quotients converge strongly in the sense
above). As a step in our proof of Theorem 1.9 we establish the following theorem, which
generalizes results of W. Abikoff and Marden [Ab, Mar2] and seems to be well known.

Theorem 1.10 Each N ∈ GF (M) lies in the closure of MP (M) in GH(M).

(See Theorem 3.4).
The identity map on H(M) determines a continuous mapping

ι : GH(M)→ AH(M).

One can ask, however, whether ι sends the closure of the geometrically finite manifolds
GF (M) taken in GH(M) onto its closure taken in AH(M). In other words,

(∗) is every algebraic limit of geometrically finite manifolds a strong limit of some sequence
of geometrically finite manifolds?
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In particular, when π1(M) is not a compression body group, we have a positive answer to
this question (see Corollary 4.2).

Corollary 1.11 Let M be such that π1(M) is not a compression body group. Then for each
N ∈ GF (M) ⊂ AH(M), there is a sequence {Ni} ⊂ GF (M) converging strongly to N .

(A similar result obtains for each algebraic limit N of geometrically finite manifolds such
that N has non-empty conformal boundary; see Corollary 3.2).

In the language of Thurston’s description of the case when M is acylindrical (see [Th3,
Sec. 2]), Corollary 1.11 verifies the that “shell” adheres to the “hard-boiled egg” AH(M)
after “thoroughly cracking the egg shell on a convenient hard surface” to produce GH(M).

Rigidity and ergodicity. Historically, Ahlfors’ conjecture fits within a framework of
rigidity and ergodicity results for Kleinian groups and geodesic flows on their quotients
due to Mostow, Sullivan and Thurston (see, e.g. [Mos], [Sul1], and [Th1]). In particular,
Ahlfors’ conjecture has come to be associated with the following complementary conjecture.

Conjecture 1.12 (Ergodicity) If the finitely generated Kleinian group Γ has limit set
Λ = Ĉ, then Γ acts ergodically on Ĉ× Ĉ.

Conjecture 1.12 guarantees the ergodicity of the geodesic flow on the unit tangent bundle
T1(H3/Γ) as well as the non-existence of measurable Γ-invariant line-fields on Ĉ (Sullivan’s
rigidity theorem [Sul1]) which lies at the heart of the modern deformation theory of hyper-
bolic 3-manifolds (see [Mc1] or [Can2] for a nice discussion of these conjectures and their
interrelations).

The results of Thurston, Bonahon, and Canary subsumed under Theorem 1.4 also estab-
lish Conjecture 1.12 as a consequence of the Tameness Conjecture (Conjecture 1.1). Thus,
we have the following corollary of Theorems 1.7 and 1.8.

Corollary 1.13 Let N = H3/Γ be an algebraic limit of geometrically finite manifolds Ni

and assume Λ(Γ) = Ĉ. If Γ is not a compression body group, or if N is a strong limit of
Ni, then Γ acts ergodically on Ĉ× Ĉ.

Plan of the paper. In section 2 we review background on hyperbolic 3-manifolds and their
deformation spaces. Section 3 represents the heart of the paper, where we apply the Drilling
Theorem to prove Theorem 1.9, assuming Theorem 1.10 (whose proof we defer to section 5).
In section 4 we discuss strong convergence, proving Theorem 1.8 and Corollary 1.11.

Acknowledgments. The authors would like to thank Dick Canary for his mentorship
and for many useful conversations on the topic of this paper. The analytic deformation
theory of hyperbolic cone-manifolds, developed by Craig Hodgson and Steve Kerckhoff,
plays an integral role in our study via its use in the proof of Theorem 3.3. We thank Dennis
Sullivan and Curt McMullen for elaborations on the history of Ahlfors’ Conjecture and
other consequences of Conjecture 1.1, and the referee for many useful comments.
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2 Preliminaries

Let N = H3/Γ be the complete hyperbolic 3-manifold given as the quotient of H3 by a
Kleinian group Γ, a discrete, torsion-free subgroup of PSL2(C) = Isom+H3. The action of Γ
partitions Ĉ into its limit set Λ(Γ) = Γ(0)∩ Ĉ, the intersection of the closure of the orbit of
a point 0 ∈ H3 with the Riemann sphere, and its domain of discontinuity Ω(Γ) = Ĉ \Λ(Γ)
where Γ acts properly discontinuously.

The hyperbolic manifold N extends to its Kleinian manifold

N = (H3 ∪ Ω(Γ))/Γ

by adjoining its conformal boundary ∂N = Ω(Γ)/Γ at infinity.

Algebraic and geometric convergence. Let M be a compact, orientable hyperbolizable
3-manifold, namely, a compact, orientable 3-manifold whose interior admits some complete
hyperbolic structure. We assume throughout for simplicity that all 3-manifolds in question
are oriented and all homeomorphisms between them (local and otherwise) are orientation
preserving.

Let D(M) denote the space of representations

ρ : π1(M)→ Isom+H3

that are discrete and faithful; D(M) is topologized by convergence of the representations on
generators as elements of Isom+H3. Convergence in D(M) is called algebraic convergence.

Each ρ ∈ D(M) determines an associated Kleinian holonomy group ρ(π1(M)) < Isom+H3

and a complete quotient hyperbolic 3-manifold

H3/ρ(π1(M)) = Nρ,

but conjugate representations in D(M) determine isometric hyperbolic quotients. For a
more geometric picture that eliminates this redundancy, we pass to the quotient of D(M) by
conjugacy and denote this quotient with its quotient topology by AH(M). Since hyperbolic
3-manifolds are K(G, 1)s, elements of AH(M) are in bijection with equivalence classes of
pairs (f,N) where N is a hyperbolic 3-manifold and

f : M → N

is a homotopy equivalence (or marking), modulo the equivalence relation (f,N) ∼ (f ′, N ′)
if there is an isometry φ : N → N ′ so that f ◦φ is homotopic to f ′. The marking f naturally
determines a holonomy representation in D(M) up to conjugacy by the association

f 7→ f∗.

7



It will be useful to view elements of AH(M) both as conjugacy classes of representations
and as marked hyperbolic 3-manifolds at different points in our argument, and likewise we
will from time to time view ρ ∈ D(M) as an isomorphism between π1(M) and π1(Nρ).

A related notion of convergence for hyperbolic 3-manifolds is that of geometric conver-
gence. As a complete hyperbolic 3-manifold N determines a Kleinian group only up to
conjugacy, we will pin down a unique representative of the conjugacy class by equipping N
with the additional data of a baseframe ω, an orthonormal frame in Tp(N) at a basepoint
p. Then there is a unique Kleinian group Γ so that if ω̃ denotes the standard baseframe at
the origin in H3 then

(H3, ω̃)/Γ = (N,ω),

in other words, the standard baseframe ω̃ covers the baseframe ω in the quotient under the
locally isometric covering map.

A sequence of based hyperbolic 3-manifolds (Ni, ωi) converges to a based hyperbolic
3-manifold (NG, ωG) geometrically if their associated Kleinian groups Γi converge geomet-
rically to the Kleinian group ΓG associated to (NG, ωG):

1. for each γ ∈ ΓG there is a sequence of elements γi ∈ Γi so that γi → γ, and

2. for each convergent sequence of elements γij → γ in a subsequence Γij we have γ ∈ ΓG.

Fundamental compactness results (see, e.g. [CEG, Sec. 3]) guarantee that each algebraically
convergent sequence ρi → ρ in D(M) has a subsequence for which the image Kleinian groups
{ρi(π1(M))} converge geometrically to a limit ΓG. In such a setting, the algebraic limit
ρ(π1(M)) is a subgroup of the geometric limit ΓG by property (2) in the definition of
geometric convergence.

Given an algebraically convergent sequence (fi, Ni) ∈ AH(M) converging to a limit
(f,N), then, we may pass to a subsequence and choose baseframes ωi ∈ Ni so that (Ni, ωi)
converges geometrically to a geometric limit (NG, ωG) that is covered by N by a local
isometry. Thus, any algebraic limit (f,N) has such an associated geometric limit NG,
although it may have many such geometric limits. In the case that NG is unique and the
covering N → NG is an isometry we say that the sequence (fi, Ni) converges strongly to
(f,N).

Here is a more internal formulation of geometric convergence. A diffeomorphism g : M →
N is L-bi-Lipschitz if for each p ∈M its derivative Dg satisfies

1
L
≤ |Dg(v)|

|v|
≤ L

for each v ∈ TpM . The least L ≥ 1 for which g is L-bi-Lipschitz is the bi-Lipschitz constant
of g. Then the sequence (Ni, ωi) converges to (NG, ωG) if for each compact submanifold
K ⊂ NG with ωG ∈ K, there are bi-Lipschitz embeddings

φi : (K,ωG)→ (Ni, ωi)
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for all i sufficiently large, so that the 1-jet of φi sends ωG to ωi, and the bi-Lipschitz constant
Li for φi tends to 1 (cf. [BP, Thm. E.1.13] [Mc2, Sec. 2.2]).

Relative compact cores. By a Theorem of Peter Scott (see [Scott]), each complete
hyperbolic 3-manifold N with finitely generated fundamental group admits a compact core
M, namely, a compact submanifold whose inclusion is a homotopy equivalence. In the
presence of cusps, one can relativize this compact core, aligning distinguished annuli and
tori in ∂M with the cusps of N . We now describe this notion in detail.

By the Margulis lemma (see [BP, Thm. D.3.3]), there is a uniform constant µ > 0, so
that for any ε < µ and any complete hyperbolic 3-manifold N , each component T of the
ε-thin part N≤ε of N where the injectivity radius is at most ε has a standard form: either

1. T is a Margulis tube: a solid torus neighborhood Tε(γ) of a short geodesic γ in N
with `N (γ) < 2ε (T is the short geodesic itself if `N (γ) = 2ε), or

2. T is a cusp: the quotient of a horoball B ⊂ H3 by the action of a Z or Z⊕Z parabolic
subgroup of Isom+H3 with fixed point at B ∩ Ĉ.

When T = B/Z ⊕ Z, the component T is called a rank-2 cusp, and when T = B/Z, T is
called a rank-1 cusp. We will frequently denote rank-2 cusp components of N≤ε by Pε. The
constant µ is called the 3-dimensional Margulis constant.

Now let N be a complete hyperbolic 3-manifold with finitely generated fundamental
group. For ε < µ, we denote by P ε the cuspidal ε-thin part of N , namely, components of
N≤ε corresponding to cusps of N .

By work of McCullough [McC] or Kulkarni and Shalen [KS] there is a compact subman-
ifold M whose inclusion is a map of pairs

ι : (M,P)→ (N \ int(P ε), ∂P ε)

so that

1. P ⊂ ∂M is a union of compact incompressible annuli and tori called the parabolic
locus, and each component of ∂M\P has negative Euler characteristic,

2. ι is a homotopy equivalence, and

3. for each component P̂ ε of P ε there is a component P̂ of P so that ι(P̂) lies in ∂P̂ ε.

Then we call the pair K = (M,P) a relative compact core for N relative to its cuspidal
ε-thin part P ε.

A geometric criterion for algebraic convergence. Given a sequence {(fi, Ni)} of
marked hyperbolic 3-manifolds in AH(M), it is desirable to have geometric criteria on
manifolds Ni to ensure algebraic convergence as in the case of geometric convergence.
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Given Nρ ∈ AH(M), the holonomy representation ρ : π1(M)→ Isom+H3 is determined
by the restriction of the hyperbolic metric to a compact core for N . It follows that the
sequence {(fi, Ni)} ⊂ AH(M) converges algebraically to its algebraic limit (f,N) if there
is a compact core K for N and smooth homotopy equivalences gi : N → Ni so that

1. gi ◦ f is homotopic to fi, and

2. gi is an Li-bi-Lipschitz local diffeomorphism on K with Li → 1.

The convergence of the bi-Lipschitz constant to 1 guarantees that the maps gi are nearly
local isometries for large i: lifts g̃i of gi (suitably normalized) are equicontinuous from K̃ to
H3, and any limit on a compact subset of K̃ is a 1-bi-Lipschitz diffeomorphism, hence an
isometry. Since K is a compact core for N , the convergence of g̃i on a compact fundamental
domain for the action of π1(N) on K̃ suffices to control the holonomy representations (fi)∗
up to conjugation in Isom+H3 (cf. [CEG, Sec. 1.5, 3.2], [Mc2, Thm. B.24]).

Persistence of tameness. The question of the persistence of tameness of hyperbolic
3-manifolds under algebraic convergence was first raised and answered by Thurston in the
context of M with incompressible boundary with certain mild assumptions on cusps (see
[Th1, Thm. 9.6.2a]). This result is now a consequence of Bonahon’s tameness theorem
[Bon2].

Work of Canary and Minsky [CM] (see also [Ohs]) removed the restrictions on M to
establish that tameness persists under strong limits ρi → ρ in D(M) if the representations
ρi and ρ are purely hyperbolic, namely, every element of π1(M) has image a hyperbolic
element of Isom+H3. These results were generalized by the third author (see [Ev1, Ev2])
to the setting of type-preserving limits. An algebraically convergent sequence ρi → ρ is
type-preserving if for each g ∈ π1(M), the element ρ(g) is parabolic if and only if ρi(g) is
parabolic for all i. A convergent sequence Ni → N in AH(M) is type-preserving if Ni = Nρi

and N = Nρ for some type-preserving sequence ρi → ρ.

Theorem 2.1 (Evans) Let Ni → N be a type-preserving sequence of representations in
AH(M) converging strongly. Then if each Ni is tame, the limit N is tame.

Strong convergence and Jørgensen’s conjecture. In light of Theorem 2.1 a conjecture
of Jørgensen is an undercurrent to the paper.

Conjecture 2.2 (Jørgensen) Let ρi → ρ be a type-preserving sequence in D(M) with
limit ρ. Then ρi converges strongly to ρ.

Anderson and Canary have resolved Jørgensen’s conjecture in many cases [AC2, Thm. 3.1]
(see also [Ohs]).

Theorem 2.3 (Anderson-Canary) Let ρi → ρ be a type-preserving sequence in D(M)
with limit ρ. If either
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1. {ρ(π1(M))} has non-empty domain of discontinuity, or

2. π1(M) is not a compression body group,

then ρi converges strongly to ρ.

For the purposes of addressing Ahlfors’ conjecture, it is case (1) that will be of interest
to us, but in each case our techniques produce new strong approximation theorems (see
section 4).

3 Cone-manifolds, drilling, and strong convergence

The aim of this section is to promote algebraic approximation of a hyperbolic 3-manifold N
by geometrically finite manifolds to type-preserving approximation by geometrically finite
manifolds. As seen in the last section, the type-preserving condition is sufficient to ensure
strong convergence with certain assumptions on N .

Given a compact hyperbolizable 3-manifold M , we will focus on the closure GF (M) ⊂
AH(M) of the geometrically finite locus (Conjecture 1.6 predicts GF (M) = AH(M)). We
will assume here and in the sequel that π1(M) is non-abelian to avoid the trivial case of
elementary Kleinian groups.

Our goal in this section will be to prove the following theorem.

Theorem 3.1 (Limits are Type-Preserving Limits) Let N ∈ GF (M) be the algebraic
limit of the manifolds Ni ∈ GF (M). Then there is a type-preserving sequence N̂i → N for
which each N̂i lies in GF (M).

Then applying Theorem 2.3 of Anderson and Canary [AC2, Thm. 3.1], we have the
following corollary.

Corollary 3.2 Let N ∈ GF (M) have non-empty conformal boundary ∂N . Then there is
a type-preserving sequence N̂i → N for which each N̂i lies in GF (M) and the convergence
N̂i → N is strong.

The following theorem of the first and second authors will play a central role in all that
follows.

Theorem 3.3 (Brock-Bromberg) (The Drilling Theorem) Given L > 1 and ε0 <
µ, there is an ε > 0 so that if N is a geometrically finite hyperbolic 3-manifold with no rank-
1 cusps and η is a closed geodesic in N with length at most ε, then there is an L-bi-Lipschitz
diffeomorphism of pairs

h : (N \Tε0(η), ∂Tε0(η))→ (N0 \Pε0(η), ∂Pε0(η))

where N0 is the complete hyperbolic structure on N \ η with the same conformal boundary,
and Pε0(η) is the rank-2 cusp component of the thin part (N0)≤ε0 corresponding to η.
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A similar statement holds for drilling multiple short geodesics in a collection C (see [BB2,
Thm. 6.2], [Brm3]).

The theorem relies on fundamental work of C. Hodgson and S. Kerckhoff on the defor-
mation theory of 3-dimensional hyperbolic cone-manifolds. The key estimate gives control
on the L2 norm outside of Tε0(η) of a harmonic cone-deformation that sends the cone angle
at η from 2π to zero: cone-angle zero corresponds to a torus cusp at η. As the length of η
tends to zero, the L2 norm also tends to zero. Mean value estimates then give pointwise C2

control over the metric distortion in the thick part. One then uses this control to extend
the deformation over the thin parts other than Tε0(η).

Remark: While the use of the Drilling Theorem in [BB2] requires cone-deformations involv-
ing cone angles greater than 2π, and thence an application of [HK3], the cone-deformations
implicit in the version of the Drilling Theorem stated above will only involve cone angles
in the interval [0, 2π]. These cases are addressed in [HK2], [HK1], [Brm2] and [Brm3].

An important approximation theorem we will use is the following result, whose proof
appears in section 5. While this result seems reasonably well-known, and cases have ap-
peared in work of W. Abikoff [Ab] and Marden [Mar2] (cf. [EM] [KT, Sec. 3]), we have been
unable to find a proof in the published literature. For completeness we devote section 5 to
a proof using now standard techniques of Marden, Maskit, Kerckhoff and Thurston.

Theorem 3.4 Each N ∈ GF (M) is a strong limit of manifolds in MP (M).

Recall from section 1 that MP (M) ⊂ GF (M) denotes the minimally parabolic structures
in GF (M), which comprise the interior of AH(M) [Mar1, Sul2]. Hyperbolic 3-manifolds
N ∈MP (M) are characterized by the property that each cusp of N is rank-2 and therefore
corresponds to a torus boundary component of M . Assuming Theorem 3.4, we proceed to
the proof of Theorem 3.1.

Proof: (of Theorem 3.1). We seek geometrically finite manifolds N̂i ∈ GF (M) converging
in a type-preserving manner to N . For reference, let ρi → ρ in D(M) be an algebraically
convergent sequence for which Ni = Nρi is geometrically finite and N = Nρ. Applying
Theorem 3.4, and a diagonal argument, we may assume that Nρi lies in MP (M) for each
i. Let f : M → N and fi : M → Ni be markings for N and Ni that are compatible with ρ
and ρi.

The idea of the proof is as follows: let a ∈ π1(M) be a primitive element so that ρ(a)
is parabolic but ρi(a) is not parabolic for all i. For each ε > 0 there is an I so that for all
i > I, the translation length of ρi(a) is less than ε. We may apply Theorem 3.3 to Ni once
the geodesic η∗i corresponding to ρi(a) is sufficiently short: we may drill out the geodesic η∗i
leaving the conformal boundary of Ni fixed. Since the length `Ni(η

∗
i ) of η∗i in Ni is tending

to zero, the bi-Lipschitz constants for the drilling diffeomorphisms hi are tending to 1 as
i tends to infinity. Thus, the drillings force parabolicity of the incipient parabolic in each
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approximate by a geometric perturbation that becomes smaller and smaller as the length
of η∗i tends to zero.

The drilling diffeomorphisms transport a compact core to the drilled manifold, so the
algebraic effect of the drilling is small as well: passing to the cover corresponding to the
image of the core, we obtain representations ρ̂i → ρ, for which ρ̂i(a) is parabolic for each i
and ρ̂i converges to ρ. Performing this process simultaneously for all such a produces the
desired type-preserving sequence.

Now we fill in the details. By a theorem of Brooks and Matelski [BM], given d > 0 there
is a constant εcollar(d) > 0 so that the distance from the boundary of the εcollar(d)-thin part
to the µ-thick part of a hyperbolic 3-manifold is at least d (recall µ is the 3-dimensional
Margulis constant). Moreover, given any δ > 0, there is a constant εshort(δ) > 0 so that
the arclength of a shortest essential closed curve on the boundary of any component of the
εshort(δ)-thin part is at most δ. We choose ε′ so that

ε′ < min{εcollar(2), εshort(1), µ/2}.

Let K = (M,P) be a relative compact core for N relative to the ε′-cuspidal thin part
P of N . Since ρi converges algebraically to ρ, there are smooth homotopy equivalences

gi : N → Ni

with gi ◦ f homotopic to fi, so that gi is a local diffeomorphism on K for i sufficiently large,
and the bi-Lipschitz constant for gi on K goes to 1.

The core K and its images gi(K) have diameters bounded by a constant D. Since
π1(K) ∼= π1(N) contains a pair of non-commuting elements, the Margulis lemma implies
that K and its images gi(K) cannot lie entirely in the µ-thin part. Thus, we may apply
[BM] and take

ε0 < εcollar(D)/2

to ensure K and gi(K) avoid the 2ε0-thin parts of N and of Ni respectively.
Since each manifold Ni lies in MP (M), each Ni is geometrically finite without rank-

1 cusps, so we may apply Theorem 3.3 to “drill” any sufficiently short geodesic in Ni.
Choose real numbers Ln → 1+, and let εn → 0+ be corresponding real numbers so that the
conclusions of Theorem 3.3 obtain.

There is an integer In so that for all i > In we have

`Ni(η
∗) < εn.

Applying Theorem 3.3, there are diffeomorphisms of pairs

hi : (Ni \Tε0(η), ∂Tε0(η))→ ((Ni)0 \Pε0(η), ∂Pε0(η))
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from the complement of the ε0-Margulis tube Tε0(η) about η∗ in Ni to the complement
of the ε0-torus cusp Pε0(η) corresponding to η in the drilled manifold (Ni)0, so that hi is
Ln-bi-Lipschitz. Assume we have re-indexed so that all i are greater than I0.

Let (Γi)0 be the holonomy group of (Ni)0. We claim there are natural injective homo-
morphisms

ρ̂i : π1(M)→ (Γi)0

that converge algebraically to ρ as representations from π1(M) to Isom+(H3), and so that
ρ̂i(a) is parabolic for all i.

Letting (Tε0(η))i be the ε0-Margulis tube about the geodesic η∗ in Ni, recall we have
chosen ε0 so that

gi(K) ∩ (Tε0(η))i = ∅

for each i. Then the mappings

hi ◦ gi|K : K → (Ni)0,

which we denote by ϕi, are bi-Lipschitz local diffeomorphisms with bi-Lipschitz constant
L′i → 1+.

Since K is a compact core for N , the mappings ϕi are π1-injective so we may consider
the locally isometric covers N̂i of (Ni)0 corresponding to the subgroups

(ϕi)∗(π1(K))

of π1((Ni)0). Let ϕ̃i denote the lift of ϕi to N̂i. Then we have

N̂i = H3/ρ̂i(π1(M))

where ρ̂i is induced by the isomorphism (ϕ̃i ◦ ι−1 ◦ f)∗ and ι−1 denotes a homotopy inverse
for the inclusion ι : K → N . Since the bi-Lipschitz constants L′i for ϕi, and hence for ϕ̃i
converge to 1, we may conclude that (after possibly conjugating each ρ̂i in Isom+H3) we
have ρ̂i → ρ in D(M).

We now claim that ρ̂i(a) is parabolic for all i. The parabolic locus P sits in the boundary
of the cuspidal ε′-thin part P ε

′
. We may assume, after modifying our choice of K by an

isotopy, that each annular component of P of the parabolic locus of K contains an essential
closed curve of shortest length on the boundary of the component of P ε

′
in which it lies.

Let a′ be such a shortest curve in the annular component A of P ε
′

representing the
free homotopy class of ρ(a) in π1(N). Since the bi-Lipschitz constants for gi are converging
to 1 on K, the arc length `Ni(gi(a

′)) of the loop gi(a′) in Ni is less than 2`N (a′) for all i
sufficiently large. It follows from our choice of ε′ that that the image gi(a′) lies entirely
within the Margulis tube (Tµ(η))i in Ni for all i sufficiently large. Moreover, since we chose
ε0 so that

gi(K) ∩ (Ni)≤ε0 = ∅,
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we may conclude that gi(a′) does not intersect the Margulis tube (Tε0(η))i.
Thus, if n is taken sufficiently large so that εn < ε0, the curve gi(a′) is homotopic within

the Margulis tube (Tµ(η))i in the complement of the Margulis tube (Tε0(η))i to a curve a′′

on ∂(Tε0(η))i for all i > In. Let Ht : S1 → Ni \ (Tε0(η))i denote this homotopy (one can
use radial lines from the core geodesic η∗ through gi(a′) to construct Ht).

Since the diffeomorphisms hi are maps of pairs, the restriction hi|∂(Tε0 (η))i is a diffeo-
morphism of ∂(Tε0(η))i to ∂(Pε0(η))i. Thus, the homotopy Ht gives a homotopy

hi ◦Ht : S1 → (Ni)0 \ (Pε0(η))i

from ϕi(a′) to ϕi(a′′), and ϕi(a′′) has image in ∂(Pε0(η))i. It follows that the curve a′ ⊂ A
has image under ϕi homotopic into the component (Pµ(η))i of the cuspidal µ-thin part
of (Ni)0, and therefore that (ϕ̃i ◦ ι−1 ◦ f)∗ sends a to a parabolic element in π1(N̂i). We
conclude that ρ̂i(a) is parabolic for all i.

When P has many annular components A1, . . . ,Am, the argument proceeds similarly.
Letting aj be the core curve of Aj , we first simultaneously drill short geodesics in the
collection Ci of geodesic representatives in Ni of the curves gi(aj), j = 1, . . . ,m. Taking
covers corresponding to the image of the core under drilling again yields representations
ρ̂i ∈ D(M) and quotient manifolds N̂i = H3/ρ̂i(π1(M)) that converge algebraically to N .
Repeating the above arguments cusp by cusp demonstrates that ρ̂i(aj) is parabolic for each
i and each j = 1, . . . ,m, so the convergence N̂i → N is type-preserving. �

Corollary 3.2 is a simple application of Theorem 2.3.

Proof: (of Corollary 3.2). When Nρ has non-empty conformal boundary, the holonomy
group ρ(π1(M)) has non-empty domain of discontinuity. Since {ρ̂i} is a type-preserving
sequence with limit ρ, we may apply Theorem 2.3 to conclude that ρ is a strong limit of ρ̂i.
This proves the Corollary. �

4 The strong topology

The application of the Drilling Theorem to Ahlfors’ conjecture exploits the solution of
Anderson and Canary to Jørgensen’s conjecture for type-preserving limits with non-empty
domain of discontinuity [AC2].

For this section, we focus on the second conclusion of Theorem 2.3.

Theorem 4.1 (Anderson-Canary) If π1(M) is not a compression body group, then any
type-preserving sequence Ni → N in AH(M) converges strongly.

As remarked in [AC1], their result holds under the weaker assumption that a relative
compact core (M,P) for N relative to its cusps is not a relative compression body (see [AC1,
Sec. 11] for a details).
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Applying Theorem 3.1 and Theorem 2.3, then, we have the following corollary of the
proof of Theorem 1.7.

Corollary 4.2 If π1(M) is not a compression body group, then each N ∈ GF (M) is a
strong limit of a sequence N̂i of manifolds in GF (M).

Finally, we conclude with an application of Theorem 3.1 to all strong limits of geomet-
rically finite hyperbolic 3-manifolds.

Theorem 4.3 If N is a strong limit of geometrically finite hyperbolic 3-manifolds, then N
is tame.

Proof: If N is a strong limit of geometrically finite hyperbolic 3-manifolds, then we may
once again assume that N is a strong limit of manifolds Ni lying in MP (M), by a di-
agonal argument applying Theorem 3.4. We show that the type-preserving sequence N̂i

furnished by Theorem 3.1 can be chosen to converge strongly; the theorem then follows
from Theorem 2.1.

To this end, let ω ∈ N be a baseframe in the convex core of N . By strong convergence,
we may choose ωi ∈ Ni so that (Ni, ωi) converges geometrically to (N,ω). Given any
compact submanifold K ⊂ N with ω ∈ K, geometric convergence provides bi-Lipschitz
embeddings

φi : K → Ni

so that φi sends ω to ωi and so that the bi-Lipschitz constant of φi tends to 1.
We take ε0 > 0 so that

2ε0 < inf
x∈K

inj(x),

where inj : N → R+ is the injectivity radius on N . There is, then, an I ∈ N so that for
i > I, φi(K) misses the ε0-thin part (Ni)≤ε0 .

At the drilling stage in the proof of Theorem 3.1, we may take ε0 as input for Theo-
rem 3.3, to obtain drilled manifolds (Ni)0 together with drilling diffemorphisms hi so that
the compositions

hi ◦ φi : K → (Ni)0,

which we denote by Φi, are embeddings with bi-Lipschitz constant Li → 1+.
As in the proof of Theorem 3.1, there are resulting locally isometric covers N̂i(K) of

these drillings that converge to N in a type-preserving manner. In the case at hand, the
approximates N̂i(K) have the additional property that the embeddings Φi lift to embeddings

Φ̃i : K → N̂i(K)

of K into N̂i(K) with bi-Lipschitz constant Li. Letting Kn be an exhaustion of N by
compact subsets containing K and letting N̂i(Kn) be the type-preserving approximates
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converging to N resulting from the above procedure, we may diagonalize to obtain a type-
preserving sequence converging strongly to N . An application of Theorem 2.1 completes
the proof. �

5 Strong approximation of geometrically finite manifolds

The aim of this section is to give a proof of Theorem 3.4. Our method of proof follows the
ideas of [EM] and [KT] to promote rank-1 cusps to rank-2 cusps and then fill them in using
Thurston’s hyperbolic Dehn surgery theorem. By choosing the appropriate promotions and
fillings for rank-1 cusps in a sequence of approximates, one easily obtains a sequence of
strongly convergent minimally parabolic approximates.

We first establish the following lemma, a simple application of the Klein-Maskit combi-
nation theorems (see [Msk2]).

Lemma 5.1 Let N lie in GF (M) and let (M,P) be a relative compact core for N . Let
A1, . . . ,Am be annular components of the parabolic locus P. Then there is a geometrically
finite hyperbolic 3-manifold Ň with no rank-1 cusps so that

1. Ň is homeomorphic to N \ A1 t . . . t Am, and

2. there is a locally isometric covering map Π: N → Ň that restricts to an embedding
on (M,P).

Moreover, given a choice of baseframe ω ∈ N and any neighborhood U of (N,ω) in the
geometric topology, there exists such a manifold Ň and a baseframe ω̌ ∈ Ň so that (Ň , ω̌)
lies in U .

We call the manifold Ň a promotion of the rank-1 cusps of N . The topological structure of
Ň is that of the original manifold with the core of each Ai removed (see, e.g. [KT, EM]).

Proof: Let N = Nρ for ρ ∈ D(M). Consider a primitive element g ∈ π1(M) so that g is
homotopic into an annular component of the parabolic locus P. Let Ag denote the annular
component of the parabolic locus P corresponding to g, so that π1(Ag) is conjugate to the
cyclic subgroup 〈g〉 in π1(M) = π1(M) under inclusion, and let γ = ρ(g). Since ρ(π1(M))
is geometrically finite, the parabolic subgroup 〈γ〉 is doubly cusped: there are two disjoint
components Ω and Ω′ in the domain of discontinuity Ω(ρ) so that 〈γ〉 is a subgroup of the
stabilizers Stabρ(Ω) and Stabρ(Ω′) of Ω and Ω′ in ρ(π1(M)).

There are disks B ⊂ Ω and B′ ⊂ Ω′ so that ∂B and ∂B′ are round circles in Ĉ that
are tangent at the fixed point p of γ (with B and B′ each invariant by γ, see [Msk2, Prop.
A.10]), and a parabolic element δ ∈ PSL2(C) with fixed point p so that the interior of B is
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taken to the exterior of B′ by δ. The triple (B,B′, δ) satisfies the hypotheses of the Klein-
Maskit combination theorem (see [Msk1, Sec. 9, Combination II]) for the cyclic subgroups
H = 〈γ〉 = H ′ of ρ(π1(M)), so the group

Γ̌ = 〈ρ(π1(M)), δ〉

generated by ρ(π1(M)) and δ is again a Kleinian group; the subgroup generated by δ and
γ is a rank-2 parabolic subgroup with fixed point p that corresponds to a torus-cusp of the
quotient

Ň = H3/Γ̌.

The manifold Ň is easily seen to be homeomorphic to N \Ag. Letting Pg be the component
of the cuspidal thin part P = Pµ of N whose boundary contains Ag, we call Ň a promotion
of the rank-1 cusp Pg corresponding to Ag to rank-2.

If {A1, . . . ,Am} is an enumeration of the annular components of parabolic locus P for
M, we can promote each rank-1 cusp {P1, . . . , Pm} in P to rank two cusps to obtain a
hyperbolic 3-manifold

Ň(P1, . . . , Pm).

The manifold Ň(P1, . . . , Pm) is homeomorphic to N \ (A1 t . . .tAm), and since the corre-
sponding Kleinian group Γ̌ is given as

Γ̌ = 〈ρ(π1(M)), δ1, . . . , δm〉,

the group generated by ρ(π1(M)) and parabolic elements δ1, . . . , δm, there is a natural
locally isometric covering map

Π: N → Ň(P1, . . . , Pm).

Choosing δj appropriately, we can ensure that the relative compact core (M,P) is contained
in the complement

N \
(
(H1 tH′1) t . . . t (Hm tH′m)

)
where Hj and H′j are the quotients of half spaces bounded by the invariant circles ∂Bj
and ∂B′j for each Klein-Maskit combination. It follows that Π is an isometric embedding
restricted to (M,P). Letting Ň = Ň(P1, . . . , Pm) proves parts (1) and (2) of the lemma.

We now verify the final conclusion, which asserts the existence of promotions Ňn =
Ňn(P1, . . . , Pm) with baseframes ωn, so that (Ňn, ωn) converges geometrically to (N,ω),
where ω is a baseframe in N . Indeed, for each compact subset K of N with ω ∈ K, we
may choose Bj and B′j so that the quotient half-spaces Hj and H′j avoid K. Thus, given an
exhaustion of N by compact submanifolds Kn containing ω, we may choose Ňn so that Kn

embeds isometrically into Ňn by the covering projection Πn : (N,ω)→ (Ňn, ωn). It follows
that (Ňn, ωn) converges geometrically to (N,ω). �
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Proof: (of Theorem 3.4). Let N = Nρ lie in GF (M), and let (M,P) denote a relative
compact core for N . We assume (M,P) has the structure of the relative compact core in
Lemma 5.1. In particular, let A1, . . . ,Am denote the annular components of the parabolic
locus P, and let g1, . . . , gm denote primitive elements of π1(M), so that gj is homotopic
into Aj , for j = 1, . . . ,m.

Applying Lemma 5.1, we let Ň be a promotion of all rank-1 cusps of N so that the
locally isometric covering map Π: N → Ň restricts to an embedding onM. Let T1, . . . , Tm
denote the torus cusps of Ň so that Π∗(gj) lies in π1(Tj) up to conjugacy in π1(Ň).

Performing (1, n) hyperbolic Dehn-fillings on each torus-cusp T1, . . . , Tm (see [Brm1,
Thm. 7.3] or [BO]) we obtain a hyperbolic 3-manifold Nn that is homeomorphic to N , and
so that there are baseframes ωn in Nn and ω̌ in Ň with (Nn, ωn) converging geometrically to
(Ň , ω̌) as n tends to∞. Since such promotions (Ň , ω̌) lie in every neighborhood of (N,ω) in
the geometric topology by Lemma 5.1, we may assume {(Nn, ωn)} converges geometrically
to (N,ω) by a diagonal argument.

The natural embeddings φn : M → Nn determined by geometric convergence (for n
sufficiently large) are homotopy equivalences whose bi-Lipschitz constant Ln tends to 1.
Thus the manifolds Nn determine a sequence in MP (M) that converges algebraically, and
thus strongly, to N . �
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